Low Cost 43/4 Digit DAMs With LED Displays

FEATURES

"Second Generation" MOS-LSI Design Large $0.43^{\prime \prime}$ (11 mm) LED Displays
43/4 Digit Resolution - 40,000 Counts Full Scale Limited Differential Input
Either Line Powered (AD2025) or Logic Powered (AD2028)
Interchangeable with 4½ Digit DPMs (AD2024 or AD2027)
Industry Standard Case Designs

 The AD2 25 and AD 2028 are low cot 4 git PMs with
large LED displays. Both ur its
tical performance, but the AD 25 is 2 line featured and id
AD2028 is +5 V dc powered.
The AD2025 and AD2028 are interchangeable witt two $41 / 2$
digit PMs available from Analog Devices, the AD2024 and
AD2027 respectively. Thus, they can be used in applications
where either a $43 / 4$ or $41 / 2$ digit display may be desirable in one The AD2 and AD 20 28 are low co 4 digit PMs with
large LED displays. Both ur its der the she features and ide
tical performance, but the ADLe25 is line porered ard th
AD2028 is +5 V dc powered.
The AD2025 and AD2028 are interchangeable with two $41 / 2$
digit DPMs available from Analog Devices, the AD 2024 and
AD2027 respectively. Thus, they can be used in applications
where either a $43 / 4$ or $41 / 2$ digit display may be desirable in one The AD2 and AD 20 28 are low co 4 digit PMs with
large LED displays. Both ur its der the she features and ide
tical performance, but the ADLe25 is line porered ard th
AD2028 is +5 V dc powered.
The AD2025 and AD2028 are interchangeable with two $41 / 2$
digit DPMs available from Analog Devices, the AD 2024 and
AD2027 respectively. Thus, they can be used in applications
where either a $43 / 4$ or $41 / 2$ digit display may be desirable in one
 basic application.

THE BENEFITS OF SECOND GENERATION DESIGN

The AD2025 and AD2028 are designed around MOS-LSI (Metal Oxide Semiconductor, Large Scale Integration) integrated circuits which greatly reduce the number of components and interconnections required to provide the performance and features expected in a high resolution $43 / 4$ digit DPM.
This "Second Generation" design, therefore, offers greatly increased reliability and significantly lower cost at little compromise in performance. The large 0.43 inch (11 mm) LED dis-
plays offer the brightness and readability previously available promise in performance. The large 0.43 inch (11 mm) LED dis-
plays offer the brightness and readability previously available only with gas discharge displays with the added advantage of an all solid state component.

HIGH RESOLUTION AND VERSATILE FEATURES

These DPMs measure DC input voltages over a full scale range of $\pm 3.9999 \mathrm{~V}$ or $\pm 39.999 \mathrm{~V}$ with an accuracy of $\pm 0.005 \%$ reading of $\pm 3.9999 \mathrm{~V}$ or $\pm 39.999 \mathrm{~V}$ with an accuracy of $\pm 0.005 \%$ reading
$\pm 0.005 \%$ of full scale ± 1 digit. Using the "limited differential". input first used by Analog Devices on the AD2010, the AD2025 and AD2028 prevent ground loop problems and proAD2025 and AD2028 prevent ground loop problems and pro
vide 50 dB of common mode rejection at common mode voltages up to $\pm 200 \mathrm{mV}$. Normal mode rejection is 25 dB at $50-60 \mathrm{~Hz}$.

BQ data outputs are provided in a bit parallel, character serial fo mat compatible with CMOS logic systems. When applicatipns require parallel BCD data, such as interfaces to printers, comparators or save display 5 , parallel BCD output options are available that ar compatible to 5 andard TI Logic systems.
 cuitry. In addition, control int ats or conversion"Hold", display blanking and d cimal pin selection provided.
INDUSTRY STANDARD CASE DESIGNS Although both the AD2025 and AD202 ave identical alectrical designs, they are packaged in the case sizes that have become industry standards for ac line powered and +5 V dc logic powered DPMs respectively. The AD2025 fits the 3.924" x $1.682^{\prime \prime}$ ($99.67 \times 42.74 \mathrm{~mm}$) panel cutout common to most ac line powered DPMs, and the AD2028 fits the $3.175^{\prime \prime} \times 1.810^{\prime \prime}$ ($80.65 \times 45.97 \mathrm{~mm}$) panel cutout of the Analog Devices logic power case design, now used by several other manufacturers of logic powered DPMs. Thus, interchangeability is assured, allowing mechanical second sourcing for both these DPMs.

DESIGNED AND BUILT FOR RELIABILITY

Even beyond the reliability advantages of the LSI-IC design and LED displays, the AD2025 and AD2028 have had extreme care taken in their design and manufacture to insure reliability. Manufacturing processes are monitored by continual quality assurance inspections to insure proper workmanship and testing. Automatic test equipment is used to test each DPM thoroughly and without error. And each AD2025 and AD2028, like every Analog Devices DPM, receives a full one week failurefree burn-in with power cycling before shipment.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implicatimon or otherwise under any patent or patent rights of Analog Devices.
P.O. Box 280; Norwood, Massachusetts 02062 U.S.A. Tel: 617/329-4700

Twx: 710/394-6577
Telex: 924491

DISPLAY OUTPUTS

- Seven Segment LED Display, $0.43^{\prime \prime}$ (11 mm) high, for four data digits and 300% overrange.
- Overload indication by blanking all digits except overrange, which indicates " 0 ".
- Decimal points (5) selectable at input.
- Display Blanking

ANALOG INPUT

- Configuration: Bipolar, limited differential
- Full Scale Range: $\pm 3.9999 \mathrm{~V}$ ($\pm 39.999 \mathrm{~V}$, "V" option)
- Automatic Polarity (See applications section for details on polarity display)
- Input Impedance: $100 \mathrm{M} \Omega$ ($1 \mathrm{M} \Omega$, " V " odtion)
- Bias Current: 30 nA (3 nA , "V" option)
- Overvoltage Protection: 120 V rms sustained

ACCURACY

- $\pm 0.005 \%$ reading $\pm 0.005 \%$ full scale ± 1 digit 1
- Resolution: $100 \mu \mathrm{~V}$ (1 mV , " V " option)

Temperatue Range ${ }^{2}: 0$ to $+50^{\circ} \mathrm{C}$ operating. -20 to $+85^{\circ} \mathrm{C}$ sprage. (AD $025 /$: $:+20+45^{\circ} \mathrm{C}$ operating)

- Temperatyre фoefficient: Gain $\pm 30 \mathrm{ppm} /{ }^{8} \mathrm{C}$. Zero Offset:

EXTERNAL POWER SUPPLY OUTPUTS

- AD2025: +5 V at $25 \mathrm{~mA},-25 \mathrm{~V}$ at 5 mA
- AD2028: -25 V at 5 mA

POWER SUPPLY INPUTS

- AD2025: ac line, $50-60 \mathrm{~Hz}, 4 \mathrm{~W}$
- AD2028: $5 \mathrm{~V} \mathrm{dc}, \pm 5 \%$ at 800 mA

CALIBRATION ADJUSTMENTS

- Gain
- Zero
- Recommended recalibration interval: 6 months

SIZE

- AD2025: $3.92^{\prime \prime} \mathrm{W} \times 1.67^{\prime \prime} \mathrm{H} \times 4.48^{\prime \prime} \mathrm{D}(100 \times 42 \times 114 \mathrm{~mm})$ Panel cutout: $3.930^{\prime \prime} \times 1.682^{\prime \prime}(99.8 \times 42.7 \mathrm{~mm})$
- AD2028: $3^{\prime \prime} \mathrm{W} \times 1.8^{\prime \prime} \mathrm{H} \times 4^{\prime \prime} \mathrm{D}(76 \times 46 \times 102 \mathrm{~mm})$ Panel cutout: $3.175^{\prime \prime} \times 1.810^{\prime \prime}(80.65 \times 45.97 \mathrm{~mm})$
WEIGHT
- AD2025: 14 ounces (395 grams)
- AD2028: 10 ounces (280 grams)

OPTIONS - ORDERING GUIDE ${ }^{4}$

- AD2025

AC Power Inputs - No cost option
$\left.\begin{array}{l}\text { AD2025 }-117 \mathrm{~V} \text { ac } \\ \mathrm{AD} 2025 / \mathrm{E}-220 \mathrm{~V} \text { ac } \\ \mathrm{AD} 2025 / \mathrm{F}-100 \mathrm{~V} \text { ac }\end{array}\right\} \quad \pm 10 \%$ AD2025/F-100V ac
AD202\%/ $\mathrm{H}-240 \mathrm{~V}$ ac
In put kange Optionf-No cost option COMMON MODE REJECTYN

- 50 dB, DC to $1 \mathrm{kHz}, \pm 200 \mathrm{mV}$ commun mote volt \%
- AD2025 (floated on power supply transormer fi date puts and control signals are not used) -110 dB at 120 rms common mode voltage, $1 \mathrm{k} \Omega$ imbalance at input.

CONVERSION TIME

- 300 ms for full scale reading
- 400 ms for overload conversion

CONVERSION RATE

- 3 conversions per second

DIGITAL INTERFACE SIGNALS

- Inputs

Display Blank - (open collector TTL Compatible, 4 TTL Loads). Logic " 0 " or grounding blanks display, but not decimal points. The display is valid immediately upon removal of the blanking signal.
Hold - (DTL/TTL Compatible, 2 TTL Loads). Logic " 0 " or grounding causes the DPM to hold and display the last conversion. Upon removal of the hold, the DPM resumes conversions.
Decimal Points - (Not TTL Compatible). Logic " 0 " or grounding turns on appropriate decimal point. External circuitry must sink 35 mA when a decimal point is illuminated.

- Outputs

DTL/TTL Compatible ${ }^{3}$ - Status. Logic " 1 " indicates conversion in process. All digital outputs are valid when status is at logic " 0 ". 4 TTL loads. - Polarity. Logic " 1 " indicates positive polarity, unlatched. 6 TTL loads. - Overload, Logic " 1 " indicates overload ($\geqslant 40,000$), unlatched 4 TTL Loads.
CMOS and LP Schottky Compatible - BCD outputs, $43 / 4$ BCD digits, character serial, bit parallel, 1 LP Schottky load.
Parallel BCD Output (Option "B"). - 43/4 BCD digits, positive true, latched. Drives 5 TTL loads. - Data Ready. Logic " 1 " indicates output data is valid. Drives 2 TTL loads. - Polarity. Logic " 1 " indicates positive polarity, latched, Drives 2 TTL loads.

Lens 8 - Red withoundilo
Connector -36 pin, 0.156 spacing
Viking 2VK18D/1-2 or equivalent. - Optional: oder AC2610.
AD2025/B option also requires a 30 pin, $0.156^{\prime \prime}$ spacing, card edge connector, Viking 2VK15D/1-2 or equivalent.

- Optional: Order AC1501.
- AD2028

Input Range Options - No cost option
AD2028 - ± 3.9999 V Full Scale
AD2028/V - ± 39.999 V Full Scale
Data Output Options
AD2028 - Character serial data outputs
AD2028/B - Parallel BCD option
Display Lens Options ${ }^{5}$
Lens 5 - Red with ADI logo
Lens 6 - Red without ADI logo
Connector - AC1501 (see above) or equivalent. AD2028/B option requires two each.

NOTES

${ }^{1}$ Guaranteed at $+25^{\circ} \mathrm{C}$ and nominal power supply voltage.
${ }^{2}$ Guaranteed.
${ }^{3}$ For CMOS compatibility, 3.3 k pullup resistors to the +5 V output of the DPM are required.
${ }^{4}$ Only one AC Power Input and/or Input Range option may be specified.
The " B " option can be ordered with any combination of power and
range options.
${ }^{5}$ If no lens is specified, Lens 5 or 7 is supplied as appropriate.
Specifications subject to change without notice.

APPLYING THE AD2025 AND AD2028

Wiring Connections

Figures 1 and 2 are wiring diagrams for AD2025 and AD2028 applications. The "limited differential" input uses a 100Ω resistor to isolate the analog input from the digital and power supply sections to prevent ground loop problems. The analog input must be connected between the "analog high" and "analog ground" inputs only, since in some applications there may be up to a $\pm 200 \mathrm{mV}$ CMV difference between analog and digital grounds.

PIN	FUNCTION
1	Analog Ground
2	10^{\prime} Digit
$-=$ KEY	
3	BCD 2
4	10^{3} Digit
5	BCD 8
6	Mux Step ${ }^{1}$
-7	+5V dc (Out)
8	NC
9	AC High
10	NC
11	AC Return
12	NC
13	Digital Ground
14	DP . XXXXX
15	Polarity
16	Display Blank
17	DPXXXX.X
18	Overload

PIN	FUNCTION
A	Analog High
B	10° Digit (LSD)
$-=\mathrm{KEY}$	
C	10^{2} Digit
D	BCD 4
E	BCD 1
F	10^{4} Digit (MSD)
H	-25 V dc (Out)
J	NC
K	AC High
L	NC
M	AC Return
N	NC
P	Digital Grpund
R	Status
S	Hold
T	DPX.XXXX
U	DPXX.XXX
V	DPXXX.XX

NOTE 1: BCD multiplexer clock pulse available for remote placement of BCD option.

AD2028 - Signal and Pin Connections

AD2025/AD2028 BCD Options - Signal and Pin Connections

PANEL CUTOUT： $3.930 \times 1.682(99.82 \times 42.72)$

Figure 4．AD2025 Mechanical Outline

