

Internally Trimmed Precision IC Multiplier

AD534

1.0 **SCOPE**

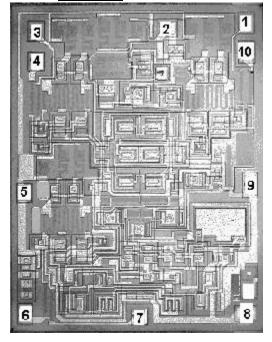
This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die Broc.pdf is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD534

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description


AD534-000C Internally Trimmed Precision IC Multiplier

3.0 <u>Die Information</u>

3.1 <u>Die Dimensions</u>

Die Size	Die Thickness	Bond Pad Metalization
80 mil x 102 mil	19 mil ± 2 mil	Al/Cu

3.2 <u>Die Picture</u>

- X2
 SF
- 3. Y1
- 4. Y2
- 5. -Vs
- 6. Z2
- 7. Z1
- 8. OUT
- 9. +V_S
- 10. X1

ASD0012805 Rev. G

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

AD534

3.3 Absolute Maximum Ratings 1/

Absolute Maximum Ratings Notes:

1/ Stresses above the absolute maximum rating may cause permanent damage to the device.
Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics						
Parameter	Symbol	Symbol Conditions 1/			Units	
Relative Accuracy <u>2/</u>		$V_X = -10V, -10V, +10V,$ +10V; $V_Y = -10V, -10V,$ +10V, +10V		±1	%	
Nonlinearity, X Input	NLx	$V_X = 20V p-p, V_Y = +10V$		±0.6	%	
Nonlinearity, Y Input	NL _Y	$V_Y = 20V \text{ p-p, } V_X = +10V$		±0.6	%	
Output Offset Voltage	Vos	$V_X = V_Y = V_Z = 0V$		±30	mV	
Offset Voltage (X)	Vosx	$V_X = V_Z = 0V, V_Y = \pm 10V$		±20	mV	
Offset Voltage (Y)	V _{osy}	$V_Y = V_Z = 0V, V_X = \pm 10V$		±20	mV	
Input Bias Current (X, Y, or Z)	I _{IB}	$V_X = V_Y = V_Z = 0V$		±2	μΑ	
Input Offset Current	los	$V_X = V_Y = V_Z = 0V$		±2	μΑ	
Positive Supply Current	lcc	$R_L = No Load$		6	mA	
Negative Supply Current	I _{EE}	$R_L = No Load$		6	mA	
Common Mode Rejection Ratio	CMR _X	$-10V \le V_X \le +10V,$ $V_Y = +10V$	70		dB	
	CMR _Y	$-10V \le V_Y \le +10V$, $V_X = +10V$	70		as	
Output Voltage Swing	V _{OP}		±11		٧	

Table I Notes:

 $^{1/}V_S = \pm 15V$, $T_A = +25$ °C unless otherwise specified.

^{2/} Figures given are % of Full Scale, ±10V (i.e., 0.01% = 1mV).

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol	Conditions <u>1/</u>	Sub- groups	Limit Min	Limit Max	Units	
Relative Accuracy <u>2/</u>	R _A	$V_X = -10V, -10V, +10V, +10V; V_Y = -10V, -10V, +10V, +10V$	1, 2, 3		±1	%FS	
Multiplier Accuracy Drift	TC_MA		2, 3		±0.01	%/°C	
Nonlinearity, X Input	NLx	$V_X = 20V \text{ p-p, } V_Y = +10V$	1		±0.6	%	
Nonlinearity, Y Input	NLx	$V_Y = 20V p-p, V_X = +10V$	1		±0.6	%	
Outrout Offset Valte se	Vos	V V V 0V	1		±30	mV	
Output Offset Voltage		$V_X = V_Y = V_Z = 0V$	2, 3		±45		
Output Offset Voltage Drift	ΔV _{OS} /ΔΤ		2, 3		±300	μV/°C	
Offset Voltage (X)	V_{OSX}	$V_X = V_Z = 0V, V_Y = \pm 10V$	1		±20	mV	
Offset Voltage (Y)	V_{OSY}	$V_Y = V_Z = 0V, V_X = \pm 10V$	1		±20	mV	
Input Bias Current (X, Y, or Z)	I _{IВ}	$V_X = V_Y = V_Z = 0V$	1		±2	μΑ	
Input Offset Current	los	$V_X = V_Y = V_Z = 0V$	1		±2	μΑ	
Positive Supply Current	I _{CC}	R _L = No Load	1		6	mA	
Negative Supply Current	lee	R _L = No Load	1		6	mA	
Common Made Deigntion Dette	CMR_X	$-10V \le V_X \le +10V,$ $V_Y = +10V$	4	70		dB	
Common Mode Rejection Ratio	CMR_Y	$-10V \le V_Y \le +10V,$ $V_X = +10V$	4	70			
Output Voltage Swing	V _{OP}		1, 2, 3	±11		V	

Table II Notes:

 $[\]underline{1/}$ V_S = ±15V, unless otherwise specified.

 $[\]underline{2/}$ Figures given are % of Full Scale, ±10V (i.e., 0.01% = 1mV).

Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions)								
D	Symbol	Sub-	Post Burn In Limit Pos		Post Life	Post Life Test Limit		Units
Parameter	Symbol	groups	Min	Max	Min	Max	Test Delta	Units
Relative Accuracy	R _A	1		±1.1		±1.2	±0.1	%FS

5.0 <u>Life Test/Burn-In Information</u>

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	20-NOV-01
В	Update web address	Jan. 25, 2002
С	Update 1.0 Scope description.	26 July 2007
D	Update header/footer and add to 1.0 scope description.	Feb. 29,2008
Е	Add Junction Temperature (T _J) 150°C to Absolute Maximum Ratings	April 3, 2008
F	Updated Section 4.0c note to indicate pre-screen temp testing being performed.	5-JUN-2009
G	Updated fonts and sizes to ADI standards. Update Die picture	01-Nov-2011