FEATURES
Very High Slew Rate: $1000 \mathrm{~V} / \mu \mathrm{s}$
Fast Settling: 150ns max to $\pm 0.05 \%$
Gain Bandwidth Product: 1.7 GHz typical
High Output Current: 100 mA min @ $\mathrm{V}_{\mathrm{OUT}}=10 \mathrm{~V}$ Full Differential Input

propuqt highlights
The high slew rat $(1000 \mathrm{~V} / \mu \mathrm{s} \min)$ and fast settling time to 0 01\% (250ns max) make thaD 3554 ideal for D/A, A/D, sample-ho/d, End videonbtrumentation circuits.

The AD 3554 can supply $\pm 100 \mathrm{~mA}$ at 10 yolts. The slew rate is $1000 \mathrm{~V} / \mu \mathrm{s}$ minimum $; 1200 \mathrm{~V} / \mu \mathrm{s}$ is typical. Settling time to $\pm 0.05 \%$ of final value is only 150 ns when configured as an inverting amplifier. The user can optimize the combination of bandwidth, slew rate, and settling time for a particular applicatimon by selecting the external compensation capacitor.

The AD 3554 is recommended for any operational amplifier application where speed and bandwidth are important considerations. The high slew rate and fast settling time make the AD 3554 an excellent choice for use in fast D/A converters, fast current amplifiers, integrators, waveform generators and multiplexer buffers.

The AD3554 is available in three versions: the " A " and " B " are specified over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range and " S " over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range. All devices are packaged in the hermetically-sealed TO-3 style metal can.
The AD 3554 is a pin-compatible replacement for 3554 devices from other manufacturers.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implicaion or otherwise under any patent or patent rights of Analog Devices.

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062
Tel: 617/329-4700
West Coast
714/842-1717
MidWest 312/653-5000

TWX: 710/394-6577
 typ) in a high gain-bandwidth product operational amplifier.
5. Full differential input makes the AD 3554 ideal for all standard operational amplifier applications such as high speed integrators, differentiators, and high gain amplifiers.
6. The 100 mA at 10 V output makes the AD3554 suitable for many applications that require high output power, such as cable drivers. The capacitance of coaxial cable (e.g., $29 \mathrm{pF} /$ foot for RG-58) does not load the AD 3554 when the coaxial cable or transmission line is terminated in its characteristic impedance.

Figure 1. Open Loop Frequency Response (Voltage Gain)

Figure 2. Open Loop Frequency Response (Phase Shift)

Figure 3. Output Voltage vs. Frequency

Figure 4. Slew Rate vs. Compensation

Figure 7. Settling Time vs. Output Voltage Change (Circuit of Figure 18A)

Figure 10. Open Loop Gain vs. Supply Voltage

Figure 5. Recommended Cokpensation Capacitor vs. Closed Loop Gain

Figure 8. Voltage Follower Large Signal Response

Figure 11. Dynamic Characteristics vs. Supply Voltage

Figure 9. Voltage Follower Sma Signal Response

Figure 12. Dynamic Characteristic vs. Temperature

Figure 13. Power Dissipation vs. Temperature

Figure 14. PSRR vs. Frequency

Figure 15. CMRR vs. Frequency

Figure 18A. Settling Time Test Circuit Schematic
Figure 18B. Settling Time Test Circuit Layout

Figure 18C. Unity Gain Inverter Settling Time
as At mundaxs wic tion un uschadion uhe to mereased printed circuit board capacitance.

COMPENSATION

The user can optimize the bandwidth, slew rate, or settling time by selecting the external frequency compensation capacitor. No compensation capacitor is required for closed loop gains above 50 and when the load capacitance is less than 100 pF . When driving capacitive loads greater than 470 pF , in low closed loop gain configurations, connect a 1000 pF capacitor between pin 8 and the positive supply. The performance may be improved by connecting a small resistor in series with the output and a small capacitor from pin 1 to 5 . See Typical Circuits.
The flat high frequency response of the AD3554 may be preserved and any high frequency peaking avoided by connecting a small capacitor in parallel with the feedback resistor. This capacitor will compensate for the closed loop, high frequency, transfer function zero that results from the time constant formed by the input capacitance of the amplifier, typically 2 pF , and the input and feedback resistors. Using small resistor values will keep the break frequency of this zero sufficiently high, avoiding peaking and preserving the phase margin.

Figure 19. Unity Gain Inverter

*THESE COMPONENTS MAY BE ELIMINATED WHEN NOT DRIVING LARGE CAPACITIVE LOADS.

Figure 20. Follower

*THESE COMPONENTS MAY BE ELIMINATED WHEN NOT DRIVING LARGE CAPACITIVE LOADS.

Figure 22. Inverting Gain of 100 Amplifier

Figure 21. Inverting Gain of 10 Amplifier

