ANALOG DEVICES

FEATURES

Single Chip Construction

Very High Speed: Settles to $1 / 2$ LSB in 200ns Full Scale Switching Time: 30ns
High Stability Buried Zener Reference on Chip
Monotonicity Guaranteed Over Temperature
Linearity Guaranteed Over Temperature: 1/2LSB max (AD565K, T)

The combination of performance and flexibility in the AD565 has resulted from major innovations in circuit design, an important new high-speed bipolar process, and continuing advances in laser-wafer-trimming techniques (LWT). The AD565 has a $10-90 \%$ full scale transition time under 35 nanoseconds and settles to within $\pm 1 / 2$ LSB in 200 nanoseconds. AD565 chips are laser-trimmed at the wafer level to $\pm 1 / 8$ LSB typical linearity and are specified to $\pm 1 / 4$ LSB max error (K and T grades) at $+25^{\circ} \mathrm{C}$. This high speed and accuracy make the AD565 the ideal choice for high speed display drivers as well as fast analog-to-digital converters.
The subsurface (buried) Zener diode on the chip provides a low-noise voltage reference which has long-term stability and temperature drift characteristics comparable to the best discrete reference diodes. The laser trimming process which provides the excellent linearity is also used to trim both the absolute value of the reference as well as its temperature coefficient. The AD565 is thus well suited for wide temperature range performance with maximum linearity error $\pm 1 / 2 \mathrm{LSB}$ and guaranteed monotonicity over the full temperature range. Typical full scale gain T.C. is $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The AD565 is available in four performance grades and two package types. The AD565J and K are specified for use over the 0 to $70^{\circ} \mathrm{C}$ temperature range and are both available in either a 24 -pin, hermetically-sealed, side-brazed ceramic DIP, or a 24 pin plastic DIP. The AD565S and T grades are specified for the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range and are available in the ceramic package.

[^0]
SPECIFICATIONS

$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right.$, unless otherwise specified)

[^0]: *Covered by patent numbers: $3,803,590 ; 3,890,611 ; 3,932,863$; $3,978,473 ; 4,020,486$; and other patents pending.

