4122 Digit AC Powered DPM With Beckman Displays

PRELIMINARY TECHNICAL DATA FEATURES
AC Line Powered
Bright Seven-Segment Gas-Discharge Display Floating Input: $>100 \mathrm{~dB}$ CMRR, 300 V RMS CMV
NMR: $>60 \mathrm{~dB}$ @ 50 or 60 Hz
$\pm 0.005 \% \mathrm{R} \pm 50 \mu \mathrm{~V} \pm 1$ Digit Max Error
Auto-Zero Correction
Optional Ratiometric Operation
Vgrsatile bita Output Options - DTL/TTL/CMOS/PMOS

A ccurate Meas pre nents in Nois Electrical Entjonments
Higk Accurac Readquts for 耳est Equiement Process fontr

Analog Devices' AD2008 15 a $41 / 2$ digit A line poy efed PPM designed for making high accuracy mesuremen in adverse electrical environments. The AD2008 measures bipol do vo with a full scale range of $\pm 1.9999 \mathrm{~V}$ and an accuracy of ± 0050 reading $\pm 50 \mu \mathrm{~V} \pm 1$ digit. The full floating, opto-isolated input section provides $>100 \mathrm{~dB}$ of common mode noise rejection at common mode voltages up to 300 V RMS even with control signals and optional data outputs connected. In addition, the dual slope integrating conversion technique allows $>60 \mathrm{~dB}$ of normal mode noise rejection at 50 or 60 Hz without filtering.

LARGE, BRIGHT, EASILY READ DISPLAY

The AD2008 presents a visual readout on large 0.55 inch (14 mm) Beckman seven-segment gas-discharge displays. These displays are casily read at distances up to 50 feet (15 meters) and over viewing angles of 130° in all ambient lighting conditions. Four decimal points are externally programmable. Controls are also available for display testing by illuminating all display segments, and independently blanking either the polarity sign or the entire display. The display lens is color matched to the gas discharge display. The lens has a non-glare, scratch-resistant finish and is casily marked with company logo or measurement units.

VERSATILE DATA OUTPUT OPTIONS

The AD2008 uses a MOS/LSI integrated circuit that provides $41 / 2$ decades of counters and latches with considerable savings in size and power consumption. The data from this chip is provided in a character serial format, one decade at a time, which is used to multiplex the display. Since this data is not

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062
Tel: 617/329-4700
TWX: 710/394-6577
West Coast
Tel: 213/595-1783
Mid-West

SPLAY OUTPUT

- Beckman seven-segment gas discharge-displays, $0.55^{\prime \prime}$ $(14 \mathrm{~mm})$ high, for four data digits, 100% overrange and polarity indications.
- Overload indicated by center segment dashes, polarity remains valid.
- Decimal points selectable at input connector.
- Polarity sign blanking
- Display blanking
- Display test

NALOG INPUT

- Full Scale Range $- \pm 1.9999 \mathrm{~V}$
- Automatic Polarity
- Automatic Zero
- Input Impedance: $>10^{9} \Omega$, shunted with 10 pF
- Bias Current: $<1 \mathrm{nA}(<10 \mathrm{nA}$ over full operating tem-

- Display Segment Test. DTL/TTL Compatible. Logic " 0 " the DPNinput sect
Reference Input Ram
- Reference Input Impedance: $>10^{9} \Omega$, shunted with 10
- Bias Current: $<1 \mathrm{nA}(<10 \mathrm{nA}$ over full operating temperature range)
- Overvoltage Protection: 50V RMS sustained
- Reference Input Noise Rejection: $20 \mathrm{~dB} /$ decade, beginning @ -3 dB @ 5 Hz
ACCURACY
- $\pm 0.005 \%$ Reading $\pm 50 \mu \mathrm{~V} \pm 1$ digit (internal reference) $\pm 0.005 \% \mathrm{~V}_{\text {IN }} / \mathrm{V}_{\text {REF }} \pm 50 \mu \mathrm{~V} \pm 1$ digit (Ratiometric)
- Resolution: 0.1 mV
- Temperature Range: 0 to $+60^{\circ} \mathrm{C}$ operating; $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ storage
- Temperature Coefficients: Gain: $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Stability (1000 hours): Gain: 100 ppm Zero: $\quad< \pm 10 \mu \mathrm{~V}$
- Settling Time to Rated Accuracy: effectively zero for both analog input and reference input
- Warmup to Rated Accuracy: 15 minutes

へORMAL MODE REJECTION

- $>60 \mathrm{~dB}$ at 50 or 60 Hz

OMMON MODE REJECTION

- $>100 \mathrm{~dB}$ with $10 \mathrm{k} \Omega$ inbalance, $\mathrm{dV} \mathrm{cm} / \mathrm{dt}<10^{6} \mathrm{~V} / \mathrm{sec}$ ($1.6 \times 10^{5} \mathrm{~V} 1 \mathrm{iz}$) (i.e., 160 V CMV @ 1 kHz)
O.11M0
-300V RMS
1)16.11. W. (ONTRO) SICNAIS
- 10ヶe lovels D11. T11 Inputs:
$0 \leqslant$ Logic " 0 " $\leqslant+0.8 \mathrm{~V}$
$+2.0 \leqslant \operatorname{Logic} " 1 " \leqslant+5 \mathrm{~V}$
Trigger/Hold Input: $0 \leqslant$ Logic " 0 " $\leqslant+1.5 \mathrm{~V}$ $+3.5 \mathrm{~V} \leqslant \mathrm{~L}$.ogic ${ }^{\prime} 1$ " $" \leqslant+5 \mathrm{~V}$
(all inputs are 1TT1 load)
or grounding activates all display segments except decimal points. Logic " 1 " or open circuit for normal operation. After a display test has occurred, the display and output After a display test has occurred, the display and output
data will not be valid until a new conversion is completed.
- Display Blank. DTL/TTL Compatible. Logic " 0 " or grounding blanks the entire display including the decimal points. Logic " 1 " or open circuit for normal operation. Display blanking has no effect on output data and the display is valid immediately upon removal of a blanking signal.
- Polarity Sign Blank. DTL/TTL Compatible. Logic " 0 " or
grounding blanks the polarity sign indication: logic " 1 " or open circuit for normal operation. Polarity sign blanking
has no effect on output data and the polarity sign is valid open circuit for normal operation. Polarity sign blanking
has no effect on output data and the polarity sign is valid immediately upon removal of the blanking signal.
- Decimal Points: Grounding the appropriate pin illumin-
ates the desired decimal point. Open circuit turns the decimal point off. External drive circuitry must withstand 200 V when decimal points are turned off.
- External Trigger/Hold. DTL/TTL/CMOS/PMOS Compatible. Open circuit on this line allows the DPM to convert at rate of 2.5 conversions per second under control of at rate of 2.5 conversions per second under control of

DATA OUTPUTS

- Logic Levels: $0 \mathrm{~V} \leqslant$ Logic " 0 " $\leqslant 0.4 \mathrm{~V}$ $+4.0 \mathrm{~V} \leqslant$ Logic " 1 " $\leqslant+5.0 \mathrm{~V}$ (all outputs are capable of driving 6 standard TTL loads)
- Logic Compatibility: All data outputs are full compatible with all DTL/TTL/CMOS/PMOS logic
- Parallel Data Output (Option "B"):

Data Ready Flag - Logic " 1 " when data is ready for transfer
41⁄2BCD Digits, Positive True Overload, Positive True
Polarity Sign, Logic "0" for positive ; Logic " 1 " for negative

- Count Data Output (Option "X"):

Data Ready Flag - Logic " 1 " = true
Polarity - Logic " 0 " = positive
Count Output - positive transition
The count output is a string of clock pulses at 200 kHz (for 60 Hz operation) or 166.66667 kHz (for 50 Hz), which can be counted by counters external to the DPM. The count output is " 0 " when not active until approximately 100 ms after the ready flag falls. $5 \mu \mathrm{~s}$ after the last count pulse, the ready flag comes up indicating the end of data transmission. External counters should count positive clock transitions. The delayed transition of the status after conversion allows using this signal to gate external ripple counters without timing problems.

CONVERSION TIME

- 200 ms for full scale input, 320 ms max for overload conversion (250 ms for versions optimized for 50 Hz operation, 400 ms max for overload)

CONVERSION RATE

- Internal Trigger: 2.5 conversions per second
- External Trigger: 5 conversions per second maximum
- Auto Recycle Mode: 5-10 conversions per second, depending on input voltage
- Hold and Read on Command

EXTERNALLY AVAILABLE POWER OUTPUTS

- +5 V @ 50 mA maximum

POWER INPUT

- AC line, 47 to $440 \mathrm{~Hz}, 4$ watts max. Options for all

ORDERING GUIDE

Power Supply Options ${ }^{1}$

AD 2008	$115 \mathrm{VAC} \pm 10 \%$ (@ 60 Hz
$\mathrm{AD} 2008 / \mathrm{E}$	$220 \mathrm{VAC} \pm 10 \%$ (2) 50 Hz
$\mathrm{AD} 2008 / \mathrm{F} 5$	$100 \mathrm{VAC} \pm 10 \%$ (@) 50 Hz
$\mathrm{AD} 2008 / \mathrm{F} 6$	$100 \mathrm{VAC} \pm 10 \%$ (60 Hz
$\mathrm{AD} 2008 / \mathrm{H}$	$240 \mathrm{VAC} \pm 10 \%$ (@ 50 Hz

Data Output Options ${ }^{2}$
B (Parallel BCD)
X (Count)
Ratiometric Operation (R)
Display Lens Options ${ }^{4}$
Lens 7 Red with ADI Logo
Lens 8 Red without ADI Logo
Lens 13 Amber with ADI Logo
Lens 14 Amber without ADI Logo
${ }^{1}$ Only one power supply option may be specified on any single AD2008.
${ }^{2}$ Only one data output option may be specified. If data outputs are not needed, no option should be specified.
${ }^{3}$ Additional cost above base price of DPM.
${ }^{4}$ Lens 7 is supplied if no lens option is specified.
Specifications subject to change without notice.

(continued from page 1)

APPLICATION VERSATILITY

The high accuracy, good noise immunity, ratiometric option and versatile data output options make the AD2008 easy to integrate in many types of measurement systems. Some typical applications include:

- In-house test equipment for instruments and components where a bright, easily-read display, high accuracy and long term stability are needed.
- Digital weighing systems, using the ratiometric option for accurately reading the output of bridge-type transducers. The AD2008 can be calibrated easily to read out in the proper units. Long term stability is a plus here, too.
- Analytical and scientific instrumentation where high accuracy and wide dynamic range of measurement are necessary.
- Process control monitoring in an industrial environment, where $\mathrm{E}-\mathrm{M}$ noise and high common mode voltages are commonplace.

DESIGNED AND BUILT FOR RELIABILITY

High reliability has been designed into the AD2008. In the Ap 2008, the latest IC technology is utilized to minimize parts cpunt and loyereat dissipation for cooler operation. Manuchunt and acturing prycesses are controlled by continuous quality assurance in spe fions ware proper workmanship and testing Like every fotherthalog Devicer' DPM, the A+2008 is fully Lested for flecpric specifications, vibration tested to 7°
 ment. The design, innufactuing ind testing provedures at
Analog Devices aredefigned 0 in sure relablyem's. THEORY OF OPERATION
The block and timing diagrams for the ADZO\& are fown in Figures 1 and 2. The analog section is fully isolated using transformer isolation of the power supplies and opto-isolation of all logic signals. Upon receipt of a conversion command, an auto-zero cycle removes residual zero offsets. The analog input voltage is then switched to the integrator which ramps "up" for a constant period equal to 3 AC line cycles. A stable reference voltage of opposite polarity is then switched to the integrator for the "ramp down" cycle. During the ramp down period, internal clock pulses are counted in a MOS/LSI counter. The number of clock pulses counted during the ramp down period is proportional to the input voltage. At the end of conversion, the data is transferred to the internal latches of the MOS chip and is ready for display. The display is multiplexed, one digit at a time, at a rate fast enough to prevent any visible display flicker. If the " B " output data option is specified, the logic circuitry also transfers the data into output registers at the end of each conversion, making the data available for interfacing to data output devices. The " X " data option provides a gated pulse train output during the ramp down period for counting external to the DPM.

APPLYING THE AD2008

Scaling Inputs

The AD2008 is designed to measure inputs over a full scale range of 0 to ± 1.9999 volts. If inputs in other ranges need to be measured, scaling of inputs can easily be done by amplifying low level voltages or attenuating large voltage inputs. If a low level signal must be amplified to be measured by the AD2008, the amplifier chosen must be a high grade instrumentation

Figure 2. AD2008 Timing Diagram
amplifier or chopper amplifier with performance on a par with the DPM. Attenuators, likewise, must be chosen with the DPM in mind. Attenuator resistors should have tempcos of less than 15 ppm and be selected for tracking characteristics. Since the bias current of the AD2008 will change with temperature, keeping the source impedance below $100 \mathrm{k} \Omega$ will prevent a zero level shift with changes in temperature.
Whenever scaled inputs are necessary, remember to make the signal being transmitted to the DPM as large as possible. Amplification should be done close to the source, attenuation close to the DPM. This will minimize the effects of EMI in noisy environments.
The floating input of the AD2008 makes current measurements easy, by allowing measurements to be made at very high common mode voltages. Shunt resistors should be chosen with wattage ratings sufficient to prevent measurement degradation by heating. For very large currents, a four-terminal meter shunt can be used, but the tempco of the shunt should be carefully checked.

RATIOMETRIC OPERATION

The optional AD2008/R measures the ratio of the analog input voltage and an external reference voltage. Since the DPM ramps "up" on the analog input and "down" on the reference input, it is essential that both these voltages be stable during the conversion period to assure accurate ratiometric measurements. In the ratiometric mode, the DPM displays $10^{4} \times V_{\text {in }} / V_{\text {ref }}$. Reference voltages in the range of 600 mV to 1.3 V can be used. Reference voltages of both polarities are needed for proper operation of the AD2008 auto-zero circuit. However, if unipolar measurements only are necessary, only the reference voltage of the opposite polarity of the input needs to be stable; a 1 V reference that is not noisy is acceptable for the reference voltage of the same polarity as the input. Since the input of the AD2008 is fully floating, both the input and references are measured with respect to the analog low input.

INTERFACING DIGITAL SIGNALS

Conversion Rate Control
The External Trigger/Hold input is a tri-state logic circuit allowing full control of the DPM conversion rate. Leaving this input open will allow the DPM to convert at the internally clocked 2.5 conversions per second rate. A logic " 1 " or +5 V applied to this input will cause the DPM to begin a new conversion immediately ($\sim 20 \mu \mathrm{~s}$) after completing the previous conversion. Since the conversion time depends on the input voltage, the DPM will convert at rates between 5 and 10 per second. If it is desirable to use the DPM in the auto recycle mode and have data outputs, one must use the pulse train output (Option X), since insufficient time exists between conversions to allow loading the BCD parallel data registers (Option B).
 timing diagram (Figure 2) that while the BCD data is updated at the end of each conversion, the polarity bit is updated after the "ramp up" period. Therefore, the data is valid after the "Data Ready" signal goes high, but data transfer to external devices must be completed before the polarity bit is updated (approximately 100 ms after the status goes low again).

Pulse Train Output Option

The pulse train output (Option X) is a series of pulses designed to be counted external to the DPM. The timing diagram (Figure 2) shows that the pulse train output is available during the ramp down period, which begins $\sim 100 \mathrm{~ms}$ after the status line goes low. The frequency of these pulses is 200 kHz on units optimized for 60 Hz operation, 166.67 kHz on units for 50 Hz operation. External counters should count on the positive transition. Since the "Data Ready" line does not go high until approximately $5 \mu \mathrm{~s}$ after the last pulse, the status signal can be used to gate ripple counters without timing problems. As with the BCD data, the polarity bit is updated at the end of the ramp up period, just preceding the pulse train output.

AD2008 CALIBRATION PROCEDURES

Warning: for the safety of personnel and interconnected equipment, all calibration adjustments should be made using a plastic trimming tool only.
Zero and gain adjustments are provided for both (+) and (-) inputs. Although the AD2008 has an automatic zero correction circuitry, the zero adjustment is provided to compensate for non-linearities at very low input signal levels. This zero adjustm^{nt} is fully calibrated in final testing and it normally will not need adjuptoent.
Rero Adjustren Using a chibrated reference source, apply in input of $104 \mu \mathrm{~V} \pm 15 \mu \mathrm{~V}$ and adjus the $(+)$ zero pot until the meter r ads +0001 Repeat the pere e fors $100 \mu \mathrm{~V}$ Tair. ply aninput of $+1.9 \mathrm{Y} \pm 1 \mathrm{\mu} \mathrm{~V}$. Afjust the (+) gain pot so that the DRM reads 1900 . T rning the pet clock ise increases the reading. Repeat fyra input $9-9 \mathrm{~V} \pm \mathrm{IS} \mathrm{V}$, adjusting the (-) gain pot.

TOP VIEW

REAR VIEW

Figure 3. AD2008 Mechanical Outline (Dimensions shown in inches and (mm))

PIN	FUNCTION	PIN	FUNCTION
1＊	2×10^{3}	A	ANALOG HI
2＊	2×10^{2}	B	ANALOG LO
3＊	2×10^{1}	C	（－）REF
4＊	2×10^{0}	D	（＋）REF
5＊	4×10^{3}	E	N．C．
6＊	4×10^{2}	F	GUARD
7＊	4×10^{1}	H^{*}	DATA READY
8＊	4×10^{0}	J＊	1×10^{3}
9＊	8×10^{3}	K＊	1×10^{2}
10＊	8×10^{2}	L＊	1×10^{1}
11＊	8×10^{1}	M^{*}	1×10^{0}
12＊	8×10^{0}	N^{*}	POLARITY
13＊	1×10^{4}	P^{*}	OVERLOAD
14＊	AC LINE COMMON	R	AC LINE COMMON
15	N．C．	S	N．C．
16	AC LINE（LO）	T	AC LINE（LO）
17	N．C．	U	N．C．
18	AC LINE（HI）	V	AC LINE（HI）

PIN	FUNCTION	PIN	FUNCTION
1	N．C．	A	DP1X．XXX
2	N．C．	B	DP1XX．XX
3	N．C．	C	DP1XXX．X
4	N．C．	D	DP1．XXXX
5	N．C．	E	SIGN BLANK
6	＋VE（ +5 V ）	F	N．C．
7	N．C．	H	N．C．
8	N．C．	J	N．C．
9	N．C．	K	N．C．
10	N．C．	L	N．C．
11	N．C．	M	N．C．
12	N．C．	N	N．C．
13	N．C．	P	N．C．
14	DIGITAL COMMON	R	LAMP TEST
15	DISPLAY BLANK	S	EXT．TRIGGER／HOLD

MOUNTING INSTRUCTIONS：
1．SLIDE DPM THROUGH PANEL CUTOUT FROM FRONT OF PANEL．
2．SNAP MOUNTING BLOCK INTO SLOT ON DPM SIDES．
3．TIGHTEN MOUNTING BLOCK TENSION SCREWS SNUGLY TO SECURE DPM TO PANEL（DO NOT OVERTIGHTEN！）
4．SNAP LENS ONTO FRONT OF DPM．

Figure 5．AD2008 Mounting Instructions（Dimensions shown in inches and（mm））．

