PRELIMINARY TECHNICAL DATA
 FEATURES

Resolution: $\pm 41 / 2$ Digits $B C D$ or $\pm 20 \mathrm{k}$ Count Binary Capability for 5 1/2 Digit Resolution or Custom Data Formats
Data Format: Multiplexed BCD (for Display) and Serial Count (for External Linearization, Data Reformatting, or Microprocessor Interface)
Accuracy: ± 1 Count in $\pm 20 \mathrm{k}$ Counts
Scale Factor Drift: $0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Using Only MediumPrecision Op Amps
Requires only a Single Positive Reference
Overrange Display
Auto Calib ation Capablity
Interfades to TLL or $5 V$ cmøs
 GENERAL LESSCRIPTION
The AD7555 is a 4 IT2 digit, mololithi) C) ids, quad slope) integrating ADC subsystem desixned for 1 spl y of microprocessor interface applications. Use of the high resolution enable input expands the display format to $51 / 2$ digis BeD. With SCO (Serial Count Out) connected to SCI (Serial Count In), the output data format is multiplexed BCD suitable for visual display purposes. As an added feature, SCO can also be used with rate multipliers for linearization, or with BCD or binary counters for data reformatting (up to 200 k binary counts).

The quad slope conversion algorithm (Analog Devices patent No. 3872466) converts the external amplifier's input drift errors to a digital number and subsequently reduces the total system drift error to a second order effect. Using only inexpensive, medium-precision amplifiers a scale factor drift of $0.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ is achieved.

PIN CONFIGURATION

ORDERING INFORMATION

Model	Package	Operating Temperature Range
AD7555BD	28 Pin Side Brazed Ceramic	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD7555KN	28 Pin Molded Plastic	0 to $+70^{\circ} \mathrm{C}$

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062 Tel: 617/329-4700
West Coast 714/842-1717

Mid-West 312/894-3300

TWX: 710/394-6577

Texas
214/231-5094
$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF1 }}=+4.0960 \mathrm{~V}, \mathrm{~F}_{\mathrm{CLK}}=614.4 \mathrm{kHz}, \mathrm{AGND}=0 \mathrm{~V}\right)$

[^0]
ABSOLUTE MAXIMUM RATINGS

VCC to DGND . +17V
VSS to DGND . -17V
VCC to $V_{\text {SS }}$. +22 V
Digital Outputs
V_{CC}, DGND
Digital Inputs
DMC (Pin 13), CLK (Pin 12) VSS ${ }_{\text {SS }}$, VCC
All other Logic Inputs DGND, +17V
Analog Inputs/Outputs
AGND to DGND (Positive Limitation) V V_{CC} or $\mathrm{V}_{\text {IROUT }}{ }^{*}$ AGND to DGND (Negative Limitation). $\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {IROUT }}-20 \mathrm{~V} \dagger$

AIN (Pin 2), VREF1 (Pin 1), BUFIN (Pin 4) . V VCC ${ }_{\text {C }}$, IRJCT (Pin 6), IROUT (Pin 5) +27V, AGND

Characteristics refer to the system of Figures 6 a and 6 b . V_{CC} $=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF1 }}=+4.096 \mathrm{~V}$, error count n calibrated to zero at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ as per procedure on page 9 unless otherwise noted. Switch leakages and limitations in temperature performance of auxiliary components (such as the integrating capacitor) cause performance degradations above $+45^{\circ} \mathrm{C}$.

```
Power Dissipation (package)
    Plastic (AD7555KN)
        To +50 }\mp@subsup{}{}{\circ}\textrm{C}. . . . . . . . . . . . . . . . . . . . . . . . . 1200mW
        Derate above +50 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ by. . . . . . . . . . . . . 12mW/ }\mp@subsup{}{}{\circ}\textrm{C
    Ceramic (AD7555BD)
        To +50 }\mp@subsup{}{}{\circ}\textrm{C}. . . . . . . . . . . . . . . . . . . . . . . . . 1000mW
        Derate above +50 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ by. . . . . . . . . . . . . 10mW/ }\mp@subsup{}{}{\circ}\textrm{C
    *Whichever is the least positive.
    #Wichever is the least negative.
```

 NOTE:
 Do not apply voltages to any AD7555 digital output, AIN or
 \(\mathrm{V}_{\text {REF1 }}\) before \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{SS}}\) are applied. Additionally, the
 voltages at AIN, VREF1 or any digital output must never
 exceed \(V_{C C}\) and \(V_{S S}\) (if an op amp output is used to drive
 AIN it must be powered by the AD7555 \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{SS}}\) supply
 voltages). Do not allow any digital input to swing below
 DGND.

Applying the AD7555

AD7 555 PIN DESCRIPTION

ANALOG FUNCTIONS

$\mathrm{V}_{\text {REF1 }}$ (Pin 1): $\quad+4.096 \mathrm{~V}$ Reference Input
AIN (Pin 2): Analog Input Voltage ($\pm 2 \mathrm{~V}$ Full Scale)
AGND (Pin 3): Analog Signal Common Ground
BUFIN (Pin 4): To External Buffer Amplifier Input
IROUT (Pin 5): From Integrator Amplifier Output
IRJCT (Pin 6): To Integrator Amplifier Summing Junction

Input from the external comparator.
High Resolution Enable, determines converter resolution
HREN $=$ LOGIC LOW, Full Scale $=$ $\pm 1.9999 \mathrm{~V}(100 \mu \mathrm{~V}$ resolution)
HREN $=$ LOGIC HIGH, Full Scale $=$ $\pm 1.99999 \mathrm{~V}$ ($10 \mu \mathrm{~V}$ resolution)

Hold Input
$\mathrm{HOLD}=\mathrm{LQ}$ GIC HIGH, the ADC corverts nd updayestio displays

DMC (Pin 13):

CLK (Pin 12):

SCI
(Pin 15):

SUPPLY INPUTS

V_{CC}	$($ Pin 28):
V_{SS}	$(\operatorname{Pin} 14):$
D_{GND}	$($ Pin 21):

LOGIC OUTPUTS

B8-B1	$\begin{aligned} & \text { (Pins } 17 \text { - } \\ & 20) \end{aligned}$	BCD8 - BCD1 output, Active HIGH (See table 1)
D5	(Pin 22):	10^{-5} digit output, Active LOW in $51 / 2$ digit mode, stays HIGH in $41 / 2$ digit mode
$\overline{\mathrm{D} 4}-\overline{\mathrm{D} 1}$	$\begin{aligned} & \text { (Pins } 23- \\ & 27) \end{aligned}$	$10^{-4}-10^{-1}$ digit outputs, Active LOW
$\overline{\text { D0 }}$	(Pin 27):	10° /overflow/polarity output, Active LOW

SCC (Pin 11): System conversion complete, goes HIGH when conversion is complete, returns LOW on comparator crossing at end of phase 0 integration period.
SCO (Pin 16): Serial Count Out, a serial output pulse train proportional in length to the magnitude of AIN. SCO can be externally pulled HIGH while DAV $=$ HIGH to display the error count " n " for calibration purposes (see page 9).
(Pin 10):
 a new conversion.
Display Multiplexer Clock, can be driven from an external logic source; or with the addition of an external capacitor, will self oscillate. With an external capacitor of $10,000 \mathrm{pF}, \mathrm{DMC}$ oscillates at approximately 1.5 kHz at a 5% to 10% duty cycle, suitable for display purposes.
Clock Input for maximum line rejec-
tion in the $41 / 2$ digit mode;
$50 \mathrm{~Hz}: \mathrm{f}_{\mathrm{CLK}}=512 \mathrm{kHz}(=4.096 \mathrm{MHz}$ $\div 8$)
$60 \mathrm{~Hz}: \mathrm{f}_{\mathrm{CLK}}=614.4 \mathrm{kHz}(=4.915 \mathrm{MHz}$

$$
\div 8)
$$

$50 / 60 \mathrm{~Hz}: \mathrm{f}_{\mathrm{CLK}}=409.6 \mathrm{kHz}$

$$
(=3.2768 \mathrm{MHz} \div 8)
$$

For maximum line rejection in the
$51 / 2$ digit mode;
$50 / 60 \mathrm{~Hz}, \mathrm{f}_{\mathrm{CLK}}=1.024 \mathrm{MHz}$ $(=4.096 \mathrm{MHz} \div 4)$

Serial Count In. Input to totalizing counter in the AD7555. SCI is normally connected to SC0 for direct count totalization.

Positive Supply Input (+5 V)
Negative Supply Input (-5 V)
Digital Ground
Table 1. Output Coding

Component limitations such as switch leakage, as well as operational amplifier offset voltage and bias current (and the temperature dependency of these errors), are major obstacles when designing high resolution integrating A/D converters.
The AD7555 however, utilizes a patented quad slope conversion technique (Analog Devices Patent No. 3872466) to reduce the effects of such errors to second order effects.
Figure 1 shows a simplified quad slope integrator circuit. The various inputs AGND (Analog Ground), VREF1, and AIN (Analog Input) are applied in sequence to the integrator via switches 1-3 (see Table 2), creating four slopes at the integrator output (phase 1-4 of Figure 2). If the equivalent summing junction voltage V_{S} is precisely $0.5 \mathrm{~V}_{\text {REF1 }}$, the phase 1 and phase 2 integration times are equal, indicating there are no input errors. If $\mathrm{V}_{\mathrm{S}} \neq 0.5 \mathrm{~V}_{\mathrm{REF} 1}$ (due to amplifier offset voltage, bias current, etc.), an error count " n " is obtained. The a alo inpuritegration cycle (phase 3) is subsequently lengthe ped or shortened D "n" counts, depending on whethe th erfor vas py sitige or pgative.

Figure 1. Simplified Quad Slope Integrator Circuit

NOTES:

1. FOR $41 / 2$ DIGIT MODE, $K_{1}=10,240$
$\mathrm{t}=4 \times 1 / \mathrm{fCLK}$. WHERE fCLK IS CLOCK FREQUENCY AT PIN 12
2. FOR $51 / 2$ DIGIT MODE, $K_{1}=102,400$
3. $\mathrm{t}=2 /$ fCLK. WHERE fCLK IS CLOCK FREQUENCY AT PIN 12
4. $n=$ ERROR COUNT DUE TO AMPLIFIER OFFSETS ETC. AND CAN BE POSITIVE OR NEGATIVE.

Figure 2. Quad Slope Integrator Output

The final effect is to reduce the analog input error terms to second order effects. This can be proven by solving the differential equations obtained during the phase 1 through phase 4 integration periods. Barring third (and higher) order effects, the solutions are given in equations 1 and 2 .
$\mathrm{N}_{(\mathrm{AIN} \geqslant 0)}=\underbrace{\mathrm{K}_{\mathrm{T}}\left[\frac{\mathrm{AIN}}{\mathrm{V}_{\mathrm{REF} 1}}\right]}_{\text {IDEAL TERM }}+\underbrace{\mathrm{K}_{\mathrm{T}}\left[\frac{\mathrm{AIN}}{\mathrm{V}_{\mathrm{REF} 1}}-1\right]\left[-a^{2}+\frac{\mathrm{AGND}}{\mathrm{V}_{\mathrm{REF} 1}}(1+2 a)\right]}_{\text {ERROR 1ERM }}$
$\mathrm{N}_{(\mathrm{AIN}<0)}=\underbrace{-\mathrm{K}_{\mathrm{T}}\left[\frac{\mathrm{AIN}}{\mathrm{V}_{\text {REF } 1}}\right]}_{\text {IDEAL TERM }} \underbrace{\mathrm{K}_{\mathrm{T}}\left[\frac{\text { AIN }}{\mathrm{V}_{\text {REF } 1}}-1\right]\left[-a^{2}+\frac{\mathrm{AGND}}{\mathrm{V}_{\text {REF }}}(1+2 a)\right]}_{\text {ERROR TERM }}$

WHERE:

$\mathrm{N}=$ Number of counts appearing at AD7555 Serial Count Out pin corresponding to the analog input voltage, AIN.
AIN = Analog Input Voltage to be digitized
$K_{T}=40960$ counts (41/2 Digit Mode)
409600 counts ($51 / 2$ Digit Mode)
AGND $=$ Voltage at AD7555 pin 3 (AGND) measured with respect to $\mathrm{V}_{\mathrm{REF} 1}$ and AIN signal common ground. (Ideally, AGND $=0 \mathrm{~V}$)
a is an error term equal to $\frac{2 V_{S}-V_{\text {REF1 }}}{V_{\text {REF1 }}}$

If AGND $=0$, then the error terms of EQN 1 and 2 contain only second order effects due to $a \neq 0$. Thus, the AD7555 is a powerful tool which allows high precision system performance to be obtained when using only moderate precision op amps.
Other advantages of the quad slope technique include bipolar operation using a single positive voltage reference, and the fact that since the comparator propagation delay is constant hysteresis effects are eliminated. (This is because the comparator always approaches the zero crossing from the same direction).

Phase	Switch Closed (Figure 1)	Equivalent Input Voltage	Integration Time
0	SW3	$\mathrm{V}_{\text {REF1 }}-\mathrm{V}_{\mathrm{S}}$	$\mathrm{t}_{00}=\mathrm{R}_{1} \mathrm{C}_{1}$
1	SW2	AGND $-\mathrm{V}_{\mathrm{S}}$	$\mathrm{t}_{01}=\mathrm{K}_{1} \mathrm{t}$
2	SW3	$\mathrm{V}_{\text {REF1 }}-\mathrm{V}_{\mathrm{S}}$	$\mathrm{t}_{02}=\left(\mathrm{K}_{1}+\mathrm{n}\right) \mathrm{t}$
3	SW1	AIN $-\mathrm{V}_{\mathrm{S}}$	$\mathrm{t}_{03}=\left(2 \mathrm{~K}_{1}-\mathrm{n}\right) \mathrm{t}$
4	SW3	$\mathrm{V}_{\text {REF1 }}-\mathrm{V}_{\mathrm{S}}$	$\mathrm{t}_{04}=\left(2 \mathrm{~K}_{1}+\mathrm{n} \pm \mathrm{N}\right) \mathrm{t}$
5	SW0	RESET INTEGRATOR	

Table 2. Integrator Equivalent Input Voltages and Integration Times

TIMING AND CONTROL

Figure 3 shows the AD7555 timing. SCC goes HIGH at the end of SCO indicating conversion is complete. $\overline{\mathrm{DAV}}$ goes HIGH on the 1st leading edge of DMC after conversion is complete. New data is strobed into the data latches (see functional diagram) on the leading edge of the 2nd DMC. DAV returns low on the leading edge of the 3rd DMC.

BCD data is placed on $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 4, \mathrm{~B} 8$ on the positive edge of DMC while the digit counter is incremented on the negative edges of DMC.
A reset phase (phase 0) is initiated on the 4th DMC after conversion is complete. SCC returns low at the phase 0 comparator crossing indicating a conversion start.
If the DMC oscillator is set up to free run (C8 in Figure 6b causes DMC to run at about 1.5 kHz), the AD7555 will continuously convert and update the displays.
Externally controlling the generation of DMC pulses provides a meansor coxtrolling data outputting for computer interface app icatiom Pags 10 and 11 illustrate how to use this feature to inc rface th A 7555 to a mivioprocessor.
 Overflow causes digit +hrough digif 4 digit 1 thr du h d git 5 in $51 / 2$ digit mode) to output a BCD 1 (1100) O erffow does not affect digit 0 . Therefore, a postrive over low is dsplayed as $\frac{1}{1},{ }^{\prime},{ }^{\prime \prime}-\prime^{\prime \prime \prime}-\prime$ and a negative overflow as - 1,
when using the 7447 seven-segment decoder. when using the 7447 seven-segment decoder.

PRINTED CIRCUIT LAYOUT

To ensure performance with the system specifications Figures

Figure 4. Component Overlay for Figure 5a

PCB Layout is reproduced on a one to one scale. Note that a pad already exists on the PCB layout for an AD584LH voltage reference, suitable for $41 / 2$ digit operation.

Figure 5b. Foil Side

ANALOG CIRCUIT SET-UP AND OPERATION

The following steps, in conjunction with the analog circuitry of Figure 6a explain the selection of the various component values required for proper operation.

1. Selection of Integrator Components R_{1} and C_{1} Improper selection of the integrator time constant (time constant $=\mathrm{R}_{1} \mathrm{C}_{1}$) may cause excessive noise due to the integrator output level being too low, or may cause nonlinear operation if the integrator output attempts to exceed the rated output voltage of the amplifier. The integrator time constant $\mathrm{R}_{1} \mathrm{C}_{1}$ must be:

$$
\frac{\left(\mathrm{V}_{\mathrm{REF} 1}\right)\left(\mathrm{K}_{a}\right)}{\left(\mathrm{f}_{\mathrm{CLK}}\right)(7 \mathrm{~V})} \geqslant \mathrm{R}_{1} \mathrm{C}_{1} \geqslant \frac{\left(\mathrm{~V}_{\mathrm{REF} 1}\right)\left(\mathrm{K}_{a}\right)}{\left(\mathrm{f}_{\mathrm{CLK}}\right)\left(\mathrm{V}_{\mathrm{DD}}-5 \mathrm{~V}\right)}
$$

Where:
V_{DD} is the integrator amplifier positive supply voltage
$\mathrm{f}_{\mathrm{CLK}}$ is the clock frequency at pin 12

the integrating cpactor must a low leakage, low

nected to the output of the integrating amplifier, not to its summing junction.
The recommended maximum value for R 1 in both the $41 / 2$ digit and $51 / 2$ digit mode is $750 \mathrm{k} \Omega$. Higher values may_cause noise injection.
2. Determing Conversion Time

Maximum conversion time occurs when $\mathrm{A}_{\mathrm{IN}}=-\mathrm{FS}$ and is given by
$41 / 2$ DIGIT MODE
${ }^{\mathrm{t}}{ }_{\text {CONVERT }}=(325,760)\left({ }^{\mathrm{t}_{\text {CLK }}}\right)+\mathrm{R}_{1} \mathrm{C}_{1}$
$51 / 2$ DIGIT MODE
${ }^{t_{\text {CONVERT }}}=(1,628,800)\left(\mathrm{t}_{\text {CLK }}\right)+\mathrm{R}_{1} \mathrm{C}_{1}$
Where:

$$
\begin{aligned}
& { }^{{ }^{\mathrm{C} C L K}}
\end{aligned}=\text { Period of CLK as measured at pin } 12
$$

3. Initial Calibration
a. Adjust $\mathrm{V}_{\mathrm{REF} 1}$ so that the voltage at pin 1 ($\mathrm{V}_{\mathrm{REF} 1}$) of the AD7555 is +4.0960 V .
b. Apply 0V to AIN and adjust R5 (VREF2 Adjust) for display 0.0000 . (See optional calibration procedure on the next page for more precise calibration.)

Figure Ga. Analog Circuit Diagram

APPLICATION HINTS

1. See Note under Absolute Maximum Ratings for proper power sequencing and input/output voltage ratings.
2. For linear operation the absolute magnitude of AIN cannot exceed $1 / 2 \mathrm{~V}_{\text {REF 1 }}$. In no case must AIN be more negative than $V_{S S}$.
3. Do not leave unused CMOS inputs floating.
4. Check that integrator components R 1 and C 1 are chosen as per paragraph 1 of the setup and operation section on this page and that initial calibration as per paragraph 3 has been
accomplished. A resistor value no larger than 750 k is reccommended to minimize noise pickup.
5. For optimum normal mode noise rejection, use the crystal frequencies shown on page 4 .
6. In order for the calibrate mode (on the next page) to display the error count properly it can be shown that
$\mathrm{V}_{\mathrm{REF} 2} \geqslant \mathrm{~V}_{\mathrm{REF} 1} \times 0.4883$
Specifically, for $V_{\text {REF 1 }}=4.0960 \mathrm{~V}$
$\mathrm{V}_{\mathrm{REF} 1} \geqslant 2 \mathrm{~V}$

LOGIC AND DISPLAY CIRCUITRY

The AD7555 possesses $41 / 2$ digit accuracy with potential for $51 / 2$ digit resolution. Figure 6b shows the logic and display circuitry when operating the AD7555 with this high resolution.

MODIFYING THE FULL SCALE DISPLAY

Availability of the SCO and SCI terminals on the AD7555 provides flexibility for range-switching and modified dataformat applications.

For example, in the $51 / 2$ digit mode, inserting a $\div 5$ counter between SCO and SCI provides a full scale count at SCI of 39,999 counts ($199,999 \div 5$).

Figure 6b. Logic and Display Circuitry (for 5 1/2 Digit Resolution)

CALIBRATING THE AD7555

When the AD7555 is placed in the calibrate mode, any resulting error voltage in V_{S} (summing junction voltage), due to drift, etc., will be contained in the resulting display. To display the error SC1 and SC0 must be taken HIGH (only allowable when $\overline{\mathrm{DAV}}$ is HIGH). In the calibrate mode the display indicates + b. $0480 \pm_{\mathrm{n}}\left(+\right.$ b. $04800 \pm_{\mathrm{n}}$ in $51 / 2$ digit mode) where b indicates a blanked digit and n is a number representing the reference input errors. This gives the change required in $V_{R E F} 2\left(\pm \triangle V_{R E F}\right.$) for proper calibration (ie., $\mathrm{n} \approx 0$). The exact relationship between n and $\Delta V_{\text {REF2 }}$ can be shown to be equal to:

$$
\begin{aligned}
& \Delta \mathrm{V}_{\mathrm{REF} 2}=\frac{\left(\mathrm{V}_{\mathrm{REF} 1}\right) \mathrm{n}}{40,960+\mathrm{n}} \quad(41 / 2 \text { digit operation }) \\
& \Delta \mathrm{V}_{\mathrm{REF} 2}=\frac{\left(\mathrm{V}_{\mathrm{REF} 1}\right) 10 \mathrm{n}}{40,960+10 \mathrm{n}}(51 / 2 \text { digit operation })
\end{aligned}
$$

For this capability to operate, $\left|\mathrm{V}_{\mathrm{REF} 2}\right|$ must be $1 / 2 \mathrm{~V}_{\mathrm{REF} 1} \pm 2 \%$.

Figure 7 shows the hardware connections for manual calibration. With the switch in the calibrate mode, adjust $\mathrm{V}_{\mathrm{REF}}$ 2 (potentiometer R5 as shown in Figure 6a) until the display reads $+\mathfrak{b} .0480(+b 0.04800$ in $51 / 2$ digit mode). The AD7555 is now calibrated to the center of its error correcting range.
Return the switch to normal to resume normal conversion.

Figure 7. Hardware Requirements for Manual Calibration of $n=0$

Microprocessor Interfacing

AD7555 AS A POLLED INPUT DEVICE (MCS-85 SYSTEM)
Figure 8 shows an AD7555/8085 interface. The DMC clock input of the AD7555 is controlled by the microcomputer via an output port of the 8155 .
Typical timing for this interface mode is shown in Figure 9. $\overline{\text { DAV }}$ goes HIGH on the 1st DMC leading edge after SCC goes HIGH. It returns LOW on the rising edge of the 3rd DMC pulse. Digit zero is availabe on B1, B2, B4 and B8 at this time. The leading edge of the 4 th DMC pulse initiates a new conversion and places digit 1 on B1, B2, B4 and B8.
Table 3 shows a procedure for polling the AD7555.

AD7555 AS AN INTERRUPTING INPUT DEVICE (MCS-85 SYSTEM)
The AD7555 DMC oscillator provides DMC pulses until SCC (System Conversion Complete) goes high. This causes an interrupt on the RST 7.5 line whereby the three-state buffer is activated and the microprocessor takes control of DMC. Table 4 shows a procedure for using the AD7555 in this mode. Figure 10 shows the basic hookup.

Figure 10. AD7555 as an Interrupting Input Device (MCS-85 System)

Table 4. Procedure for Interfacing the AD7555 as an Interrupting Input Device

Table 3. Procedure for Interfacing the AD7555 as a Polled Input Device

OPTO-ISOLATED SERIAL INTERFACE

Figure 11 shows a serial interface to the MCS-85 system. This system can accommodate a remote interface where a commonmode voltage is expected to exist between system grounds. The 8155 counter/timer is only 14 bits long, i.e., it can only count down from 2^{14}; therefore SCO output from the AD7555 (20k counts full scale) has to be divided by 2 with consequent reduction in system resolution.
Port C of the 8155 is configured as a control port. Port B is an input port. This port configuration is necessary if sign information is required. Magnitude information is obtained by
interrogating the 8155 counter value. The rising edge of $\overline{\mathrm{DAV}}$ is used to cause an interrupt on the RST 7.5 line. The value $\left(\left.2^{14}-\frac{\mid S C O}{2} \right\rvert\,\right)$ in the 8155 counter should now be read. When $\overline{\mathrm{DAV}}$ returns low the 8155 counter is reset to FF_{H}. Sign information is checked at this time since $\overline{\mathrm{D}_{0}}$ BCD data is present and stable on the BCD bus (see Figure 9). The B2 line of the BCD bus is latched into port B by the signal on $\overline{\mathrm{B} \mathrm{STB}}$ i.e. the falling edge of $\overline{\mathrm{DAV}}$. This causes a rising edge signal on BF (buffer full) to call the 8085 CPU to read the B2 bit. B2 bit is HIGH for negative data, LOW for positive data.

Figure 11. Optically Isolated Serial AD7555/MCS-85 Interface (Full Scale $=10,000$ Counts)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-PIN CERAMIC DIP (SUFFIX D)

[^0]: Specifications subject to change without notice.

