Compact, Low Cost, 5 V, Variable Gain, Inverting Amplifier Using the AD5270/AD5272 Digital Rheostat and AD8615 Op Amp

CIRCUIT FUNCTION AND BENEFITS

This circuit shown in Figure 1 provides a compact, low cost, low voltage, variable gain inverting amplifier using the AD5270/ AD5272 digital rheostat in conjunction with the AD8615 operational amplifier. The small package sizes of the AD5270/ AD5272 (10-lead $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ LFCSP) and the AD8615 (5-lead TSOT-23), as well as their low cost, present an industry leading solution to a common analog signal processing circuit.

The circuit offers 1024 different gains, controllable through an SPI (AD5270) or $\mathrm{I}^{2} \mathrm{C}$-compatible (AD5272) serial digital interface. The $\pm 1 \%$ resistor tolerance performance of the AD5270/AD5272 provides low gain error over the full resistor range, as shown in Figure 2.

The circuit supports rail-to-rail inputs and outputs for both singlesupply operation at +5 V and dual-supply operation at $\pm 2.5 \mathrm{~V}$ and is capable of delivering up to $\pm 150 \mathrm{~mA}$ output current.
In addition, the AD5270/AD5272 has an internal 50-times programmable memory that allows a customized gain setting at power-up.
The circuit provides accuracy, low noise, and low THD and is well suited for signal instrumentation conditioning.

CIRCUIT DESCRIPTION

Table 1. Devices Connected/Referenced

Product	Description
AD5270/AD5272	10-bit, 1\% resistor tolerance digital rheostat
AD8615	Precision, 20 MHz, CMOS, rail-to-rail input/output CMOS op amp

The circuit employs the AD5270/AD5272 digital rheostat in conjunction with the AD8615 CMOS operational amplifier, providing a low cost, variable gain inverting amplifier.
The input signal, V_{IN}, is amplified by the AD 8615 , which is connected to the inverting mode. The op amp offers low noise, high slew rate, and rail-to-rail inputs and outputs.

The maximum circuit gain is defined in Equation 1.

$$
\begin{equation*}
G=-\frac{R_{A W}}{R_{2}} \rightarrow R_{2}=\frac{R_{A W}}{G} \tag{1}
\end{equation*}
$$

Figure 1. Variable Gain Inverting Amplifier (Simplified Schematic: Decoupling and All Connections Not Shown)

The maximum allowable current through the AD5270/AD5272 ($\mathrm{R}_{\text {AW }}=20 \mathrm{k} \Omega$ version) is $\pm 3 \mathrm{~mA}$, which limits the maximum input voltage, V_{IN}, based on the circuit gain as described in Equation 2.

$$
\begin{equation*}
\left|V_{I N}\right| \leq 0.003 \times R_{2} \tag{2}
\end{equation*}
$$

When the input signal, $\mathrm{V}_{\mathbb{N}}$, is higher than the theoretical maximum value from Equation 2, increase R_{2}, and the new gain can be recalculated using Equation 1.

On the other hand, calculate the minimum gain to reduce the error due to the leakage current in the AD5270/AD5272. To assume a negligible leakage current error, the current through R_{2} must be at least 100 times the worst-case leakage specification of 50 nA . Therefore, the minimum current through R_{2} must be $5 \mu \mathrm{~A}$, which defines the minimum value for R_{2}, as in Equation 3.

$$
\begin{equation*}
\left|V_{I N}\right| \geq 5 \times 10^{-6} \times R_{2} \tag{3}
\end{equation*}
$$

Figure 2 shows the possible R_{2} value range based on the input voltage to the op amp, assuming these conditions.

Figure 2. R_{2} Value Range vs. Minimum Input Signal
The $\pm 1 \%$ internal resistor tolerance of the AD5270/AD5272 ensures a low gain error, as shown in Figure 3.
The circuit gain equation is

$$
\begin{equation*}
G=-\frac{(1024-D) \times R_{A W} / 1024}{R_{2}} \tag{4}
\end{equation*}
$$

where D is the code loaded in the digital potentiometer.

Figure 3. Gain and Gain Error vs. Decimal Code

When the circuit input is an ac signal, the parasitic capacitances of the digital potentiometer can cause undesirable oscillation in the output. This can be avoided, however, by connecting a small capacitor, C_{1}, between the inverter input and its output. A value of 10 pF was used for the gain and phase plots shown in Figure 4.

Figure 4. Gain and Phase vs. Frequency for the AC Input Signal (Vertical Scale Compressed to Show All Gain Curves)

The AD5270/AD5272 have a 50 -times programmable memory, which allows presetting the output voltage in a specific value at power-up.
Excellent layout, grounding, and decoupling techniques must be used to achieve the desired performance from the circuits discussed in this note (see Tutorial MT-031, Grounding Data Converters and Solving the Mystery of "AGND" and "DGND" and Tutorial MT-101, Decoupling Techniques). As a minimum, use a 4 -layer PCB with one ground plane layer, one power plane layer, and two signal layers.

COMMON VARIATIONS

The AD5271/AD5274 (8-bits with 50-times programmable powerup memory) are both $\pm 1 \%$ tolerance digital rheostats that are suitable for this application if 10 -bit resolution is not required.
The same basic circuit shown in Figure 1 can be adapted to operate on a 30 V supply using higher voltage devices as described in the CN-0113 Circuit Note.

LEARN MORE

MT-031 Tutorial, Grounding Data Converters and Solving the Mystery of "AGND" and "DGND," Analog Devices.

MT-032 Tutorial, Ideal Voltage Feedback (VFB) Op Amp, Analog Devices.
MT-087 Tutorial, Voltage References, Analog Devices.
MT-091 Tutorial, Digital Potentiometers, Analog Devices.
MT-101 Tutorial, Decoupling Techniques, Analog Devices.

Data Sheets and Evaluation Boards

AD5270 Data Sheet
AD5272 Data Sheet
AD5270 Evaluation Board
AD5272 Evaluation Board
AD5271 Data Sheet
AD5274 Data Sheet
AD8615 Data Sheet

REVISION HISTORY

4/13-Rev. 0 to Rev. A
Document Title Changed from CN-0168 to AN-1220....... Universal

7/10—Revision 0: Initial Version

