Data Sheet

FEATURES

12 MHz multiplying bandwidth
8-lead MSOP package
2.5 V to 5.5 V supply operation

Pin-compatible 12-bit current output DAC
$\pm 10 \mathrm{~V}$ reference input
50 MHz serial interface
2.7 MSPS update rate

Extended temperature range: $-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
4-quadrant multiplication
Power-on reset with brownout detect
<0.4 $\boldsymbol{\mu} \mathrm{A}$ typical current consumption
Guaranteed monotonic
Qualified for automotive applications

APPLICATIONS

Portable battery-powered applications
Waveform generators
Analog processing
Instrumentation applications
Programmable amplifiers and attenuators
Digitally controlled calibration
Programmable filters and oscillators
Composite video
Ultrasound
Gain, offset, and voltage trimming

GENERAL DESCRIPTION

The AD5452W is a CMOS 12-bit current output digital-to-analog converter. This device operates from a 2.5 V to 5.5 V power supply, making it suited to several applications, including batterypowered applications.
As a result of manufacture on a CMOS submicron process, this DAC offers excellent four-quadrant multiplication characteris-
tics of up to 12 MHz .
This DAC utilizes a double-buffered, 3-wire serial interface that is compatible with SPI, QSPI ${ }^{\mathrm{m}}$, MICROWIRE ${ }^{\mathrm{mm}}$, and most DSP interface standards. Upon power-up, the internal shift register and latches are filled with 0 s , and the DAC output is at zero scale.

The applied external reference input voltage $\left(\mathrm{V}_{\text {REF }}\right)$ determines the full-scale output current. This part can handle $\pm 10 \mathrm{~V}$ inputs on the reference, despite operating from a single-supply power supply of 2.5 V to 5.5 V . An integrated feedback resistor $\left(\mathrm{R}_{\mathrm{FB}}\right)$ provides temperature tracking and full-scale voltage output when combined with an external current-to-voltage precision amplifier.
The AD5452W DAC is available in an 8-lead MSOP package.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Timing Characteristics 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 8
Terminology 13
Theory of Operation 14
DAC Section 14
Circuit Operation 14
Single-Supply Applications 16
Adding Gain 16
Divider or Programmable Gain Element 16
Reference Selection 17
Amplifier Selection 17
Serial Interface 19
Microprocessor Interfacing. 19
PCB Layout and Power Supply Decoupling 21
Outline Dimensions 23
Ordering Guide 23
Automotive Products 23

REVISION HISTORY

4/12-Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=10 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=$ full operating temperature range. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. DC performance measured with OP177 and ac performance measured with AD8038, unless otherwise noted.

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
STATIC PERFORMANCE Resolution Relative Accuracy Differential Nonlinearity Total Unadjusted Error Gain Error Gain Error Temperature Coefficient ${ }^{1}$ Output Leakage Current		± 2	$\begin{aligned} & 12 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 10 \end{aligned}$	Bits LSB LSB LSB LSB ppm FSR/ ${ }^{\circ} \mathrm{C}$ nA nA	Guaranteed monotonic $\begin{aligned} & \text { Data }=0 \times 0000, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }} 1 \\ & \text { Data }=0 \times 0000, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }} 1 \end{aligned}$
REFERENCE INPUT ${ }^{1}$ Reference Input Range $\mathrm{V}_{\text {REF }}$ Input Resistance $\mathrm{R}_{\text {FB }}$ Feedback Resistance Input Capacitance Zero-Scale Code Full-Scale Code	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 9 \\ & 9 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \\ & 22 \\ & 22 \\ & \hline \end{aligned}$	V $\mathrm{k} \Omega$ $\mathrm{k} \Omega$ pF pF	Input resistance, $\mathrm{TC}=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Input resistance, $\mathrm{TC}=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DIGITAL INPUTS/OUTPUTS1 Input High Voltage, V_{IH} Input Low Voltage, V_{IL} Output High Voltage, V_{OH} Output Low Voltage, V_{OL} Input Leakage Current, I_{IL} Input Capacitance	$\begin{aligned} & 2.0 \\ & 1.7 \\ & \\ & V_{D D}-1 \\ & V_{D D}-0.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.7 \\ & \\ & 0.4 \\ & 0.4 \\ & \pm 1 \\ & \pm 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} \text { to } 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5 \mathrm{~V}, \mathrm{I}_{\text {SOURCE }}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{I}_{\text {SOURCE }}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=200 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=200 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
DYNAMIC PERFORMANCE ${ }^{1}$ Reference Multiplying BW Multiplying Feedthrough Error Output Voltage Settling Time Measured to $\pm 1 \mathrm{mV}$ of FS Measured to $\pm 4 \mathrm{mV}$ of FS Measured to $\pm 16 \mathrm{mV}$ of FS Digital Delay 10\% to 90\% Settling Time Digital-to-Analog Glitch Impulse Output Capacitance $\mathrm{I}_{\text {out }} 1$		12 72 64 44 100 24 16 20 10 2 13 28	$\begin{aligned} & 110 \\ & 40 \\ & 33 \\ & 40 \\ & 30 \end{aligned}$	dB dB dB ns ns ns ns ns nV-sec pF pF	$\mathrm{V}_{\text {REF }}= \pm 3.5 \mathrm{~V}$, DAC loaded with all 1 s $\mathrm{V}_{\text {REF }}= \pm 3.5 \mathrm{~V}$, DAC loaded with all 0 s 100 kHz 1 MHz 10 MHz $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=100 \Omega$; DAC latch alternately loaded with 0 s and 1 s Interface delay time Rise and fall times, $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=100 \Omega$ 1 LSB change around major carry, $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$ DAC latches loaded with all 0s DAC latches loaded with all 1s

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
Digital Feedthrough		0.5		nV-sec	Feedthrough to DAC output with $\overline{\mathrm{CS}}$ high and alternate loading of all 0 s and all 1 s
Analog THD		83		dB	$\mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$-p, all 1 s loaded, $\mathrm{f}=1 \mathrm{kHz}$
Digital THD					Clock $=1 \mathrm{MHz}, \mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
$50 \mathrm{kHz} \mathrm{f}_{\text {out }}$		71		dB	
20 kHz f out		77		dB	
Output Noise Spectral Density		25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	@ 1 kHz
SFDR Performance (Wideband)					Clock $=1 \mathrm{MHz}, \mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
$50 \mathrm{kHz} \mathrm{f}_{\text {out }}$		78		dB	
$20 \mathrm{kHz} \mathrm{f}_{\text {out }}$		74		dB	
SFDR Performance (Narrow-Band)					Clock $=1 \mathrm{MHz}, \mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
$50 \mathrm{kHz} \mathrm{f}_{\text {Out }}$		87		dB	
20 kHzf fut		85		dB	
Intermodulation Distortion		79		dB	$\mathrm{f}_{1}=20 \mathrm{kHz}, \mathrm{f}_{2}=25 \mathrm{kHz}$, clock $=1 \mathrm{MHz}, \mathrm{V}_{\text {REF }}=3.5 \mathrm{~V}$
POWER REQUIREMENTS					
Power Supply Range	2.5		5.5	V	
$I_{\text {DD }}$		0.4	10	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, logic inputs $=0 \mathrm{~V}$ or V_{DD}
			0.6	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, logic inputs $=0 \mathrm{~V}$ or V_{DD}
Power Supply Sensitivity ${ }^{1}$			0.001		$\Delta V_{D D}= \pm 5 \%$

${ }^{1}$ Guaranteed by design and characterization; not subject to production test.

Data Sheet

TIMING CHARACTERISTICS

All input signals are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=1 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2 . \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V , $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}$ = full operating temperature range. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.

Table 2.

Parameter ${ }^{1}$	$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V	Unit	Conditions/Comments
$\mathrm{f}_{\text {scık }}$	50	MHz max	Maximum clock frequency
t_{1}	20	ns min	SCLK cycle time
t_{2}	8	$n s$ min	SCLK high time
t_{3}	8	ns min	SCLK low time
t_{4}	8	$n \mathrm{nsmin}$	$\overline{\text { SYNC }}$ falling edge to SCLK active edge setup time
t_{5}	5	$n s$ min	Data setup time
t_{6}	4.5	$n s$ min	Data hold time
t_{7}	5	$n s$ min	$\overline{\text { SYNC }}$ rising edge to SCLK active edge
t_{8}	30	ns min	Minimum $\overline{\text { SYNC }}$ high time
Update Rate	2.7	MSPS	Consists of cycle time, $\overline{\text { SYNC }}$ high time, data setup, and output voltage settling time

${ }^{1}$ Guaranteed by design and characterization, not subject to production test.

Figure 2. Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Transient currents of up to 100 mA do not cause SCR latch-up. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
V_{DD} to GND	-0.3 V to +7V
$\mathrm{V}_{\text {REF }}, \mathrm{R}_{\text {FB }}$ to GND	-12 V to +12 V
$\mathrm{l}_{\text {out }} 1$ to GND	-0.3 V to +7 V
Input Current to Any Pin Except Supplies	$\pm 10 \mathrm{~mA}$
Logic Inputs and Output ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$ Thermal Impedance	
8-Lead MSOP	$206^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering ($10 \mathrm{sec} \mathrm{)}$	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$235^{\circ} \mathrm{C}$

[^0]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No	Mnemonic	Description
1	$\mathrm{I}_{\text {OuT } 1}$	DAC Current Output.
2	GND	Ground Pin. Serial Clock Input. By default, data is clocked into the input shift register upon the falling edge of the serial clock input. Alternatively, by means of the serial control bits, the device can be configured such that data is clocked into the shift register upon the rising edge of SCLK. Serial Data Input. Data is clocked into the 16-bit input register upon the active edge of the serial clock input. By default, in power-up mode data is clocked into the shift register upon the falling edge of SCLK. The control bits allow the user to change the active edge to a rising edge.
4	SDIN	Active Low Control Input. This is the frame synchronization signal for the input data. Data is loaded to the shift register upon the active edge of the following clocks. Positive Power Supply Input. These parts can operate from a supply of 2.5 V to 5.5 V.
5	SAC Reference Voltage Input.	
7	DAC Feedback Resistor. Establish voltage output for the DAC by connecting to external amplifier output.	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. INL vs. Code

Figure 5. DNL vs. Code

Figure 6. INL vs. Reference Voltage

Figure 7. DNL vs. Reference Voltage

Figure 8. TUE vs. Code

Figure 9. TUE vs. Reference Voltage

Figure 10. Gain Error (LSB) vs. Temperature

Figure 11. Gain Error (LSB) vs. Reference Voltage

Figure 12. Iout1 Leakage Current vs. Temperature

Figure 13. Supply Current vs. Logic Input Voltage

Figure 14. Supply Current vs. Temperature

Figure 15. Supply Current vs. Update Rate

Figure 16. Threshold Voltage vs. Supply Voltage

Figure 17. Reference Multiplying Bandwidth vs. Frequency and Code

Figure 18. Reference Multiplying Bandwidth—All 1s Loaded

Figure 19. Reference Multiplying Bandwidth vs. Frequency and Compensation Capacitor

Figure 20. Midscale Transition, $V_{\text {REF }}=0 \mathrm{~V}$

Figure 21. Midscale Transition, $V_{\text {REF }}=3.5 \mathrm{~V}$

Figure 22. Power Supply Rejection Ratio vs. Frequency

Figure 23. THD + Noise vs. Frequency

Figure 24. Wideband SFDR vs. $f_{\text {OUT }}$ Frequency

Figure 25. Wideband SFDR, $f_{\text {OUT }}=20 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 26. Wideband SFDR, $f_{\text {OUT }}=50 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 27. Narrow-Band SFDR, $f_{\text {OUT }}=20 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 28. Narrow-Band SFDR, $f_{\text {OUT }}=50 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 29. Narrow-Band $I M D, f_{\text {OUT }}=20 \mathrm{kHz}, 25 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 30. Wideband IMD, $f_{\text {OUT }}=20 \mathrm{kHz}, 25 \mathrm{kHz}$, Clock $=1 \mathrm{MHz}$

Figure 31. Output Noise Spectral Density

TERMINOLOGY

Relative Accuracy (Endpoint Nonlinearity)

A measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is normally expressed in LSBs or as a percentage of the full-scale reading.

Differential Nonlinearity

The difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of -1 LSB maximum over the operating temperature range ensures monotonicity.

Gain Error (Full-Scale Error)

A measure of the output error between an ideal DAC and the actual device output. For these DACs, ideal maximum output is $\mathrm{V}_{\text {REF }}-1$ LSB. Gain error of the DACs is adjustable to zero with external resistance.

Output Leakage Current

The current that flows into the DAC ladder switches when it is turned off. For the $\mathrm{I}_{\text {out }} 1$ terminal, it can be measured by loading all 0 s to the DAC and measuring the $\mathrm{I}_{\text {out }} 1$ current.

Output Capacitance

Capacitance from $\mathrm{I}_{\text {out }} 1$ to AGND.

Output Current Settling Time

The amount of time it takes for the output to settle to a specified level for a full-scale input change. For these devices, it is specified with a 100Ω resistor to ground. The settling time specification includes the digital delay from the $\overline{\text { SYNC }}$ rising edge to the full-scale output change.

Digital-to-Analog Glitch Impulse

The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-sec or nV-sec, depending on whether the glitch is measured as a current or voltage signal.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device's digital inputs may be capacitively coupled through the device and produce noise on the $\mathrm{I}_{\text {Out }}$ pins. This noise is coupled from the outputs of the device onto follow-on circuitry. This noise is digital feedthrough.

Multiplying Feedthrough Error

The error due to capacitive feedthrough from the DAC reference input to the DAC $\mathrm{I}_{\text {OUT }} 1$ terminal when all 0 s are loaded to the DAC.

Total Harmonic Distortion (THD)

The DAC is driven by an ac reference. The ratio of the rms sum of the harmonics of the DAC output to the fundamental value is the THD. Usually only the lower-order harmonics, such as second to fifth, are included.

$$
T H D=20 \log \frac{\sqrt{V_{2}{ }^{2}+V_{3}{ }^{2}+V_{4}{ }^{2}+V_{5}{ }^{2}}}{V_{1}}
$$

Digital Intermodulation Distortion (IMD)

Second-order intermodulation measurements are the relative magnitudes of the fa and fb tones generated digitally by the DAC and the second-order products at $2 \mathrm{fa}-\mathrm{fb}$ and $2 \mathrm{fb}-\mathrm{fa}$.

Compliance Voltage Range

The maximum range of (output) terminal voltage for which the device provides the specified characteristics.

Spurious-Free Dynamic Range (SFDR)

The usable dynamic range of a DAC before spurious noise interferes or distorts the fundamental signal. SFDR is the measure of difference in amplitude between the fundamental and the largest harmonically or nonharmonically related spur from dc to full Nyquist bandwidth (half the DAC sampling rate or $f_{s} / 2$). Narrow-band SFDR is a measure of SFDR over an arbitrary window size, in this case 50% of the fundamental. Digital SFDR is a measure of the usable dynamic range of the DAC when the signal is a digitally generated sine wave.

THEORY OF OPERATION

DAC SECTION

The AD5452W is 12-bit current output DAC, consisting of a segmented (4-bit) inverting R-2R ladder configuration. A simplified diagram for the DAC is shown in Figure 32.

Figure 32. AD5452W Simplified Ladder
The feedback resistor, R_{FB}, has a value of R . The value of R is typically $9 \mathrm{k} \Omega$ (with a minimum value of $7 \mathrm{k} \Omega$ and a maximum value of $11 \mathrm{k} \Omega$). If $\mathrm{I}_{\text {Out }} 1$ is kept at the same potential as GND, a constant current flows in each ladder leg, regardless of digital input code. Therefore, the input resistance presented at $\mathrm{V}_{\text {REF }}$ is always constant and nominally of value R. The DAC output ($\mathrm{I}_{\text {OUT }} 1$) is code-dependent, producing various resistances and capacitances. When choosing the external amplifier, take into account the variation in impedance generated by the DAC on the amplifier's inverting input node.
Access is provided to the $\mathrm{V}_{\text {REF }}, \mathrm{R}_{\mathrm{FB}}$, and $\mathrm{I}_{\mathrm{OUT}} 1$ terminals of the DAC, making the device extremely versatile and allowing it to be configured in several operating modes; for example, it can provide a unipolar output or can provide 4 -quadrant multiplication in bipolar mode. Note that a matching switch is used in series with the internal $R_{F B}$ feedback resistor. If users attempt to measure R_{FB}, power must be applied to V_{DD} to achieve continuity.

CIRCUIT OPERATION

Unipolar Mode

Using a single op amp, this device can easily be configured to provide a two-quadrant multiplying operation or a unipolar output voltage swing, as shown in Figure 33. When an output amplifier is connected in unipolar mode, the output voltage is given by

$$
V_{O U T}=-\frac{D}{2^{n}} \times V_{R E F}
$$

where:
D is the fractional representation of the digital word loaded to the DAC.
$D=0$ to 4095 (12-bit AD5452W). n is the number of bits.

Note that the output voltage polarity is opposite to the $\mathrm{V}_{\text {REF }}$ polarity for dc reference voltages.

NOTES

1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED
IF A1 IS A HIGH SPEED AMPLIFIER.

Figure 33. Unipolar Mode Operation

This DAC is designed to operate with either negative or positive reference voltages. The $V_{D D}$ power pin is only used by the internal digital logic to drive the on and off states of the DAC switches.

This DAC is designed to accommodate ac reference input signals in the range of -10 V to +10 V .
With a fixed 10 V reference, the circuit shown in Figure 33 gives a unipolar 0 V to -10 V output voltage swing. When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs 2-quadrant multiplication.
Table 5 shows the relationship between the digital code and the expected output voltage for a unipolar operation using the 12-bit AD5452W.

Table 5. Unipolar Code Table for the AD5452W

Digital Input	Analog Output (V)
111111111111	$-\mathrm{V}_{\text {REF }}(4095 / 4096)$
100000000000	$-\mathrm{V}_{\text {REF }}(2048 / 4096)=-\mathrm{V}_{\text {REF }} / 2$
000000000001	$-\mathrm{V}_{\text {REF }}(1 / 4096)$
000000000000	$-\mathrm{V}_{\text {REF }}(0 / 4096)=0$

Bipolar Mode

In some applications, it may be necessary to generate a full fourquadrant multiplying operation or a bipolar output swing. This can be easily accomplished by using another external amplifier and some external resistors, as shown in Figure 34. In this circuit, the second amplifier, A2, provides a gain of 2. Biasing the external amplifier with an offset from the reference voltage results in full 4-quadrant multiplying operation. The transfer function of this circuit shows that both negative and positive output voltages are created as the input data (D) is incremented from Code $0\left(\mathrm{~V}_{\text {OUT }}=-\mathrm{V}_{\text {REF }}\right)$ to midscale $\left(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\right)$ to full scale $\left(\mathrm{V}_{\text {OUT }}=+\mathrm{V}_{\text {REF }}\right)$.

$$
V_{\text {OUT }}=\left(V_{R E F} \times \frac{D}{2^{n-1}}\right)-V_{R E F}
$$

where:
D is the fractional representation of the digital word loaded to the DAC.
$D=0$ to 4095 (12-bit AD5452W).
n is the resolution of the DAC.
When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs 4-quadrant multiplication. Table 6 shows the relationship between the digital code and the expected output voltage for a bipolar operation using the 12 -bit AD5452W.

Table 6. Bipolar Code Table for the AD5452W

Digital Input	Analog Output (V)
111111111111	$+\mathrm{V}_{\text {REF }}(2047 / 2048)$
100000000000	0
000000000001	$-V_{\text {REF }}(2047 / 2048)$
000000000000	$-\mathrm{V}_{\text {REF }}(2048 / 2048)$

Stability

In the I-to- V configuration, the $\mathrm{I}_{\text {OUt }}$ of the DAC and the inverting node of the op amp must be connected as close as possible, and proper PCB layout techniques must be employed. Because every code change corresponds to a step function, gain peaking may occur if the op amp has limited gain bandwidth product (GBP) and there is excessive parasitic capacitance at the inverting node. This parasitic capacitance introduces a pole into the open-loop response, which can cause ringing or instability in the closed-loop applications circuit.

An optional compensation capacitor, C 1 , can be added in parallel with $R_{F B}$ for stability, as shown in Figure 33 and Figure 34. Too small a value of C 1 can produce ringing at the output, and too large a value can adversely affect the settling time. C 1 should be found empirically, but 1 pF to 2 pF is generally adequate for the compensation.

Figure 34. Bipolar Mode Operation (4-Quadrant Multiplication)

SINGLE-SUPPLY APPLICATIONS

Voltage-Switching Mode

Figure 35 shows these DACs operating in the voltage-switching mode. The reference voltage, V_{IN}, is applied to the $\mathrm{I}_{\mathrm{OUT}} 1$ pin, and the output voltage is available at the $\mathrm{V}_{\mathrm{REF}}$ terminal. In this configuration, a positive reference voltage results in a positive output voltage, making single-supply operation possible. The output from the DAC is voltage at a constant impedance (the DAC ladder resistance); therefore, an op amp is necessary to buffer the output voltage. The reference input no longer sees constant input impedance, but one that varies with code; therefore, the voltage input should be driven from a low impedance source.

Figure 35. Single-Supply Voltage-Switching Mode
It is important to note that, with this configuration, $\mathrm{V}_{\text {IN }}$ is limited to low voltages because the switches in the DAC ladder do not have the same source-drain drive voltage. As a result, their on resistance differs, which degrades the integral linearity of the DAC. Also, $\mathrm{V}_{\text {IN }}$ must not go negative by more than 0.3 V , or an internal diode turns on, causing the device to exceed the maximum ratings. In this type of application, the full range of multiplying capability of the DAC is lost.

Positive Output Voltage

The output voltage polarity is opposite to the $V_{\text {REF }}$ polarity for dc reference voltages. To achieve a positive voltage output, an applied negative reference to the input of the DAC is preferred over the output inversion through an inverting amplifier because of the resistors' tolerance errors. To generate a negative reference, the reference can be level-shifted by an op amp such that the $\mathrm{V}_{\text {out }}$ and GND pins of the reference become the virtual ground and -2.5 V , respectively, as shown in Figure 36.

Figure 36. Positive Output Voltage with Minimum Components

ADDING GAIN

In applications in which the output voltage is required to be greater than $\mathrm{V}_{\text {IN }}$, gain can be added with an additional external amplifier, or it can be achieved in a single stage. It is important to consider the effect of the temperature coefficients of the DAC's thin film resistors. Simply placing a resistor in series with the R_{FB} resistor causes mismatches in the temperature coefficients and results in larger gain temperature coefficient errors. Instead, increase the gain of the circuit by using the recommended configuration shown in Figure 37. R1, R2, and R3 should have similar temperature coefficients, but they need not match the temperature coefficients of the DAC. This approach is recommended in circuits where gains greater than 1 are required.

Figure 37. Increasing Gain of Current-Output DAC

DIVIDER OR PROGRAMMABLE GAIN ELEMENT

Current-steering DACs are very flexible and lend themselves to many different applications. If this type of DAC is connected as the feedback element of an op amp and R_{FB} is used as the input resistor as shown in Figure 38, the output voltage is inversely proportional to the digital input fraction, D.

For $D=1-2^{-n}$, the output voltage is

$$
V_{\text {OUT }}=\frac{-V_{I N}}{D}=\frac{-V_{I N}}{\left(1-2^{-n}\right)}
$$

As D is reduced, the output voltage increases. For small values of the digital fraction, D , it is important to ensure that the amplifier does not saturate and that the required accuracy is met.

Figure 38. Current-Steering DAC Used as a Divider or Programmable Gain Element

DAC leakage current is also a potential error source in divider circuits. The leakage current must be counterbalanced by an opposite current supplied from the op amp through the DAC. Because only a fraction, D , of the current in the $\mathrm{V}_{\text {REF }}$ terminal is routed to the $\mathrm{I}_{\text {out }} 1$ terminal, the output voltage changes as follows:

Output Error Voltage Due to Leakage $=($ Leakage $\times R) / D$
where R is the DAC resistance at the $V_{\text {ReF }}$ terminal.
For a DAC leakage current of $10 \mathrm{nA}, \mathrm{R}=10 \mathrm{k} \Omega$, and a gain (that is, $1 / \mathrm{D}$) of 16 , the error voltage is 1.6 mV .

REFERENCE SELECTION

When selecting a reference for use with this current-output DAC, pay attention to the reference's output voltage temperature coefficient specification. This parameter not only affects the full-scale error, but also may affect the linearity (INL and DNL) performance. The reference temperature coefficient should be consistent with the system accuracy specifications.

A 12-bit system within 2 LSB accuracy requires a maximum drift of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a precision reference with a low output temperature coefficient minimizes this error source. Table 7 lists some dc references available from Analog Devices, Inc., that are suitable for use with this current-output DAC.

AMPLIFIER SELECTION

The primary requirement for the current-steering mode is an amplifier with low input bias currents and low input offset voltage. The input offset voltage of an op amp is multiplied by the variable gain of the circuit due to the code-dependent output resistance of
the DAC. A change in this noise gain between two adjacent digital fractions produces a step change in the output voltage due to the offset voltage of the amplifier's input. This output voltage change is superimposed on the desired change in output between the two codes and gives rise to a differential linearity error, which, if large enough, may cause the DAC to be nonmonotonic.

The input bias current of an op amp generates an offset at the voltage output as a result of the bias current flowing in the feedback resistor, R_{FB}. Most op amps have input bias currents low enough to prevent significant errors in 12-bit applications.
Common-mode rejection of the op amp is important in voltageswitching circuits because it produces a code-dependent error at the voltage output of the circuit. Most op amps have adequate common-mode rejection for use at 12 -bit resolutions.

Provided that the DAC switches are driven from true wideband low impedance sources ($\mathrm{V}_{\text {IN }}$ and AGND), they settle quickly. Consequently, the slew rate and settling time of a voltageswitching DAC circuit is determined largely by the output op amp. To obtain minimum settling time in this configuration, it is important to minimize capacitance at the $\mathrm{V}_{\text {REF }}$ node (the voltage output node in this application) of the DAC. This is done by using low input-capacitance buffer amplifiers and careful board design.
Most single-supply circuits include ground as part of the analog signal range, which in turn requires an amplifier that can handle rail-to-rail signals. There is a large range of single-supply amplifiers available from Analog Devices.

Table 7. Suitable Analog Devices Precision References

Part No.	Output VoItage (V)	Initial Tolerance (\%)	Temp Drift (ppm/ $\left.{ }^{\circ} \mathbf{C}\right)$	$\mathbf{I}_{\mathbf{s s}}(\mathbf{m A})$	Output Noise ($\boldsymbol{\mu} \mathbf{V} \mathbf{p - p})$	Package
ADR01	10	0.05	3	1	20	SOIC-8
ADR01	10	0.05	9	1	20	TSOT-23, SC70
ADR02	5	0.06	3	1	10	SOIC-8
ADR02	5	0.06	9	1	TSOT-23, SC70	
ADR03	2.5	0.10	3	6	SOIC-8	
ADR03	2.5	0.10	9	1	TSOT-23, SC70	
ADR06	3	0.10	3	6	SOIC-8	
ADR06	3	0.10	3	1	TSOT-23, SC70	
ADR431	2.5	0.04	3	10	SOIC-8	
ADR435	5	0.04	9	3.8	SOIC-8	
ADR391	2.5	0.16	9	8	TSOT-23	
ADR395	5	0.10	0.12	5	TSOT-23	

Table 8. Suitable Analog Devices Precision Op Amps

			$\mathbf{0 . 1} \mathbf{H z}$ to $\mathbf{1 0 ~ H z}$			
Part No.	Supply Voltage (V)	$\mathbf{V}_{\mathbf{0 S}}(\mathbf{M a x})(\boldsymbol{\mu V})$	$\mathbf{I}_{\mathbf{B}}(\mathbf{M a x})(\mathbf{n A})$	Noise $(\boldsymbol{\mu V} \mathbf{~ p - p)}$	Supply Current ($\boldsymbol{\mu A})$	Package
OP97	± 2 to ± 20	25	0.1	0.5	600	SOIC-8
OP1177	± 2.5 to ± 15	60	2	0.4	500	MSOP, SOIC-8
AD8551	2.7 to 5	5	0.05	1	975	MSOP, SOIC-8
AD8603	1.8 to 6	50	0.001	2.3	TSOT	
AD8628	2.7 to 6	5	0.1	0.5	TSOT, SOIC-8	

Table 9. Suitable Analog Devices High Speed Op Amps

Part No.	Supply Voltage (V)	BW @ ACL (MHz)	Slew Rate (V/ $\boldsymbol{\mu s})$	$\mathbf{V}_{\mathbf{o s}}(\mathbf{M a x})(\boldsymbol{\mu V})$	$\mathbf{I}_{\mathbf{B}}(\mathbf{M a x})(\mathbf{n A})$	Package
AD8065	5 to 24	145	180	1500	0.006	SOIC-8, SOT-23, MSOP
AD8021	± 2.5 to ± 12	490	120	1000	10500	SOIC-8, MSOP
AD8038	3 to 12	350	425	3000	750	SOIC-8, SC70-5
AD9631	± 3 to ± 6	320	1300	10000	7000	SOIC-8

SERIAL INTERFACE

The AD5452W has an easy-to-use 3-wire interface that is compatible with SPI, QSPI, MICROWIRE, and most DSP interface standards. Data is written to the device in 16 -bit words. This 16 -bit word consists of two control bits and 12 data bits, as shown in Figure 39. The AD5452W uses 12 bits and ignores the two LSBs.

DAC Control Bits C1, C0

Control Bits C1 and C0 allow the user to load and update the new DAC code and to change the active clock edge. By default, the shift register clocks data upon the falling edge; this can be changed via the control bits. If changed, the DAC core is inoperative until the next data frame, and a power recycle is required to return it to active on the falling edge. A power cycle resets the core to default condition. On-chip power-on reset circuitry ensures that the device powers on with zero scale loaded to the DAC register and $\mathrm{I}_{\mathrm{OUT}} 1$ line.

Table 10. DAC Control Bits

C1	C0	Function Implemented
0	0	Load and update (power-on default)
0	1	Reserved
1	0	Reserved
1	1	Clock data to shift register upon rising edge

SYNC Function

$\overline{\text { SYNC }}$ is an edge-triggered input that acts as a framesynchronization signal and chip enable. Data can only be transferred to the device while $\overline{\text { SYNC }}$ is low. To start the serial data transfer, $\overline{\text { SYNC }}$ should be taken low, observing the minimum $\overline{\text { SYNC }}$ falling to SCLK falling edge setup time, t_{4}. To minimize the power consumption of the device, the interface powers up fully only when the device is being written to, that is, upon the falling edge of SYNC. The SCLK and SDIN input buffers are powered down upon the rising edge of $\overline{\text { SYNC. }}$

After the falling edge of the $16^{\text {th }}$ SCLK pulse, bring $\overline{\text { SYNC }}$ high to transfer data from the input shift register to the DAC register.

Figure 39. AD5452W 12-Bit Input Shift Register Contents

MICROPROCESSOR INTERFACING

Microprocessor interfacing to an AD5452W DAC is through a serial bus that uses standard protocol and is compatible with microcontrollers and DSP processors. The communication channel is a 3-wire interface consisting of a clock signal, a data signal, and a synchronization signal. The AD5452W requires a 16-bit word, with the default being data valid upon the falling edge of SCLK, but this is changeable using the control bits in the data-word.

ADSP-21xx-to-AD5452W Interface

The ADSP-21xx family of DSPs is easily interfaced to an AD5452W DAC without the need for extra glue logic. Figure 40 is an example of an SPI interface between the DAC and the ADSP-2191M. SCK of the DSP drives the serial data line, SDIN. $\overline{\text { SYNC }}$ is driven from one of the port lines, in this case $\overline{\text { SPIxSEL }}$.

Figure 40. ADSP-2191 SPI-to-AD5452W Interface
A serial interface between the DAC and DSP SPORT is shown in Figure 41. In this example, SPORT0 is used to transfer data to the DAC shift register. Transmission is initiated by writing a word to the Tx register after the SPORT has been enabled. In a write sequence, data is clocked out upon each rising edge of the DSP's serial clock and clocked into the DAC input shift register upon the falling edge of its SCLK. The update of the DAC output takes place upon the rising edge of the $\overline{\text { SYNC }}$ signal.

Figure 41. ADSP-2101/ADSP-2191 PORT-to-AD5452W Interface
Communication between two devices at a given clock speed is possible when the following specifications are compatible: frame $\overline{\text { SYNC }}$ delay and frame $\overline{\text { SYNC }}$ setup-and-hold, data delay and data setup-and-hold, and SCLK width. The DAC interface expects a $\mathrm{t}_{4} \overline{\text { (SYNC }}$ falling edge to SCLK falling edge setup time) of 8 ns minimum. See the ADSP-21xx User Manual for information on clock and frame $\overline{\text { SYNC }}$ frequencies for the SPORT register. Table 11 shows the setup for the SPORT control register.

Table 11. SPORT Control Register Setup

Name	Setting	Description
TFSW	1	Alternate framing
INVTFS	1	Active low frame signal
DTYPE	00	Right justify data
ISCLK	1	Internal serial clock
TFSR	1	Frame every word
ITFS	1	Internal framing signal
SLEN	1111	16-bit data-word

ADSP-BF5xx-to-AD5452W Interface

The ADSP-BF5xx family of processors has an SPI-compatible port that enables the processor to communicate with SPIcompatible devices. A serial interface between the Blackfin ${ }^{*}$ processor and the AD5452W DAC is shown in Figure 42. In this configuration, data is transferred through the MOSI (master output, slave input) pin. $\overline{\text { SYNC }}$ is driven by the $\overline{\text { SPIxSEL }}$ pin, which is a reconfigured programmable flag pin.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 42. ADSP-BF5xx-to-AD5452W Interface
The ADSP-BF5xx processor incorporates channel synchronous serial ports (SPORT). A serial interface between the DAC and the DSP SPORT is shown in Figure 43. When the SPORT is enabled, initiate transmission by writing a word to the Tx register. The data is clocked out upon each rising edge of the DSP's serial clock and clocked into the DAC's input shift register upon the falling edge of SCLK. The DAC output is updated by using the transmit frame synchronization (TFS) line to provide a $\overline{\text { SYNC }}$ signal.

Figure 43. ADSP-BF5xx SPORT-to-AD5452W Interface

80C51/80L51-to-AD5452W Interface

A serial interface between the DAC and the 80C51/80L51 is shown in Figure 44. TxD of the 80C51/80L51 drives SCLK of the DAC serial interface, and RxD drives the serial data line, SDIN. P1.1 is a bit-programmable pin on the serial port and is used to drive $\overline{\text { SYNC }}$. As data is transmitted to the switch, P1.1 is taken low. The 80C51/80L51 transmit data only in 8-bit bytes; therefore, only eight falling clock edges occur in the transmit cycle.

To load data correctly to the DAC, P1.1 is left low after the first eight bits are transmitted, and a second write cycle is initiated to transmit the second byte of data. Data on RxD is clocked out of the microcontroller upon the rising edge of TxD and is valid upon the falling edge. As a result, no glue logic is required between the DAC and microcontroller interface. P1.1 is taken high following the completion of this cycle. The 80C51/80L51 provide the LSB of its SBUF register as the first bit in the data stream. The DAC
input register acquires its data with the MSB as the first bit received. The transmit routine should take this into account.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 44. 80C51/80L51-to-AD5452W Interface

MC68HC11-to-AD5452W Interface

Figure 45 is an example of a serial interface between the DAC and the MC68HC11 microcontroller. The serial peripheral interface (SPI) on the MC68HC11 is configured for master mode $(\mathrm{MSTR})=1$, clock polarity bit $(\mathrm{CPOL})=0$, and clock phase bit $(\mathrm{CPHA})=1$. The SPI is configured by writing to the SPI control register (SPCR); see the 68HC11 User Manual. SCK of the 68 HC 11 drives the SCLK of the DAC interface; the MOSI output drives the serial data line (SDIN) of the DAC.
The $\overline{\text { SYNC }}$ signal is derived from a port line (PC7). When data is being transmitted to the AD5452W, the $\overline{\text { SYNC }}$ line is taken low (PC7). Data appearing on the MOSI output is valid upon the falling edge of SCK. Serial data from the $68 \mathrm{HC11}$ is transmitted in 8 -bit bytes with only eight falling clock edges occurring in the transmit cycle. Data is transmitted MSB first. To load data to the DAC, PC7 is left low after the first eight bits are transferred, and a second serial write operation is performed to the DAC. PC7 is taken high at the end of this procedure.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 45. MC68HC11-to-AD5452W Interface
If the user wants to verify the data previously written to the input shift register, the SDO line can be connected to MISO of the MC68HC11. In this configuration with SYNC low, the shift register clocks data out upon the rising edges of SCLK.

MICROWIRE-to-AD5452W Interface

Figure 46 shows an interface between the DAC and any MICROWIRE-compatible device. Serial data is shifted out upon the falling edge of the serial clock, SK, and is clocked into the DAC input shift register upon the rising edge of SK, which corresponds to the falling edge of the DAC's SCLK.

MICROWIRE* ${ }^{\text {c }}$	AD5452W*
	SCLK
	SDIN
	$\overline{\text { SYNC }}$

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 46. MICROWIRE-to-AD5452W Interface

PIC16C6x/PIC16C7x-to-AD5452W Interface

The PIC16C6x/PIC16C7x synchronous serial port (SSP) is configured as an SPI master with the clock polarity bit $($ CKP $)=0$. This is done by writing to the synchronous serial port control register (SSPCON); see the PIC16/PIC17 Microcontroller User Manual.
In this example, I/O Port RA1 is used to provide a $\overline{\text { SYNC }}$ signal and enable the serial port of the DAC. This microcontroller transfers only eight bits of data during each serial transfer operation; therefore, two consecutive write operations are required. Figure 47 shows the connection diagram.

*ADDITIONAL PINS OMITTED FOR CLARITY
Figure 47. PIC16C6x/7x-to-AD5452W Interface

PCB LAYOUT AND POWER SUPPLY DECOUPLING

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which an AD5452W DAC is mounted should be designed so that the analog and digital sections are separated and confined to certain areas of the board. If the DAC is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device.
These DACs should have ample supply bypassing of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ on the supply located as close to the package as possible, ideally right up against the device. The $0.1 \mu \mathrm{~F}$ capacitor should have low effective series resistance (ESR) and low effective series inductance (ESI), like the common ceramic types that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching. Low ESR $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors should also be applied at the supplies to minimize transient disturbance and filter out low frequency ripple.
Components, such as clocks, that produce fast switching signals should be shielded with a digital ground to avoid radiating noise to other parts of the board, and they should never be run near the reference inputs.
Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. A microstrip technique is the best solution, but its use is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to the ground plane and signal traces are placed on the solder side.
It is good practice to employ compact, minimum lead length PCB layout design. Leads to the input should be as short as possible to minimize IR drops and stray inductance.

The PCB metal traces between $V_{\text {REF }}$ and R_{FB} should also be matched to minimize gain error. To optimize high frequency performance, the I-to-V amplifier should be located as close to the device as possible.

Table 12. Overview of AD54xx and AD55xx Current Output Devices

Part No.	Resolution	No. DACs	INL (LSB)	Interface	Package ${ }^{1}$	Features
AD5424	8	1	± 0.25	Parallel	RU-16, CP-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5426	8	1	± 0.25	Serial	RM-10	$10 \mathrm{MHz} \mathrm{BW}$,50 MHz serial
AD5428	8	2	± 0.25	Parallel	RU-20	10 MHz BW, $17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5429	8	2	± 0.25	Serial	RU-10	10 MHz BW, 50 MHz serial
AD5450	8	1	± 0.25	Serial	UJ-8	$12 \mathrm{MHZ} \mathrm{BW}, 50 \mathrm{MHz}$ serial interface
AD5432	10	1	± 0.5	Serial	RM-10	10 MHz BW, 50 MHz serial
AD5433	10	1	± 0.5	Parallel	RU-20, CP-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5439	10	2	± 0.5	Serial	RU-16	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5440	10	2	± 0.5	Parallel	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5451	10	1	± 0.25	Serial	UJ-8	$12 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial interface
AD5443	12	1	± 1	Serial	RM-10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5444	12	1	± 0.5	Serial	RM-10	$12 \mathrm{MHz} \mathrm{BW}$,50 MHz serial
AD5415	12	2	± 1	Serial	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5405	12	2	± 1	Parallel	CP-40	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5445	12	2	± 1	Parallel	RU-20, CP-20	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5447	12	2	± 1	Parallel	RU-24	$10 \mathrm{MHz} \mathrm{BW}, 17 \mathrm{~ns} \overline{\mathrm{CS}}$ pulse width
AD5449	12	2	± 1	Serial	RU-16	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5452	12	1	± 0.5	Serial	UJ-8, RM-8	$12 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial interface
AD5446	14	1	± 1	Serial	RM-10	$12 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5453	14	1	± 2	Serial	UJ-8, RM-8	$12 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial
AD5553	14	1	± 1	Serial	RM-8	$4 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial clock
AD5556	14	1	± 1	Parallel	RU-28	4 MHz BW, $20 \mathrm{~ns} \overline{\mathrm{WR}}$ pulse width
AD5555	14	2	± 1	Serial	RM-8	$4 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial clock
AD5557	14	2	± 1	Parallel	RU-38	4 MHz BW, $20 \mathrm{~ns} \overline{\mathrm{WR}}$ pulse width
AD5543	16	1	± 2	Serial	RM-8	$4 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial clock
AD5546	16	1	± 2	Parallel	RU-28	4 MHz BW, $20 \mathrm{n} \overline{\mathrm{WR}}$ pulse width
AD5545	16	2	± 2	Serial	RU-16	$4 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ serial clock
AD5547	16	2	± 2	Parallel	RU-38	$4 \mathrm{MHz} \mathrm{BW}, 20 \mathrm{~ns} \overline{\mathrm{WR}}$ pulse width

[^1]
OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 48. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1,2	Resolution	INL	Temperature Range	Package Description	Package Option	Branding
ADW50007Z-0REEL7	12	± 0.5	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead MSOP	RM-8	D70

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ W $=$ Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADW50007Z model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for this model.

NOTES

[^0]: ${ }^{1}$ Overvoltages at SCLK, $\overline{\text { SYNC }}$, and SDIN are clamped by internal diodes.

[^1]: ${ }^{1} \mathrm{RU}=\mathrm{TSSOP}, \mathrm{CP}=\mathrm{LFCSP}, \mathrm{RM}=\mathrm{MSOP}, \mathrm{UJ}=\mathrm{TSOT}$.

