Engineer-to-Engineer Note

EE-420

Rev 1 - October 8, 2019

ANALOG Technical notes on using Analog Devices A²B[®] products and development tools DEVICES Visit our Web resources <u>http://www.analog.com/ee-notes</u> and <u>http://www.analog.com/a2b</u>.

EVAL-AD2428WC1BZ A²B Evaluation Board User Guide

Contributed by A²B Applications Team

Features

- Bus-Powered A²B[®] Slave Transceiver (AD2428W)
- Four Stereo MEMS Microphones
- LED on GPIO

Included Equipment

- 1.8 m Twisted-Pair Cable (CAT5e-Rated, with DuraClikTM Connectors)
- Rubber Feet

Equipment Needed

- EVAL-AD2428WD1BZ A²B Master Node Evaluation Board
- Additional A²B Slave Nodes (Optional)
 - □ EVAL-AD2428WG1BZ
 - □ EVAL-AD2428WB1BZ

Documents Needed

- Transceiver Data Sheet^[1]
- Transceiver Technical Reference^[2]
- EVAL-AD2428WC1BZ Hardware Design Files^[3]

Software Needed

- SigmaStudio[®] Rev. 4.4 or later
- Software Distribution for A²B Rev 19.3.0 or later, DLLs

Copyright 2019, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers' products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

General Description

This evaluation board provides A^2B bus-powered slave node functionality for an A^2B network, including support for PDM microphone input. Bus-powered slave nodes derive power from the bias voltage on the A^2B wires.

The EVAL-AD2428WC1BZ board's four digital INMP621 MEMS microphones with PDM output can feed the upstream or downstream slots on the A²B bus. Adding multiple microphone signals increases the acoustic dynamic range. This four microphone array also lends itself well to static or adaptive beamforming techniques used to introduce directionality to the otherwise omnidirectional MEMS microphones.

For the board schematics, assembly/layout files, and bill of materials (BOM), see the EVAL-AD2428WC1BZ Hardware Design Files ZIP archive associated with this EE-note^[3]

Evaluation Board Hardware

Figure 1 identifies the important components and connection points on the EVAL-AD2428WC1BZ evaluation board.

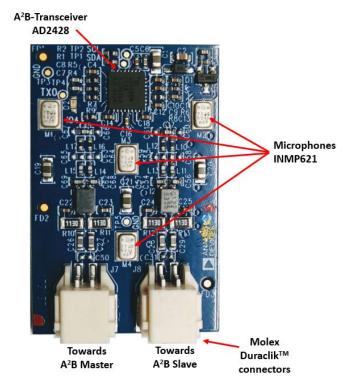


Figure 1. Board Overview

A²B Bus Connections (J7 and J8)

The 2-pin Molex DuraClik connector (J7) allows a single twisted-pair A^2B cable to attach to the A-side of the AD2428W transceiver such that the opposite end of the A^2B cable can attach to the B-side of either the master transceiver or the next slave node transceiver closer to the master node.

The 2-pin Molex DuraClik connector (J8) allows a single twisted-pair A^2B cable to attach to the B-side of the AD2428W transceiver. The opposite end of the A^2B cable can attach to the A-side of the next slave node transceiver, including the last-in-line slave.

PDM Microphones (INMP621)

There are four digital MEMS microphones connected directly to the transceiver through PDM.

LED (D2)

The D2 LED reflects the status of the DTX1/IO3 pin when used as a GPIO pin.

Test Points (TP1 – TP10)

The test points are well-marked on the silkscreen of the PCB, providing access to signals and power supplies, as summarized in <u>Table 1</u>. Refer to the schematics to locate the probe points.

Test Point	Provides Access To
TP1	AD2428W I2C Serial Clock Signal (SCL)
TP2	AD2428W I2C Serial Data Signal (SDA)
TP3	EVAL-AD2428WC1BZ Board Ground Potential
TP4	AD2428W I2S/TDM Primary Data Signal (DTX0/IO3)
TP5	EVAL-AD2428WC1BZ Board Ground Potential
TP6	AD2428W IO1 Signal (ADR1/IO1)
TP7	AD2428W VOUT1 Output Voltage (PLLVDD/DVDD)
TP8	AD2428W VOUT2 Output Voltage (ATRXVDD/BTRXVDD)
TP9	AD2428W Next Slave Power Sense (SENSE)
TP10	AD2428W Return Current for Next Slave (VSSN)

Table 1. EVAL-AD2428WC1BZ Evaluation Board Test Points

I²C Device Addresses in 7-bit Format

The I²C device address in 7-bit format does not include the read-write (R/W) bit. The schematics tab in the SigmaStudio $A^{2}B$ window uses the 7-bit address representation for configuration of and access to the AD2428W A²B transceiver registers.

Evaluation Board Software Quick Start Procedure

The EVAL-AD2428WC1BZ evaluation board is intended to be connected within an existing A^2B system, where at least a master node exists for the on-board AD2428W transceiver to be a slave to on the A^2B bus. A host processor on the master node interfaces directly with the A^2B master transceiver, through which it programs and reads the register spaces of all discovered slave transceivers. This configuration allows a full system initialization at start-up and status monitoring during operation.

The examples furnished with the complementary EVAL-AD2428WD1BZ A²B master evaluation board assume a connection to specific slave boards, as noted in the following sections.

Connection to EVAL-AD2428WD1BZ Master Board

For master board setup instructions, please refer to the *EVAL-AD2428WD1BZ* A^2B *Evaluation Board Manual*^[4]. Ensure that the master board jumpers are all installed in their default positions.

Hardware Setup for a 3-Node A²B System

1. Assemble the example A^2B system by connecting the indicated A^2B evaluation boards as follows:

Master (EVAL-AD2428WD1BZ) – Connect the B-side (P2) to the A-side on the slave0 board (J7) Slave0 (EVAL-AD2428WC1BZ) – Connect the B-side (J8) to the A-side on the slave1 board (J7) Slave1 (EVAL-AD2428WB1BZ)

- 2. Connect the PC over a USB cable and through the EVAL-ADUSB2EBZ USBi I²C programmer to the SigmaStudio header (P1) on the master board.
- 3. Connect an audio source to the stereo line input of the slave1 board (J2).
- 4. Connect headphones to the audio output of the master board (J4).
- 5. Plug the wall-mount 12V power supply (1.5 A) into an outlet and connect it to the power jack on the master board (P4).

Software Setup and Operation

- 1. Install the SigmaStudio (Rev. 4.4 or later) and A²B Software for Windows/Baremetal (Rev 19.3.0) software from the EVAL-AD2428WC1BZ product page.
- 2. Copy the A2B.dll and A2Bstack.dll driver files from the installation directory (default C:\Analog Devices\ADI_A2B_Software-Rel19.3.0\GUI\x86_x64) into the SigmaStudio installation (default C:\Program Files\Analog Devices\SigmaStudio 4.4). Start SigmaStudio and verify that the A2B.dll file is selected under Tools→AddInsBrowser. Save before exiting.
- 3. Open the adi_a2b_3NodeSampleDemo.dspproj example project, which is located in the (default) C:\Analog Devices\ADI_A2B_Software-Rel19.3.0\Schematics\BF\A2BSchematics directory. Click the *Link-Compile-Download* icon, as shown in Figure 2.
- 4. If a headset is connected to slave1, then the signals from the two slave0 microphones can be heard from the left and right ears, respectively.
- 5. The AD2428W DRX0/IO5 and DRX1/IO6 pins are multiplexed to support either I²S/TDM receive functionality (default) or PDM input (PDM0 and PDM1, respectively). Ensure that PDM functionality is enabled using the SigmaStudio GUI, as shown in Figure 3.

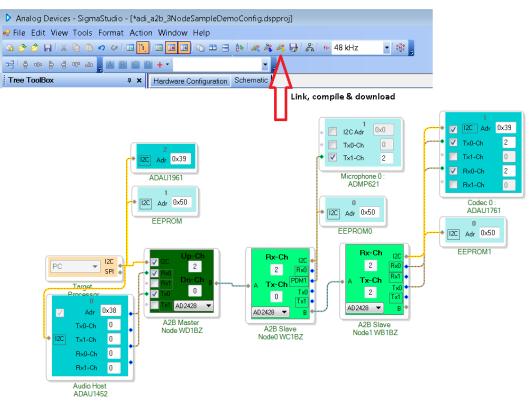


Figure 2. Software Schematic for adi_a2b_3NodeSampleDemoConfig.dspproj A²B Example Project

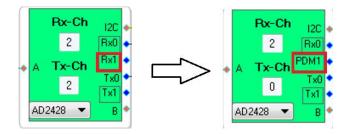


Figure 3. Changing AD2428W Pin Function from DRX1 to PDM1

6. The microphone data from slave0 is played out of the headset connected to slave1. Select the source and destination in the A2B Stream Configuration window to change the routing. The Stream Config tab (right-click on Target Processor→Device Properties→Stream Config) to define audio streams across the nodes, as shown in Figure 4. When the Apply button is clicked, the stream assignments configure the upstream and downstream slots accordingly across the nodes.

Target Processor	Device Properties	A2B Stream Configuration	
	Stream Config	Stream Definition Stream Assignment	e c
	Import Bus Config File Export System Config Files Save Schematic in EEPROM		+ - 2 1 4
	Delete	Stream Stream Name	Fs (kHz) Data No.
	Cut Copy Paste	0 Mic 1 Stereo	48 24 2 48 24 2
	ZoomToSelection	A2B Stream Configuration	
	Disable This Control	Stream Definition Stream Assignment	6
		Auto Slot Calculate View By Name	<- Stream Destination ->
		Auto Slot Calculate 📃 View By Name	Corean Destination >
		Stream Name	Stream Source Master Slave 0 Slave

Figure 4: Stream Configuration

Refer to the *Quick Start Guide*^[5] from the A²B software distribution for guidance regarding the modification of the software.

References

- AD2420(W)AD2426(W)/AD2427(W)/AD2428(W)/ AD2429(W) Automotive Audio Bus A²B Transceiver Data Sheet. Rev A, October 2019. Analog Devices, Inc.
- [2] AD2420(W)/6(W)/7(W)/8(W)/9(W) Automotive Audio Bus A²B Transceiver Technical Reference. Rev 1.1, October 2019. Analog Devices, Inc.
- [3] Associated ZIP File (EE420v01.zip) for EVAL-AD2428WC1BZ A²B Evaluation Board User Guide (EE-420). October 2019. Analog Devices, Inc.
- [4] EVAL-AD2428WD1BZ A²B Evaluation Board Manual. Rev 1.1, October 2019. Analog Devices, Inc.
- [5] A²B Quick Start Guide. Revision 25.0, October 2019. Analog Devices, Inc.

Document History

Revision	Description
<i>Rev 1 – October 17, 2019</i> <i>by A²B Applications Team</i>	Initial Release