

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance 4-Channel, Low Noise, Low Power, 24-Bit, Sigma-Delta ADC with PGA and Reference microcircuit, with an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

1.2.1 Device type(s).

Device type
01

Generic
AD7124-4-EP

Circuit function

4-Channel, Low Noise, Low Power, 24-Bit, Sigma-Delta ADC with PGA and Reference
1.2.2 Case outline(s). The case outlines are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
	24	JEDEC MO-153-AD	Thin Shrink Small Outline Package (TSSOP)

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A	Hot solder dip
B	Tin-lead plate
C	Gold plate
D	Palladium
E	Gold flash palladium
F	Tin-lead alloy (BGA/CGA)
Z	Other

REV

1.3 Absolute maximum ratings. 1/

$A V_{\text {do }}$ to $A V_{\text {Ss }}$	-0.3 V to +3.96 V
IOV ${ }_{\text {do }}$ to DGND	-0.3 V to +3.96 V
$1 O V_{\text {do }}$ to $A V_{s s}$	-0.3 V to +5.94 V
AVV ${ }_{\text {ss }}$ to DGND	-1.98 V to +0.3 V
Analog Input Voltage to $\mathrm{AV}_{\text {ss }}$	-0.3 V to $\mathrm{AV} \mathrm{VD}^{\text {+ }}+0.3 \mathrm{~V}$
Reference Input Voltage to $\mathrm{AV}_{\text {ss }}$	-0.3 V to $\mathrm{AV} \mathrm{VD}^{+}+0.3 \mathrm{~V}$
Digital Input Voltage to DGND.	-0.3 V to $\mathrm{IO} \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Output Voltage to DGND	-0.3 V to 10 V DD +0.3 V
AINx/Digital Input Current	10 mA
Operating temperature range:	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Junction temperature	$150^{\circ} \mathrm{C}$
Lead temperature, Soldering Reflow	$260^{\circ} \mathrm{C}$
ESD Ratings:	
Human Body Model (HBM)	4 kV
Field-Induced Charged Device Model (FICDM)	1250 V
Machine Model	400 V

1.4 Thermal characteristics.

Thermal resistance

Case outline 2/	θ_{JA}	θ_{Jc}	Unit
Case X	128	42	${ }^{\circ} \mathrm{C} / \mathrm{W}$

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)
JEP95 - Registered and Standard Outlines for Semiconductor Devices
JESD51 - Methodology for the Thermal Measurement of Component Packages (Single Semiconductor Device).
(Applications for copies should be addressed to the Electronic Industries Alliance, 3103 North 10th Street, Suite 240-S, Arlington, VA 22201-2107 or online at https://www.jedec.org)

1/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
2/ Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD51.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/19614
		REV	PAGE 3

3. REQUIREMENTS

3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
A. Manufacturer's name, CAGE code, or logo
B. Pin 1 identifier
C. ESDS identification (optional)
3.2 Unit container. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
3.3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
3.5.3 Terminal function. The terminal function shall be as shown in figure 3.
3.5.4 Functional block diagram. The functional block diagram shall be as shown in figure 4.

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Test conditions$\underline{2} / \underline{3} /$	Limits			Unit
			Min	Typ	Max	
ADC						
Output Data Rate, Low Power Mode Mid Power Mode Full Power Mode	fADC		$\begin{aligned} & 1.17 \\ & 2.34 \\ & 9.38 \end{aligned}$		$\begin{gathered} 2400 \\ 4800 \\ 19200 \end{gathered}$	$\begin{aligned} & \text { SPS } \\ & \text { SPS } \\ & \text { SPS } \\ & \hline \end{aligned}$
No Missing Codes 4/		FS $\underline{5} />2$, sinc $\underline{6} / 4$ filter FS $\underline{5} />8$, sinc $5 /$ filter	$\begin{aligned} & 24 \\ & 24 \end{aligned}$			Bits
Resolution RMS Noise and Update Rates Integral Nonlinearity (INL)		$\begin{array}{ll} \text { Gain }=1 & \underline{4 /} \\ \text { Gain }>1 & \underline{6} / \end{array}$	$\begin{gathered} -4 \\ -15 \end{gathered}$	$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{gathered} +4 \\ +15 \end{gathered}$	ppm of FSR ppm of FSR
Offset Error 7/ Before Calibration After Internal Calibration/System Calibration		$\begin{aligned} & \text { Gain }=1 \text { to } 8 \\ & \text { Gain }=16 \text { to } 128 \end{aligned}$		± 15 200/gain In order of noise		$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
Offset Error Drift vs. Temperature ${ }^{8 /}$ Low Power Mode Mid Power Mode Full Power Mode		$\begin{aligned} & \text { Gain }=1 \text { or gain }>16 \\ & \text { Gain }=2 \text { to } 8 \\ & \text { Gain }=16 \\ & \text { Gain }=1 \text { or gain }>16 \\ & \text { Gain }=2 \text { to } 8 \\ & \text { Gain }=16 \end{aligned}$		$\begin{aligned} & 10 \\ & 80 \\ & 40 \\ & 10 \\ & 40 \\ & 20 \\ & 10 \end{aligned}$		$n \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $n V /{ }^{\circ} \mathrm{C}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$ $n V /{ }^{\circ} \mathrm{C}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$
Gain Error 7/ 9/ Before Internal Calibration After Internal Calibration After System Calibration		$\begin{aligned} & \text { Gain }=1, \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \text { Gain }>1 \\ & \text { Gain }=2 \text { to } 8, \mathrm{TA}=25^{\circ} \mathrm{C} \\ & \text { Gain }=16 \text { to } 128 \end{aligned}$	$\begin{aligned} & -0.0025 \\ & -0.016 \end{aligned}$	$\begin{gathered} -0.3 \\ +0.004 \\ \pm 0.025 \end{gathered}$ In order of noise	$\begin{aligned} & +0.0025 \\ & +0.016 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \end{aligned}$
Gain Error Drift vs. Temperature				1	2	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Low Power Mode ... Mid Power Mode 4/ Full Power Mode		AIN $=1 \mathrm{~V} /$ gain, external reference Gain $=2$ to 16 Gain = 1 or gain > 16 Gain $=2$ to 16 Gain = 1 or gain >16	$\begin{gathered} 87 \\ 96 \\ 92 \\ 100 \\ 99 \end{gathered}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/19614
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions	Limits			Unit
		Min	Typ	Max	
ADC - Continued.					
Common-Mode Rejection 10 At DC 4/					
	AIN $=1 \mathrm{~V}$, gain $=1$	85	90		dB
	AIN $=1 \mathrm{~V} /$ gain, gain 2 or 4	105	115		dB
	AIN $=1 \mathrm{~V} /$ gain, gain 2 or 4	102 11/ 4/			dB
	AIN $=1 \mathrm{~V} /$ gain, gain ≥ 8	115	120		dB
	AIN $=1 \mathrm{~V} /$ gain, gain ≥ 8	105 11/ 4/			dB
Sinc 5/, Sinc 6/ Filter 4/ At $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$					
	$10 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	120			dB
At 50 Hz	$50 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	120			dB
At 60 Hz	$60 \mathrm{SPS}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	120			dB
Fast Settling Filters 4/ At 50 Hz					
	First notch at $50 \mathrm{~Hz}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	115			dB
Post Filters 4/	First notch at $60 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	115			dB
At $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	$20 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	130			dB
	$25 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	130			dB
Sinc 6/ Filter External Clock					
At $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	$10 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	120			dB
	50 SPS, REJ60 = $1 \underline{12} /$, $50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	80			dB
At 50 Hz	$50 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	120			dB
At 60 Hz	60 SPS, $60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	120			dB
Internal Clock					
At $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	$10 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	98			dB
	50 SPS, REJ6010 = 1, $50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	66			dB
At 50 Hz	$50 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	92			dB
At 60 Hz	60 SPS, $60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	92			dB
Sinc $\underline{5} /$ Filter					
External Clock					
At $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	$10 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	100			dB
	$50 \text { SPS, REJ60 }=1 \underline{12} /, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	65			dB
At 50 Hz	$50 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	100			dB
At 60 Hz	60 SPS, $60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	100			dB
Internal Clock					
At $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	$10 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	73			dB
	$50 \mathrm{SPS}, \mathrm{REJ6010}=1,50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	52			dB
At 50 Hz	$50 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	68			dB
At 60 Hz	60 SPS, $60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	68			dB

See footnote at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/19614
		REV	PAGE 6

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions	Limits			Unit
		Min	Typ	Max	
ADC - Continued.					
```Normal Mode Rejection-Continued 4/ Fast Settling Filters External Clock At 50 Hz At 60 Hz Internal Clock At 50 Hz At 60 Hz Post Filters External Clock At \(50 \mathrm{~Hz}, 60 \mathrm{~Hz}\) Internal Clock At \(50 \mathrm{~Hz}, 60 \mathrm{~Hz}\)```	First notch at $50 \mathrm{~Hz}, 50 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$   First notch at $60 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$   First notch at $50 \mathrm{~Hz}, 50 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$   First notch at $60 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$   $20 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$   $25 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$   $20 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$   $25 \mathrm{SPS}, 50 \mathrm{~Hz} \pm 1 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$	40   40   24.5   24.5   86   62   67   50			dB   dB
ANALOG INPUTS 13/					
Differential Input Voltage Ranges   Absolute Ain Voltage Limits 4/   Gain $=1$ (Unbuffered)   Gain = 1 (Buffered)   Gain > 1   Analog Input Current   Gain > 1 or Gain = 1 (Buffered)   Low Power Mode   Absolute Input Current   Differential Input Current   Analog Input Current Drift   Mid Power Mode   Absolute Input Current   Differential Input Current   Analog Input Current Drift   Full Power Mode   Absolute Input Current   Differential Input Current   Analog Input Current Drift   Gain = 1 (Unbuffered)   Absolute Input Current   Analog Input Current Drift	$V_{\text {REF }}=\operatorname{REFINx}(+)-\operatorname{REFINx}(-)$, or internal reference   Current varies with input voltage	$\begin{gathered} \mathrm{A} \mathrm{~V}_{\mathrm{ss}}-0.05 \\ \mathrm{~A} \mathrm{~V}_{\mathrm{ss}}+0.1 \\ \mathrm{~A} \mathrm{~V}_{\mathrm{ss}}-0.05 \end{gathered}$	$\pm$ VREF/gain $\begin{gathered} \pm 1 \\ \pm 0.2 \\ 25 \\ \\ \pm 1.2 \\ \pm 0.4 \\ 25 \\ \\ \pm 3.3 \\ \pm 1.5 \\ 25 \\ \\ \pm 2.65 \\ 1.1 \end{gathered}$	$\begin{gathered} A V_{D D}+0.05 \\ A V_{D D}-0.1 \\ A V_{D D}+0.05 \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \\ \\ \mathrm{nA} \\ \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \\ \mathrm{nA} \\ \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \\ \mathrm{nA} \\ \mathrm{nA} \\ \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ \mathrm{nA} / \mathrm{V} \\ \mathrm{nA} / \mathrm{V} /{ }^{\circ} \mathrm{C} \end{gathered}$

See footnote at end of table.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.   V62/19614
		REV	PAGE 7

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions	Limits			Unit		
		Min	Typ	Max			
REFERENCE INPUT							
Internal Reference							
Initial Accuracy	$\mathrm{TA}=25^{\circ} \mathrm{C}$	$2.5-0.2 \%$	2.5	$2.5+0.2 \%$	V		
Drift			2	10	ppm $/{ }^{\circ} \mathrm{C}$		
Output Current				10	mA		
Load Regulation			50		$\mu \mathrm{V} / \mathrm{mA}$		
Power Supply Rejection			85		dB		
External Reference							
External REFIN Voltage 4/	REFIN $=$ REFINx(+)-REFINx(-)	0.5	2.5	$A V_{D D}$	V		
Absolute REFIN Voltage Limits 4/	Unbuffered	$A V_{\text {ss }}-0.05$		$A V_{D D}+0.05$	V		
	Buffered	$\mathrm{AV}_{\mathrm{ss}}+0.1$		$A V_{D D}-0.1$	V		
Reference Input Current Buffered							
Low Power Mode							
Absolute Input Current			$\pm 0.5$		nA		
Reference Input Current Drift			10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
Mid Power Mode							
Absolute Input Current			$\pm 1$		nA		
Reference Input Current Drift			10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
Full Power Mode							
Absolute Input Current			$\pm 3$		nA		
Reference Input Current Drift			10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
Unbuffered							
Absolute Input Current			$\pm 12$		nA		
Reference Input Current Drift			6		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
Normal Mode Rejection	Same as for analog inputs						
Common-Mode Rejection			100		dB		

See footnote at end of table.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.
V62/19614			
		REV	PAGE 8

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions	Limits			Unit
		Min	Typ	Max	
EXCITATION CURRENT SOURCES (IOUTO/IOUT1) (Available on any analog input pin)					
Output Current			$\begin{gathered} 50 / 100 / 250 / \\ 500 / 750 / 1000 \end{gathered}$		$\mu \mathrm{A}$
Initial Tolerance			$\pm 4$		\%
Drift			50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Current Matching	Matching between IOUTO and IOUT1, Vout $=0 \mathrm{~V}$		$\pm 0.5$		\%
Drift Matching 4/			5	30	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Line Regulation (AVDD)	AVDD $=3 \vee \pm 5 \%$		2		\%/V
Load Regulation			0.2		\%/V
Output Compliance 4/	$50 \mu \mathrm{~A} / 100 \mu \mathrm{~A} / 250 \mu \mathrm{~A} / 500 \mu \mathrm{~A}$ current sources, $2 \%$ accuracy	$A V_{s s}-0.05$		$A V_{D D}-0.37$	V
	$750 \mu \mathrm{~A}$ and $1000 \mu \mathrm{~A}$ current sources, $2 \%$ accuracy	AVss -0.05		$A V_{D D}-0.48$	V
BIAS VOLTAGE (VEIAs) GENERATOR (Available on any analog input pin)					
$V_{\text {bias }}$			$\begin{gathered} \mathrm{AV} V_{\mathrm{ss}}+(\mathrm{AV} \mathrm{VDD} \\ \left.-\mathrm{AV} \mathrm{~V}_{\mathrm{ss}}\right) / 2 \end{gathered}$		$\mathrm{V}$
VBIAS Generator Start-Up Time	Dependent on the capacitance connected to AI		6.7		$\mu \mathrm{s} / \mathrm{nF}$
TEMPERATURE SENSOR					
Accuracy			$\pm 0.5$		${ }^{\circ} \mathrm{C}$
Sensitivity			13,584		Codes/ ${ }^{\circ} \mathrm{C}$
LOW-SIDE POWER SWITCH					
On Resistance			7	10	$\Omega$
Allowable Current 4/	Continuous current			30	mA
BURNOUT CURRENTS					
AIN Current	Analog inputs must be buffered		0.5/2/4		$\mu \mathrm{A}$
DIGITAL OUTPUTS (P1 AND P2)					
Output Voltage					
High, Voн	$I_{\text {source }}=100 \mu \mathrm{~A}$	$A V_{D D}-0.6$			V
	$\mathrm{I}_{\mathrm{SINK}}=100 \mu \mathrm{~A}$			0.4	V

See footnote at end of table.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.
V62/19614			
		REV	PAGE 9

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions	Limits			Unit
		Min	Typ	Max	
DIAGNOSTICS					
Power Supply Monitor Detect Level   Analog Low Dropout Regulator (ALDO) Digital LDO (DLDO)	$\begin{aligned} & A V_{D D}-A V_{S S} \geq 2.7 \mathrm{~V} \\ & I O V_{D D} \geq 1.75 \mathrm{~V} \end{aligned}$			$\begin{gathered} 1.6 \\ 1.55 \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$
Reference Detect Level	REF_DET_ERR bit active if VREF $<0.7 \mathrm{~V}$	0.7		1	V
AINM/AINP Overvoltage Detect Level		$A V_{D D}+0.04$			V
AINM/AINP Undervoltage Detect Level				AVss - 0.04	V
INTERNAL/EXTERNAL CLOCK					
Internal Clock Frequency Duty Cycle		614.4-5\%	$\begin{aligned} & 614.4 \\ & 50: 50 \end{aligned}$	614.4 + 5\%	$\begin{gathered} \mathrm{kHz} \\ \% \end{gathered}$
External Clock   Frequency Duty Cycle	Internal divide by 4		$\begin{gathered} 2.4576 \\ 45: 55 \text { to } \\ 55: 45 \end{gathered}$		$\begin{gathered} \mathrm{MHz} \\ \% \end{gathered}$
LOGIC INPUTS ${ }^{\text {4/ }}$					
Input Voltage Low, VINL High, Vinh   Hysteresis	$\begin{aligned} & 1.65 \mathrm{~V} \leq I O V_{D D}<1.9 \mathrm{~V} \\ & 1.9 \mathrm{~V} \leq I O \mathrm{~V}_{\mathrm{DD}}<2.3 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq I O \mathrm{~V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \\ & 1.65 \mathrm{~V} \leq I O V_{D D}<1.9 \mathrm{~V} \\ & 1.9 \mathrm{~V} \leq I O V_{D D}<2.3 \mathrm{~V} \\ & 2.3 \mathrm{~V} \leq I O \mathrm{~V}_{\mathrm{DD}} \leq 2.7 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq I O \mathrm{~V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V} \\ & 1.65 \mathrm{~V} \leq I O V_{D D} \leq 3.6 \mathrm{~V} \end{aligned}$	$\begin{gathered} 0.7 \times I O V_{\mathrm{DD}} \\ 0.65 \times 10 \mathrm{~V}_{\mathrm{DD}} \\ 1.7 \\ 2 \\ 0.2 \end{gathered}$		$\begin{gathered} 0.3 \times 1 O V_{D D} \\ 0.35 \times 1 O V_{D D} \\ 0.7 \\ \\ \\ 0.6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Currents	$\mathrm{V} \mathrm{IN}_{\mathrm{N}}=1 \mathrm{OV}$ do or GND	-1		+1	$\mu \mathrm{A}$
Input Capacitance	All digital inputs		10		pF
LOGIC OUTPUTS (INCLUDING CLK)					
Output Voltage 4/   High, Voн   Low, Vol	$\begin{aligned} & \text { Isource }=100 \mu \mathrm{~A} \\ & \text { I sink }=100 \mu \mathrm{~A} \end{aligned}$	IOV ${ }_{\text {dD }}-0.35$		0.4	$\begin{aligned} & V \\ & V \end{aligned}$
Floating State Leakage Current		-1		+1	$\mu \mathrm{A}$
Floating State Output Capacitance			10		pF
Data Output Coding			Offset binary		

See footnote at end of table.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.
V62/19614			
		REV	PAGE 10

TABLE I. Electrical performance characteristics - Continued. 1/


See footnote at end of table.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.   V62/19614
		REV	PAGE 11

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Test conditions	Limits			Unit
		Min	Typ	Max	
POWER SUPPLY CURRENTS - Continued 13/ 15/					
Iavdd, External Reference liovdo   Low Power Mode   Mid Power Mode   Full Power Mode			$\begin{aligned} & 20 \\ & 25 \\ & 55 \\ & \hline \end{aligned}$	$\begin{array}{r} 35 \\ 40 \\ 80 \\ \hline \end{array}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
POWER-DOWN CURRENTS 15/ (Independent of power mode)					
Standby Current IAVDD liovdd	LDOs on only		$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Power-Down Current   Iavdd   liovDd			1 1	3 2	$\mu \mathrm{A}$   $\mu \mathrm{A}$

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
2/ $\quad \mathrm{AV}$ DD $=2.9 \mathrm{~V}$ to 3.6 V (full power mode), 2.7 V to 3.6 V (mid and low power mode), $I O V_{D D}=1.65 \mathrm{~V}$ to 3.6 V , Avss $=\mathrm{DGND}=0 \mathrm{~V}$, REFINx(+) $=2.5 \mathrm{~V}$, REFINx(-) $=A V$ ss, master clock $=614.4 \mathrm{kHz}$, all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAx }}$, unless otherwise noted.
3/ Temperature range $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
4/ These specifications are not production tested but are supported by characterization data at the initial product release.
5/ FS is the decimal equivalent of the FS[10:0] bits in the filter registers.
6/ The integral nonlinearity is production tested in full power mode only. For other power modes, the specification is supported by characterization data at the initial product release.
7/ Following a system or internal zero-scale calibration, the offset error is in the order of the noise for the programmed gain and output data rate selected. A system full- scale calibration reduces the gain error to the order of the noise for the programmed gain and output data rate.
8/ Recalibration at any temperature removes these errors.
9/ Gain error applies to both positive and negative full-scale. A factory calibration is performed at gain $=1, \mathrm{TA}=25^{\circ} \mathrm{C}$.
10/ When gain > 1, the common-mode voltage is between (AVSS $+0.1+0.5 /$ gain ) and (AVDD - $0.1-0.5 / \mathrm{gain}$ ).
11/ Specification is for a wider common-mode voltage between (AVSS - $0.05+0.5 /$ gain) and (AVDD - 0.1-0.5/gain).
12/ REJ60 is a bit in the filter registers. When the first notch of the sinc filter is at 50 Hz , a notch is placed at 60 Hz when REJ60 is set to 1 . This gives simultaneous 50 Hz and 60 Hz rejection.
13/ When the gain is greater than 1 , the analog input buffers are enabled automatically. The buffers can only be disabled when the gain equals 1.
14/ When $V_{\text {REF }}=\left(A V_{D D}-A V_{S S}\right)$, the typical differential input equals $0.92 \times \mathrm{V}_{\text {REF }} /$ gain for the low and mid power modes and 0.86 $\times V_{\text {REF }} /$ gain for full power mode when gain $>1$.
15/ The digital inputs are equal to IOVDD or DGND with excitation currents and bias voltage generator disabled.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.   V62/19614
		REV	PAGE 12

Case X


NOTES:

1. All linear dimensions are in millimeters.
2. Falls within JEDEC MO-153-AD.

FIGURE 1. Case outline.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.   V62/19614
		REV	PAGE 13



FIGURE 2. Terminal connections.

Terminal   No.	Mnemonic	
1	DN	Serial Data Input to the Input Shift Register on the ADC. Data in the input shift register is   transferred to the control registers within the ADC, with the register selection bits of the   communications register identifying the appropriate register
2	SCLK	Serial Clock Input. This serial clock input is for data transfers to and from the ADC. The SCLK pin   has a Schmitt- triggered input, making the interface suitable for opto-isolated applications. The   serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively,   it can be a noncontinuous clock with the information being transmitted to or from the ADC in smaller   batches of data.
3	CLK	Clock Input/Clock Output. The internal clock can be made available at this pin. Alternatively, the   internal clock can be disabled, and the ADC can be driven by an external clock. This allows several   ADCs to be driven from a common clock, allowing simultaneous conversions to be performed.
4	$\overline{C S}$	Chip Select Input. This is an active low logic input that selects the ADC. Use $\overline{C S}$   to select the ADC in systems with more than one device on the serial bus or as a frame   synchronization signal in communicating with the device. $\overline{c s}$ can be hardwired low if the serial   peripheral interface (SPI) diagnostics are unused, allowing the ADC to operate in 3-wire mode with   SCLK, DIN, and DOUT interfacing with the device.
5	REGCAPD	Digital LDO Regulator Output. Decouple this pin to DGND with a $0.1 \mu \mathrm{FF}$ capacitor.

FIGURE 3. Terminal function.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.   V62/19614
		REV	PAGE 14


$\begin{array}{c}\text { Terminal } \\ \text { No. }\end{array}$	Mnemonic	Description		
6	IOVDD	$\begin{array}{l}\text { Serial Interface Supply Voltage, 1.65 V to 3.6 V. IOVDD is independent of AVDD. Therefore, the } \\ \text { serial interface can operate at } 1.65 \mathrm{~V} \text { with AVDD at } 3.6 \mathrm{~V} \text {, for example. }\end{array}$		
7	DGND	Digital Ground Reference Point.		
8	AIN0/IOUT/VBIAS	$\begin{array}{l}\text { Analog Input 0/Output of Internal Excitation Current Source/Bias Voltage. This input pin is } \\ \text { configured via the configuration registers to be the positive or negative terminal of a differential or } \\ \text { pseudo differential input. Alternatively, the internal programmable excitation current source can be } \\ \text { made available at this pin. Either IOUTO or IOUT1 can be switched to this output. A bias voltage } \\ \text { midway between the analog power supply rails can be generated at this pin. }\end{array}$		
9	AIN1/IOUT/VBIAS	$\begin{array}{l}\text { Analog Input 1/Output of Internal Excitation Current Source/Bias Voltage. This input pin is } \\ \text { configured via the configuration registers to be the positive or negative terminal of a differential or } \\ \text { pseudo differential input. Alternatively, the internal programmable excitation current source can be } \\ \text { made available at this pin. Either IOUT0 or IOUT1 can be switched to this output. A bias voltage } \\ \text { midway between the analog power supply rails can be generated at this pin. }\end{array}$		
10	AIN2/IOUT/VBIAS/P1	$\begin{array}{l}\text { Analog Input 2/Output of Internal Excitation Current Source/Bias Voltage/General-Purpose Output } \\ \text { 1. This input pin is configured via the configuration registers to be the positive or negative terminal } \\ \text { of a differential or pseudo differential input. Alternatively, the internal programmable excitation } \\ \text { current source can be made available at this pin. Either IOUT0 or IOUT1 can be switched to this } \\ \text { output. A bias voltage midway between the analog power supply rails can be generated at this pin. }\end{array}$		
This pin can also be configured as a general-purpose output bit, referenced between AVss and			$\}$	AVDD.
:---				

FIGURE 3. Terminal function - Continued..

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.   V62/19614
		REV	PAGE 15


Terminal No.	Mnemonic	Description
16	AIN6/IOUT/VBIAS/ REFIN2(+)	Analog Input 6/Output of Internal Excitation Current Source/Bias Voltage/Positive Reference Input. This input pin is configured via the configuration registers to be the positive or negative terminal of a differential or pseudo differential input. Alternatively, the internal programmable excitation current source can be made available at this pin. Either IOUT0 or IOUT1 can be switched to this output. A bias voltage midway between the analog power supply rails can be generated at this pin. This pin also functions as a positive reference input for REFIN2( $\pm$ ). REFIN2(+) can be anywhere between $A V_{D D}$ and $A V_{s s}+0.5 \mathrm{~V}$. The nominal reference voltage (REFIN2(+) to REFIN2(-)) is 2.5 V , but the device functions with a reference from 0.5 V to AV DD.
17	AIN7/IOUT/VBIAS/ REFIN2(-)	Analog Input 7/Output of Internal Excitation Current Source/Bias Voltage/Negative Reference Input. This input pin is configured via the configuration registers to be the positive or negative terminal of a differential or pseudo differential input. Alternatively, the internal programmable excitation current source can be made available at this pin. Either IOUT0 or IOUT1 can be switched to this output. A bias voltage midway between the analog power supply rails can be generated at this pin. This pin also functions as the negative reference input for REFIN2( $\pm$ ). This reference input can be anywhere between $A V$ ss and $A V D D-0.5 \mathrm{~V}$.
18	REFOUT	Internal Reference Output. The buffered output of the internal 2.5 V voltage reference is available on this pin.
19	AVss	Analog Supply Voltage. The voltage on $A V_{D D}$ is referenced to $A V_{s s}$. The differential between $A V_{D D}$ and AV ss must be between 2.7 V and 3.6 V in mid or low power mode and between 2.9 V and 3.6 V in full power mode. AV ss can be taken below 0 V to provide a dual power supply to the AD71244 -EP. For example, $A V$ ss can be tied to -1.8 V and AVDD can be tied to +1.8 V , providing a $\pm 1.8 \mathrm{~V}$ supply to the ADC.
20	REGCAPA	Analog LDO Regulator Output. Decouple this pin to AV ss with a $0.1 \mu \mathrm{~F}$ capacitor.
21	PSW	Low-Side Power Switch to AVss.
22	AVdo	Analog Supply Voltage, Relative to AVss
23	$\overline{\text { SYNC }}$	Synchronization Input. This pin is a logic input that allows synchronization of the digital filters and analog modulators when using a number of AD7124-4-EP devices. When $\overline{\mathrm{SYNC}}$ is low, the nodes of the digital filter, the filter control logic, and the calibration control logic are reset, and the analog modulator is held in a reset state. $\overline{\text { SYNC }}$ does not affect the digital interface but does reset $\overline{\mathrm{RDY}}$ to a high state if it is low.
24	DOUT/ $\overline{\text { RDY }}$	Serial Data Output/Data Ready Output. DOUT/ $\overline{\mathrm{RDY}}$ functions as a serial data output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/ $\overline{\mathrm{RDY}}$ operates as a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin goes high before the next update occurs. The DOUT/ $\overline{\mathrm{RDY}}$ falling edge can also be used as an interrupt to a processor, indicating that valid data is available. With an external serial clock, the data can be read using the DOUT/信DY pin. When $\overline{\mathrm{CS}}$ is low, the data/control word information is placed on the DOUT/ $\overline{\mathrm{RDY}}$ pin on the SCLK falling edge and is valid on the SCLK rising edge.

FIGURE 3. Terminal function - Continued..

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.
V62/19614			
		REV	PAGE 16



FIGURE 4. Functional block diagram.

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.
V62/19614			
		REV	PAGE 17

## 4. VERIFICATION

4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

## 5. PREPARATION FOR DELIVERY

5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.
6. NOTES
6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/programs/smcr/default.aspx

Vendor item drawing   administrative control   number 1/	Device   manufacturer   CAGE code	Order Quantity	Vendor part number
V62/19614-01XE	24355	Tube units $=62$	AD7124-4TRUZ-EP
		Reel units $=1000$	AD7124-4TRUZ-EP-R7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code
24355

## Source of supply

Analog Devices
1 Technology Way
P.O. Box 9106

Norwood, MA 02062-9106

DLA LAND AND MARITIME   COLUMBUS, OHIO	SIZE   A	CODE IDENT NO.   16236	DWG NO.   V62/19614
		REV	PAGE 18

