

True 16-Bit **Track-and-Hold Amplifier**

AD386

FEATURES

Companion to True 16-Bit A/D Converters

16-Bit Linear (-40°C to +85°C) 14-Bit Linear (-55°C to +125°C)

Fast Acquisition Time: 3.6 µs to 0.00076%

Low Droop Rate: 20 μV/ms

Differential Amplifier for Ground Sense

Low Aperture Jitter: 40 ps

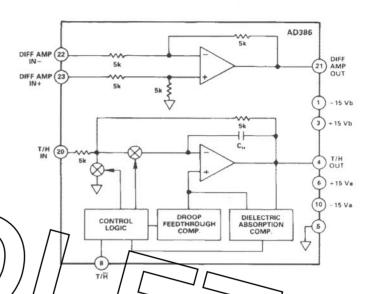
APPLICATIONS

Medical and Analytical Instrumentation

Signal Processing

Multichannel Data Acquisition Systems Automatic Test Equipment

Guidance nd Control


onar

PRODUCT DESCRIPTION

The AD386 is a high accuracy, adjustment free tra hold amplifier designed for high resolution data ac applications. The fast acquisition time (3.6 µs to 75 µ low aperture jitter (40 ps) make it ideal for use with fast converters.

The AD386 is complete with an internal hold capacitor, and it incorporates a compensation network which minimizes the track-to-hold charge offset and dielectric absorption. The AD386 also includes an internal differential amplifier for very high accuracy applications.

AD386 FUNCTIONAL BLOCK DIAGRAM

Typical applications for the AD386 include sampled tern, peak hold function, strobe measurement system and simultaneous sampling converter systems. When used with autozero and autocalibration techniques, this T/H combined with a high linearity A/D will offer true 16-bit performance (0.00076 linearity) over the industrial temperature range, and 14-bit performance (0.003% linearity) over the military temperature range

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way; P. O. Box 9106; Norwood, MA 02062-9106 U.S.A. Twx: 710/394-6577 Tel: 617/329-4700

Telex: 924491 Cables: ANALOG NORWOODMASS

AD386 — SPECIFICATIONS (@ +25°C unless otherwise noted, $V_s = \pm 15 \ V \pm 10\%$)

Model	Conditions	Min	AD386BD Typ	Max	Min	AD386TD Typ	Max	Units
DIFFERENTIAL AMPLIFIER								
INPUT CHARACTERISTICS								
Input Range		±10			±10			V
Common-Mode Range		±10			±10			V
Input Resistance ¹								
Signal			5			5		kΩ
Ground Sense			10			10		kΩ
Offset ²			0.6	2.0		0.6	2.0	mV
Offset Drift	T _{min} to T _{max}	1	10	30	-	10	30	μV/°C
CMRR	$V_{CM} = \pm 10$	80	90	30	80	90	30	dB
PSRR ³	CM10	76	85		76	85		dB
		70			/6	63		db
TRANSFER CHARACTERISTICS								
Gain	1		-1			-1		V/V
Gain Error		and the second		0.02			0.02	%
Gain Error Drift	T _{min} to T _{max}		1	5	1	1	5	ppm/°C
Gain Linearity			0.0002	0.00076		0.0002	0.00076	%
Gain Linearity Drift	T _{min} to T _{max}		0.01	0.05		0.01	0.05	ppm/°C
Noise (ENBW = 1.8 MHz)			32	45		32	45	μV rms
DYNAMIC CHARACTERISTICS					1			
Small/Signal Bandwidth			6			6		MHz
Slew Rate	1)		65			65		V/µs
Settling Time ⁴	/// _ \	J				0.5		1/45
10 Step to 1/2 LSH16	V(C)	1 _	20	3.0				11.6
18 V Step to 1/2 LSB14		1	0.8	1.5		0.8	1.5	μs
20 V Step to 1/2 LSB16			2.0	8.0 7		0.0	1.5	μs
20 V Step to 1/2 LSB16	T _{min} to T _{max}		2.0	3.0				μs
20 V Step to 1/2 LSB14	T _{min} th T _{max}	11 /	0.8	1.5		700	1 5	μs
20 V Step to 1/2 LSB14	T _{min} to T _{max}		0.8	1.3	/ ,	0.8	1.5	μs
-	min to 1 max		0.9	1./			7.2	μs
OUTPUT			ノ / /	' /	_			\square
Voltage	$R_{LOAD}>3.5 k\Omega$,		<i>// </i>	L	/ /	_ 7	/ / _	+ $/$
	T _{min} to T _{max}	±10	L		±10	\sim	//	1 1/
Current	Short Circuit		15			15	/ /	mA
POWER SUPPLY						$\overline{}$		1
Rated Performance			±15			16	/ /	1/v/
Operating Range		±5		±18	±5		+ 8	/ v/
Quiescent Current			4.2	5.0	2000	4.2	5.0	mA
RACK-AND-HOLD								-
INPUT CHARACTERISTICS								
Input Range		+10			. 10			
Input Resistance ¹		±10			±10			V
Offset ²			5	3.0		5		kΩ
Offset Drift	ТТ		0.6	2.0		0.6	2.0	mV
	T _{min} to T _{max}		10	30		10	30	μV/°C
TRANSFER CHARACTERISTICS								
Gain			-1			-1		V/V
Gain Error				0.02			0.02	%
Gain Error Drift	T _{min} to T _{max}		1	5		1	5	ppm/°C
Gain Linearity			0.0002	0.00076		0.0002	0.00076	%
Gain Linearity Drift	T _{min} to T _{max}		0.01	0.05		0.01	0.05	ppm/°C
PSRR ³	77100	76	85		76	85	erick fills	dB
DYNAMIC CHARACTERISTICS								
Small Signal Bandwidth			2			2		MI
Slew Rate			15			15		MHz
	-		17			17		V/µs
TRACK-TO-HOLD SWITCHING								
Pedestal + Offset	-		0.5	1.5		0.5	1.5	mV
Pedestal + Offset	T _{min} to T _{max}			5.0			7.5	mV
Pedestal Linearity	T _{min} to T _{max}		0.0004	0.00076		0.0004	0.003	%
Aperture Delay			12			12		ns
Aperture Jitter			40			40		ps
Transient Settling ⁴								
to 1/2 LSB16	T _{min} to T _{max}		600	800				ns
to 1/2 LSB14	T _{min} to T _{max}							113

			AD386BI			AD386T		
Model	Conditions	Min	Тур	Max	Min	Тур	Max	Units
HOLD MODE								
Droop Rate			20	100		20	100	mV/s
Droop Rate	Tmax		0.2	1.0		3.6	18	V/s
Feedthrough ⁵			-99	-94		-99	-94	dB
Noise (ENBW = 1.7 MHz)			32	50		32	50	μV rm
PSRR ³		60	66		60	66		dB
Dielectric Absorption ⁶			7	10		7	10	ppm
HOLD-TO-TRACK DYNAMICS								
Acquisition Time⁴								
10 V Step to 1/2 LSB16			3.6	4.1				µ.s
10 V Step to 1/2 LSB14	1		3.1	3.6	1	3.1	3.6	
20 V Step to 1/2 LSB16			3.6	4.1		5.1	5.0	μs
20 V Step to 1/2 LSB16	TT			4.5				μs
	T _{min} to T _{max}		4.0					μs
20 V Step to 1/2 LSB14			3.1	3.6		3.1	3.6	μS
20 V Step to 1/2 LSB14	T _{min} to T _{max}		3.5	4.0		4.0	4.5	μs
DIGITAL INPUTS	T _{min} to T _{max}	3.5			3.5			v
V _{IH}		3.5		0.0	3.5		0.0	V
II.	T _{min} to T _{max}	10		0.9	10		0.9	
	T _{min} to T _{max}	-10		+10	-10		+10	μA
I _{IL}	T _{min} to T _{max}	-10		+10	-10		+10	μΑ
OUTPUT/ /								
Voltage	$R_{\text{OAD}} > 3.5 \text{ k}\Omega$							
	T _{min} to T _{max}	±10	\ _		±10			V
Current	Short Circuit	$Y \setminus$	15	7		15		,mA
POWER SUPPLY				440000000000000000000000000000000000000	<u> </u>			
Rated Performance			+15			+ 15		V
Operating Range	χ $^{-}$ $/$ $/$ 1	±8 /	F1 1	±18	±8	Tr	± 18	V
Ouiescent Current		-0	/ / /	-10	120	<i></i>	±10	V
Positive Supply			8.6	12.0		- 00 7	r-a / [
Negative Supply		-6.0	5.4	12.0		7 8.0	12.0	mA
V 11.		-0.0	-13.4	\supset $/$	-0.0	-3.4	\perp	TRA.
SYSTEM			_	\longrightarrow [1	/	/ /	
Gain Linearity	T _{min} to T _{max}		0.0003	0.0012	-	0.0003	0.0012	%
Acquisition Time4. 7					7	/ /		7
20 V Step to 1/2 LSB16			4.1	5.1	1	7		μs
20 V Step to 1/2 LSB16	T _{min} to T _{max}		4.5	5.4	1			μs
20 V Step to 1/2 LSB14	The state of the s		3.2	3.9	1	3.2	3.9	1
20 V Step to 1/2 LSB14	T _{min} to T _{max}		3.6	4.3		4.1	4.8	μs
Power Dissipation	mun max		312	435		312	435	mW
TEMPERATURE RANGE								
Operating		-40		+85	-55		+125	°C
Storage		-60		+150	-60		+150	°C
Giorage		-00		7 130	1 -00		+ 130	

NOTES

Typical resistance tolerance is $\pm 25\%$.

After 5 minute warmup at +25%.

Test conditions: $+V_S = +15 \text{ V}$, $-V_S = -16 \text{ V}$ to -14 V and $+V_S = +14 \text{ V}$ to +16 V, $-V_S = -15 \text{ V}$. $+V_S = +14 \text{ V}$ to +16 V, $-V_S = -15 \text{ V}$. $+V_S = +14 \text{ V}$ to +16 V, $-V_S = -15 \text{ V}$.

The second of the second

⁻Measured at 1 kriz.

⁶Dielectric Absorption represents the magnitude of long-term settling artifacts for hold times up to 80 μs as a fraction of the difference in voltages between two successive held samples.

⁷Specifications also apply for 10 V step.

Specifications subject to change without notice. Specifications in **bold** are 100% production tested.

AD386

ABSOLUTE MAXIMUM RATIN	GS ¹		~~	
Supply Voltage	±18 V	-15 Vb 1		24 GND
Internal Power Dissipation	800 mW	📑		23 +DIFF IN
Input Voltage ²	±18 V	GND 2		23 TOITT IN
T/H Input Voltage	0.5 V , + 16 V	+15 Vb 3	-	22 -DIFF IN
Output Short Circuit Duration		SHA DUT		21 DIFF OUT
Storage Temperature Range	65°C to +150°C	SHA DOT		21 017 001
Operating Temperature Range		GND 5	CH - ₩	20 SHA IN
AD386B	40°C to +85°C	+15 Va 6	•	19 GND
AD386T		+15 VII 6	7	13 040
Lead Temperature Range (Soldering	g 60 sec) + 300°C	GND 7	\Diamond	18 GND
NOTES		T/H 8		17 NC
Stresses above those listed under "Absolut	te Maximum Ratings" may cause	1//		
permanent damage to the device. This is a		GND 9	L	16 NC
operation of the device at these or any oth		-15 Va 10	ŀ	15 NC
cated in the operational section of this spe			l l	
to absolute maximum rating conditions for device reliability.	extended periods may affect	NC 11	1	14 NC
² For supply voltages less than ±18 V, the	absolute maximum input voltage is	NC 12	1	13 NC
equal to the supply voltage.		4		_
	_	NC= NC	CONNECT	
			- DIFF AMP ONLY	
)) / _ \	±15 Va	- SHA ONLY	
	$\mathcal{I}(\bigcap)$	AD396	Pin Configuration	25
		ADS60	rin comiguratio	511
		$\setminus \setminus \bigcap$		
	ORIVERING	GUIDE	<u></u>	
\smile		I I I I I		
	Max Linearity	Temperature Paci	kage	
	Model Errox	Range Opt	ion*	7 - 7 -
	AD386BD 0.00076% FSR	-40°C to +85°C DH	-£4B	
	AD386TD 0.003% FSR	19010 0	24B	
	AD386TD/883B 0.003% FSR		-24B	
	1123001270032 0.00370131	33 0 10 1 123 0	7 /	
	*DH-24B = Ceramic DIP.		7 [
			_	~ / <u>~</u>
				7
				~

Typical Performance Characteristics

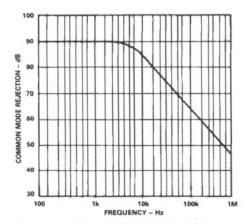


Figure 1. Differential Amplifier Common Mode Rejection vs. Frequency

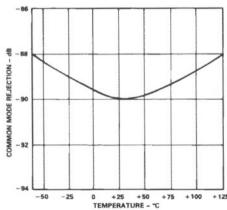


Figure 2. Differential Amplifier Common Mode Rejection vs. Temperature (100 Hz)

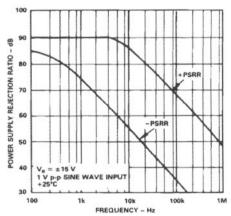
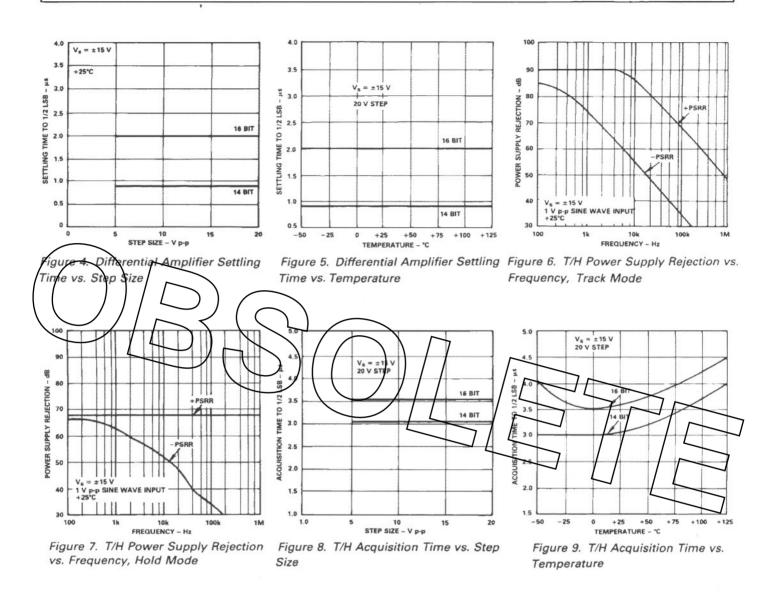
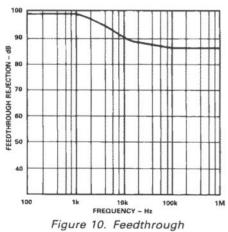




Figure 3. Differential Amplifier Power Supply Rejection vs. Frequency

vs. Frequency

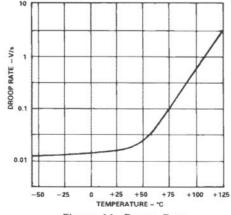


Figure 11. Droop Rate vs. Temperature

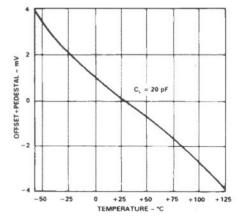
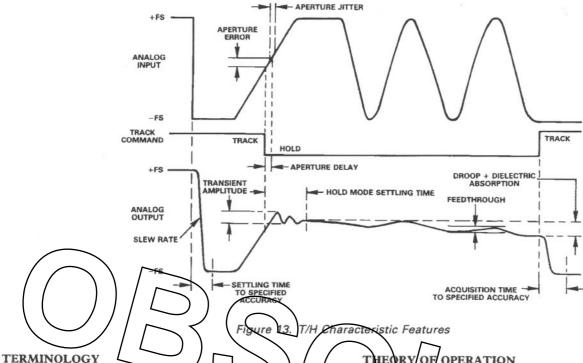



Figure 12. (Pedestal+Offset) vs. Temperature

AD386

Aperture Delay: the time required by the internal sy disconnect the hold capacitor from the input, which produ effective delay in the sample timing.

Aperture Jitter: the uncertainty in Aperture Delay caused by internal noise and the variation of switching thresholds with signal level. The error caused by aperture jitter depends on the rate of change of the input and as such determines the maximum input frequency which can be sampled without error.

Pedestal: a step change in the output voltage which occurs when switching from track mode to hold mode.

Hold Mode Settling Time: the time required for the pedestal to reach its final value to within a specified fraction of full scale.

Droop: the change in the held output voltage resulting from leakage currents.

Feedthrough: the fraction of input signal variation which appears at the output in hold mode as a result of capacitive coupling.

Dielectric Absorption: the tendency of charges within a capacitor to redistribute themselves over time, resulting in "creep" in the voltage of an open circuit capacitor after a large rapid change.

Acquisition Time: the time required after entering track mode for the voltage on the hold capacitor to settle to within a specified fraction of full scale. This is usually specified for a full-scale step change in output voltage.

Settling Time: the time required in track mode for the output to reach its final value within a specified fraction of full scale following a step change in the input voltage.

Nonlinearity: the degree to which a plot of output versus input deviates from the straight line defined by the end points. It is usually specified as a percentage of full scale.

HEORY **OPERATION**

The architecture of the AD386 differs from that usually encountered n inverting Track-and-Hold (T/H) circuits. The hold apacitor in a conventional T/H (Figure 14) from the amplifier's output to its inverting input. switch A is open and switch B is closed. Since the summing junction is a virtual ground, the voltage across the capacitor follows the input. The switches change state in hold mode which disconnects the capacitor from the input and holds the output voltage constant. The clamping action of switch A reduces the variations across switch B, improving feedthrough performance

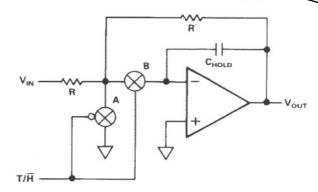


Figure 14. Conventional Inverting Integrator T/H

This circuit forces several tradeoffs. The hold capacitor's charging current is limited by the input resistor. Either the resistor or the capacitor, or both, must be made small to obtain fast acquisition times. A small resistor creates greater demands on the circuit which drives the T/H, while a small capacitor leads to increased pedestal and droop. In addition, the parallel combination of the feedback resistor and the hold capacitor acts as a low pass filter and constrains both bandwidth and acquisition time.