ANALOG DEVICES

CMOS 4½/5½ Digit ADC Subsystem

PRELIMINARY TECHNICAL DATA

utput for Interface Flexibility

FEATURES

Resolution: ±4 1/2 Digits BCD or ±20k Count Binary Capability for 5 1/2 Digit Resolution or Custom Data Formats Data Format: Multiplexed BCD (for Display) and Serial Coun (for External Linearization, Data Reformatting, or Microprocessor Interface) Accuracy: ±1 Count in ±20k Counts Scale Factor Drift: 0.2ppm/°C Using Only Medium-**Precision Op Amps** Requires only a Single Positive Reference Overrange Display Auto Calibration Capability Interfaces to TTL or 5V CMOS HOLD Input and SCC (System Conversion Complete)

GENERAL DESCRIPTION

The AD7555 is a 4 1/2 digit, modelithic CMOS, quad slope integrating ADC subsystem designed for display or microprocessor interface applications. Use of the high resolution enable input expands the display format to 5 1/2 digits BCD. With SCO (Serial Count Out) connected to SCI (Serial Count In), the output data format is multiplexed BCD suitable for visual display purposes. As an added feature, SCO can also be used with rate multipliers for linearization, or with BCD or binary counters for data reformatting (up to 200k binary counts).

The quad slope conversion algorithm (Analog Devices patent No. 3872466) converts the external amplifier's input drift errors to a digital number and subsequently reduces the total system drift error to a second order effect. Using only inexpensive, medium-precision amplifiers a scale factor drift of 0.2ppm/°C is achieved.

PIN CONFIGURATION

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

nt N			
AIN 2 SW1 AGND 3 SW2 VREF1 3 SW3 V	AD7555 FUNCI	TIONAL DIAGRA	
DMC (3) DMC	AD7555	BCD DATA COUNTER (5 1/2 DIGIT MAX) 21 DATA LATCHES (5 1/2 DIGITS) 21 DIGIT DATA SELECTOR 4 BUFFER (7) (18 (19 20) B8 B4 B2 B1 BCD DATA	-(14) V _{SS} (-5V) -(2) DGND -(20) V _{CC} (5V)

ORDERING INFORMATION

Model	Package	Operating Temperature Range
AD7555BD	28 Pin Side Brazed Ceramic	-25°C to +85°C
AD7555KN	28 Pin Molded Plastic	0 to +70°C

 Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062

 Tel: 617/329-4700
 TWX: 710/394-6577

 West Coast
 Mid-West
 Texas

 714/842-1717
 312/894-3300
 214/231-5094

SPECIFICATIONS (V_{CC} = +5V, V_{SS} = -5V, V_{REF1} = +4.0960V, F_{CLK} = 614.4kHz, AGND = 0V)

	LIMIT AT	LIMIT AT TA		
PARAMETER	$T_A = +25^{\circ}C$	$= T_{min}, T_{max}$	UNITS	CONDITIONS/COMMENTS
ANALOG SWITCHES		and and a second state of the second state of		
R _{ON} (Switch 1-3)	800	1200	Ω max	-2V≤AIN≤+2V Refer to Functional Diagram
ΔR_{ON} (Switch 1) versus AIN	300	500	Ωtyp	$-2V \leq AIN \leq +2V$
Mismatch Between Any Two				
Switches (excluding SW0)	300	500	Ωtyp	$-2V \leq AIN \leq +2V$
I _{LKG} (Switch OFF)				
SW0 (pin 6)	1	70	nA max	IRJCT (pin 5) = +2.048V
				0V≤IROUT (pin 5)≤+10V
SW1 (pin 2)	1	70	nA typ	AIN = $+2V$ to $-2V$, BUFIN = $0V$ and $+4.096V$
SW2 (pin 3)	1	70	nA typ	AGND = 0V, BUFIN = -2V to +2V, +4.096V
SW3 (pin 1)	1	70	nA typ	$V_{REF1} = +4.096V$, BUFIN = -2V to +2V
I _{LKG} (BUFIN, pin 4)	3	200	nA typ	Any 1 of SW1, 2, 3 on
CONTROL INPUTS (pins 7, 8, 9, 15)				
V _{INH}	3.0	3.0	V min	
VINL	0.8	0.8	V max	
IINH OF IND	1	10	μA max	$V_{IN} = 0V$ or V_{CC}
CLOCK INPUTS (pir 12 and IN)			an mana ay	
VINIH (CLK)	25	3 5	Vmin	
	0.8	0.8	Vmax	
WILL (DMC)	$\left(\right)$	3.0	V min	
VINI (DMC)		0.8	Vmax	
INUL (CLK)		1/5	mamay	
Invi (CLK)	$\begin{bmatrix} -1 & 0 \end{bmatrix}$	<i>I</i> 1 5	mAmax	\sim
INH (DMC)		800	UA max	
Invi (DMC)	100	L ₁₅₀	A thay	
DIGITAL OUTPUTS			- T	
$\overline{D0} - \overline{D5}$ (pins 22-27)		\smile		
Vou	4 5	4 5	Vmin	
Vol	4.0	4.0	Vmax	Isource = 40µA
Vol	0.5	0.8	Vmax	Isink Jink (Jispiay priver Load)
B1, B2, B4, B8, DAV, SCC, SCO	0.5	0.0	v max	ISINK- I.OMA (ITE LEad)
(pins 20, 19, 18, 17, 10, 11, 16)				
Vou	4.0	4.0	Vmin	
Vor	0.5	0.8	Vmax	$I_{\text{SOURCE}} = 40 \mu A$
DVNAMIC DEDEODMANCE	0.5	0.0	v max	ISINK - 1.0IIIA
DI INAMIC PERFORMANCE DMC Dulce Width	F	c		
DMC Fulse width	5	5	μ s min	See Figure 3
DMC Frequency	100	100	kHz max	Typical f _{DMC} is 1.5kHz with
CLK Frequency	1 5	1 5	MIL	$C_{DMC} = 0.01 \mu F$
Propagation Delaye	1.5	1.5	MHz max	
DMC HIGH to DAV HIGH	5	7		Car Pinner 2
DMC HIGH to DAV HIGH	5	7	μs max	See Figure 3
DMC HIGH to PCD Date	2	7	µs max	
DMC HIGH to BCD Data on	c.	<i></i>		
DO, D4, B2, B1	5	5	μs max	
(DO DE) LOW	-	-		
(D0-D5) LOW	5	5	µs max	
POWER SUPPLY				
I _{CC}	5	5	mA max	During Conversion
ISS	5	5	mA max	During Conversion
V _{CC} Range	+5 to +17	+5 to +17	V	See Absolute Maximum Ratings
V _{SS} Range	-5 to -17	-5 to -17	V	

Specifications subject to change without notice.

System Electrical Characteristics

ABSOLUTE MAXIMUM RATINGS

V to DCND		+17V Pl
V _{CC} to DGND		-17V
V _{SS} to DGND		+22V
V _{CC} to v _{SS}	Voc	DCND Ce
	· · · · · · · · · · · · · · · · · · ·	, DGIND
Digital Inputs	2)	7 17
DMC (Pin 13), CLK (Pin 1	2)	VSS, VCC
All other Logic Inputs	DGN	D, +17V *Whic
Analog Inputs/Outputs		†Whic
AGND to DGND (Positive Lin	mitation) V _{CC} or V	VIROUT *
AGND to DGND (Negative L	imitation).V _{SS} or V _{IROU}	$T - 20V^{\dagger}$ NOT
AIN (Pin 2), V _{REF1} (Pin 1),	Vor
BUFIN (Pin 4)		V _{CC} , V _{SS} velta
IRJCT (Pin 6), IROUT	(Pin 5) +27V	, AGND Vorta
Operating Temperature Range	e	AIN
AD7555KN (Plastic)	0	to +70°C volta
AD7355BD (Ceramic)	25°C	to +85°C DGN
Storage Temperature	65°C to	o +150°C
Lead Temperature Soldering	105	+300°C
	(\cap)	\frown
CAUTION:		\sim
ESD (Electro - Static - Discha	irge) sensitive device.	The digital contr
protected; however, permane	ent damage may occur o	n unconnected de
energy electrostatic fields. Ut	nused devices must be st	ored in conductive
foam should be discharge	d to the destination	socket before d
SYSTEM ELECTRICAL CHA	RACTERISTICS (TA	0 to +4 C)
Characteristics refer to the sy	stem of Figures 6a and 6	h Vcc
= +5V Vcc $= -5V$ Vpcc $= 4$	-4 096V, error count n c	alibrated
to zero at $T_{A} = +25^{\circ}C$ as per t	procedure on page 9 unle	ess other-
wise noted. Switch leakages a	nd limitations in temper	ature
performance of auxiliary com	ponents (such as the inte	grating
capacitor) cause performance	degradations above +45	°C.
CHARACTERISTIC	LIMIT	CONDITIONS
Resolution	4 1/2 Digit BCD	±20,000 Coun
	5 1/2 Digit BCD	±200,000 Cou
		(See Note 1)
Relative Accuracy	+1 Count max	4 1/2 Digit BC
Relative Accuracy	±10 Count max	5 1/2 Digit BC
	=10 000000	(See Notes 1 a
	1.1.0.0	
Count Uncertainty Due	±1/2 Count max	4 1/2 Digit BC
to Noise (Flicker)	±2 Counts max	5 1/2 Digit BC
		(See Note 1)
Conversion Time	610ms max	4 1/2 Digit BC

Power Dissipation (package) stic (AD7555KN)

Plastic (AD/555KIN)										
To +50°C		,								.1200mW
Derate above +50°C by.		•								$12 \text{mW/}^{\circ}\text{C}$
Ceramic (AD7555BD)										
To +50°C			•	•	•	•	•	•	•	.1000mW
Derate above +50°C by.										$10 \text{mW/}^{\circ}\text{C}$

chever is the least positive. chever is the least negative.

'E:

not apply voltages to any AD7555 digital output, AIN or F1 before V_{CC} and V_{SS} are applied. Additionally, the ages at AIN, V_{REF1} or any digital output must never ed V_{CC} and V_{SS} (if an op amp output is used to drive it must be powered by the AD7555 V_{CC} and V_{SS} supply ages). Do not allow any digital input to swing below JD.

ESD SENSITIVE DEVICE

of inputs are zener ices subject to high foam or shunts. The evices 'are emoved.

CHARACTERISTIC	LIMIT	CONDITIONS/COMMENTS
Resolution	4 1/2 Digit BCD 5 1/2 Digit BCD	±20,000 Counts ±200,000 Counts (See Note 1)
Relative Accuracy	±1 Count max ±10 Count max	4 1/2 Digit BCD 5 1/2 Digit BCD (See Notes 1 and 2)
Count Uncertainty Due to Noise (Flicker)	±1/2 Count max ±2 Counts max	4 1/2 Digit BCD 5 1/2 Digit BCD (See Note 1)
Conversion Time	610ms max 1,760ms max	4 1/2 Digit BCD 5 1/2 Digit BCD (See Note 1)

NOTES:

¹ 4 1/2 digit mode; $f_{CLK} = 614.4 \text{kHz}$, HREN = LOW, $R_1 = 360 \text{k}\Omega$ $C_1 = 0.22 \mu \text{F}$ 5 1/2 digit mode; $f_{CLK} = 1.024MHz$, HREN = HIGH, R₁ = 750k Ω $C_1 = 0.22 \mu F$ ² Assumes voltage reference (V_{REF1}) TC of 0ppm/°C.

Applying the AD7555

AD7555 P	IN DESCRI	PTION	B8 - B1	(Pins 1	7 -	BCL)8 – B	CD1 output, Active HIGH
ANALOG	FUNCTION	JS		20)		(See tal	ble 1)
V _{REF1} AIN AGND	(Pin 1): (Pin 2): (Pin 3):	+4.096V Reference Input Analog Input Voltage (±2V Full Scale) Analog Signal Common Ground	D5	(Pin 22	2):	10 ⁻⁵ 5 1/ digit	digit 2 digit t mode	output, Active LOW in t mode, stays HIGH in 4 1/2 e
IROUT IRICT	(Pin 4): (Pin 5): (Pin 6):	From Integrator Amplifier Output To Integrator Amplifier Summing	D4 - D1	(Pins 2 27)	23-	10 ⁻⁴ A	– 10 ⁻ Active	⁻¹ digit outputs, LOW
LOGIC IN	PUTS	Junction	D0	(Pin 27	'): '	10 ⁰ / A	overfl ctive	low/polarity output, LOW
COMP HREN	(Pin 7): (Pin 8):	Input from the external comparator. High Resolution Enable, determines converter resolution HREN = LOGIC LOW, Full Scale =	SCC	(Pin 11):	Syst HIG retur at er	em co H whe rns LC nd of p	nversion complete, goes en conversion is complete, DW on comparator crossing ohase 0 integration period.
YOLD	(Rin 9);	±1.9999V (100μV resolution) HREN = LOGIC HIGH, Full Scale = ±1.99999V (10μV resolution) Hold Input HOLD = DOGIC HIGH, the ADC converts and updates the displays	SCO	(Pin 16	;):	Seria train mag exte = HI "n" page	al Cou n propo nitude rnally GH to for cal 9).	nt Out, a serial output pulse ortional in length to the e of AIN. SCO can be pulled HIGH while DAV o display the error count libration purposes (see
		continuously as per the timing diagcam of Figure 3. HOLD DED LOGIC LOW, the ADC is reset and conversion is tisabled. Data from the last complete conversion con-		(Pin 10):	Data that BCD high	Valid the da outpu on the	- When low, DAV indicates at being presented on the ut bus is valid. DAV goes e first positive edge of DMC
	1	tinues to be displayed. To insure most recent data is displayed, HOLD should not be taken LOW when DAV is HIGH. When HOLD returns HIGH, the next leading edge of DMC initiates a new conversion.				retur When is res MAS	rns low n it ref ret to I TER I	v two DMC pulses later. turns low, the digit counter 0. This is termed the RESET.
DMC	(Pin 13):	Display Multiplexer Clock, can be driven from an external logic source; or with the addition of an external capacitor, will self oscillate. With an external capacitor of 10,000pF, DMC		DATA	В8	B4 I	B2 B1	LED DISPLAY WHEN USING 7447 SEGMENT DECODER
		oscillates at approximately 1.5kHz at a 5% to 10% duty cycle, suitable for display purposes.		0	0	0	0 0	Ģ
CLK	(Pin 12):	Clock Input for maximum line rejec- tion in the 4 1/2 digit mode; 50Hz: f _{CLK} = 512kHz (= 4.096MHz \div 8)		2 3 4	0 0 0	0 0 1	$ 1 0 \\ 1 1 \\ 0 0 $	- C (1) -
		60 Hz: $f_{CLK} = 614.4$ kHz (= 4.915MHz $\div 8$) $50/60$ Hz: $f_{CLK} = 409.6$ kHz		5 6 7	0 0 0	1 1 1	0 1 1 0 1 1	5.617
		$(= 3.2768 \text{MHz} \div 8)$ For maximum line rejection in the 5 1/2 digit mode; 50/60Hz f = = 1.024 \text{MHz}	OVE	8 9 ERFLOW	1 1 1	0 0 1	0 0 0 1 0 0	89
SCI	(Pin 15):	$(= 4.096 \text{ MHz} \div 4)$ Serial Count In. Input to totalizing	DIC 0 ON	$\begin{bmatrix} +1 \\ -1 \\ + \end{bmatrix}$	0 0 1	0 0 1	0 0 1 0 0 0	+/ -/ +
		normally connected to SC0 for direct count totalization.		L -	0	1	1 1	-
SUPPLY II	NPUTS				Tab	le 1.	Outp	ut Coding
V _{CC} V _{SS} DGND	(Pin 28): (Pin 14): (Pin 21):	Positive Supply Input (+5V) Negative Supply Input (-5V) Digital Ground						

LOGIC OUTPUTS

Quart Slove Theory of Operation

Component limitations such as switch leakage, as well as operational amplifier offset voltage and bias current (and the temperature dependency of these errors), are major obstacles when designing high resolution integrating A/D converters.

The AD7555 however, utilizes a patented quad slope conversion technique (Analog Devices Patent No. 3872466) to reduce the effects of such errors to second order effects.

Figure 1 shows a simplified quad slope integrator circuit. The various inputs AGND (Analog Ground), VREF1, and AIN (Analog Input) are applied in sequence to the integrator via switches 1-3 (see Table 2), creating four slopes at the integrator output (phase 1-4 of Figure 2). If the equivalent summing junction voltage VS is precisely 0.5VREF1, the phase 1 and phase 2 integration times are equal, indicating there are no input errors. If $V_S \neq 0.5 V_{REF1}$ (due to amplifier offset bias current, etc.), an error count "n" is obtained. voltage

alog input integration cycle (phase 3) is subsequently lengthened or shortened by "n" counts, depending on

The final effect is to reduce the analog input error terms to second order effects. This can be proven by solving the differential equations obtained during the phase 1 through phase 4 integration periods. Barring third (and higher) order effects, the solutions are given in equations 1 and 2.

$$N_{(AIN \ge 0)} \stackrel{=}{=} \stackrel{K_{T}}{\underbrace{\left[\begin{array}{c} \frac{AIN}{V_{REF1}}\right]}} + \stackrel{K_{T}}{\underbrace{\left[\begin{array}{c} \frac{AIN}{V_{REF1}} - 1\right]} \left[-\alpha^{2} + \frac{AGND}{V_{REF1}}(1 + 2\alpha)\right]}_{IDEAL \ TERM}$$
ERROR 1ERM EQN1

$$N_{(AIN < 0)} = -K_{T} \left[\frac{AIN}{V_{REF1}} \right] - K_{T} \left[\frac{AIN}{V_{REF1}} - 1 \right] \left[-\alpha^{2} + \frac{AGND}{V_{REF1}} (1 + 2\alpha) \right]$$

IDEAL TERM ERROR TERM EQN2

WHERE:

N = Number of counts appearing at AD7555 Serial Count Out pin corresponding to the analog input voltage, AIN.

AIN = Analog Input Voltage to be digitized

- K_T = 40960 counts (4 1/2 Digit Mode) 409600 counts (5 1/2 Digit Mode)
- AGND = Voltage at AD7555 pin 3 (AGND) measured with respect to VREF1 and AIN signal common ground. (Ideally, AGND = 0V) a is an error term equal to $\frac{2V_S - V_{REF1}}{V_{REF1}}$

Ideally a = 0 when $V_S = 0.5V_{REF1}$.

IswoR1 = Equivalent integrator amplifier offset voltage due to SW0 leakage current.

If AGND = 0, then the error terms of EQN 1 and 2 contain only second order effects due to $a \neq 0$. Thus, the AD7555 is a powerful tool which allows high precision system performance to be obtained when using only moderate precision op amps.

Other advantages of the quad slope technique include bipolar operation using a single positive voltage reference, and the fact that since the comparator propagation delay is constant hysteresis effects are eliminated. (This is because the comparator always approaches the zero crossing from the same direction).

Phase	Switch Closed (Figure 1)	Equivalent Input Voltage	Integration Time
0	SW3	V _{REF1} - V _S	$t_{00} = R_1 C_1$
1	SW2	AGND – V_S	$t_{01} = K_1 t$
2	SW3	$V_{REF1} - V_{S}$	$t_{02} = (K_1 + n)t$
3	SW1	AIN - VS	$t_{03} = (2K_1 - n)t$
4	SW3	$V_{REF1} - V_S$	$t_{04} = (2K_1 + n \pm N)t$
5	SWO	RES	ET INTEGRATOR

Table 2. Integrator Equivalent Input Voltages and Integration Times

TIMING AND CONTROL

Figure 3 shows the AD7555 timing. SCC goes HIGH at the end of SCO indicating conversion is complete. DAV goes HIGH on the 1st leading edge of DMC after conversion is complete. New data is strobed into the data latches (see functional diagram) on the leading edge of the 2nd DMC. DAV returns low on the leading edge of the 3rd DMC.

BCD data is placed on B1, B2, B4, B8 on the positive edge of DMC while the digit counter is incremented on the negative edges of DMC.

A reset phase (phase 0) is initiated on the 4th DMC after conversion is complete. SCC returns low at the phase 0 comparator crossing indicating a conversion start.

If the DMC oscillator is set up to free run (C8 in Figure 6b causes DMC to run at about 1.5kHz), the AD7555 will continuously convert and update the displays.

Externally controlling the generation of DMC pulses provides ntrolling data outputting for computer interface a mea Pag es 10 and 11 illustrate how to use this feature app lications D7555 to a microprocessor. t int rface t A IS PLAY hat of the is multiplex d BCD utput d AD 55 he or g D agram of Figure 3. The ode imi outp foras Table mat Overflow causes digit 1 through 4 (digit igi h c git 5 in 5 1/2 digit mode) to output a BOD 12 00 0 ver low does not affect digit 0. Therefore, a positive flow

PRINTED CIRCUIT LAYOUT

played as $\frac{1}{1} \frac{1}{1} \frac{$

when using the 7447 seven-segment decoder.

Figure 4. Component Overlay for Figure 5a

5a and 5b show the recommended P.C. board layout for the AD7555. Figure 4 shows the component overlay for Figure 5a.

UPDATE DATA LATCHES TO NEW DATA (2nd DMC AFTER SCC)

PHASE 0 STARTS ON 4th DMC AFTER SCC

PHASE

MASTER

DATA NOT VALID

DI

NOT VALID

D1

ΔTΔ.

D2

D5

D5

ode

DO

PHASE 0 COMPARATOR

CROSSING (SCC RETURNS LOW)

PHASE 1

DO

DI

DAV 1st DMC AFTER SCC

NEGATIVE

POSITIVE

PHASE 4 COMPARATOR CROSSING

IROUT

SCO

SCO

DMC

DAV

DI

DZ

03

DIGIT STRORFS

PCB Layout is reproduced on a one to one scale. Note that a pad already exists on the PCB layout for an AD584LH voltage reference, suitable for 4 1/2 digit operation.

Figure 5b. Foil Side

ANALOG CIRCUIT SET-UP AND OPERATION

The following steps, in conjunction with the analog circuitry of Figure 6a explain the selection of the various component values required for proper operation.

1. Selection of Integrator Components R_1 and C_1 Improper selection of the integrator time constant (time constant = R_1C_1) may cause excessive noise due to the integrator output level being too low, or may cause non-

linear operation if the integrator output attempts to exceed the rated output voltage of the amplifier. The integrator time constant R_1C_1 must be:

$$\frac{(V_{REF1})(K_a)}{(f_{CLK})(7V)} \ge R_1 C_1 \ge \frac{(V_{REF1})(K_a)}{(f_{CLK})(V_{DD} - 5V)}$$

Where:

 V_{DD} is the integrator amplifier positive supply voltage

Figure 6a. Analog Circuit Diagram

APPLICATION HINTS

- 1. See Note under Absolute Maximum Ratings for proper power sequencing and input/output voltage ratings.
- 2. For linear operation the absolute magnitude of AIN cannot exceed 1/2 $\rm V_{REF1}.$ In no case must AIN be more negative than $\rm V_{SS}.$
- 3. Do not leave unused CMOS inputs floating.
- 4. Check that integrator components R1 and C1 are chosen as per paragraph 1 of the setup and operation section on this page and that initial calibration as per paragraph 3 has been

nected to the output of the integrating amplifier, not to its summing junction.

The recommended maximum value for R1 in both the 4 1/2 digit and 5 1/2 digit mode is 750k Ω . Higher values may_cause noise injection.

2. Determing Conversion Time

Maximum conversion time occurs when $A_{\mbox{\rm IN}}$ = –FS and is given by

4 1/2 DIGIT MODE

 $t_{CONVERT} = (325,760)(t_{CLK}) + R_1C_1$

- 5 1/2 DIGIT MODE
 - $t_{\text{CONVERT}} = (1,628,800)(t_{\text{CLK}}) + R_1C_1$

Where:

t_{CLK} = Period of CLK as measured at pin 12

accomplished. A resistor value no larger than 750k is reccommended to minimize noise pickup.

- 5. For optimum normal mode noise rejection, use the crystal frequencies shown on page 4.
- 6. In order for the calibrate mode (on the next page) to display the error count properly it can be shown that
 - $V_{REF2} \ge V_{REF1} \times 0.4883$ Specifically, for $V_{REF1} = 4.0960V$ $V_{REF1} \ge 2V$

LOGIC AND DISPLAY CIRCUITRY

The AD7555 possesses 4 1/2 digit accuracy with potential for 5 1/2 digit resolution. Figure 6b shows the logic and display circuitry when operating the AD7555 with this high resolution.

MODIFYING THE FULL SCALE DISPLAY

Availability of the SCO and SCI terminals on the AD7555 provides flexibility for range-switching and modified dataformat applications.

For example, in the 5 1/2 digit mode, inserting a \div 5 counter between SCO and SCI provides a full scale count at SCI of 39,999 counts (199,999 \div 5).

Figure 6b. Logic and Display Circuitry (for 5 1/2 Digit Resolution)

CALIBRATING THE AD7555

When the AD7555 is placed in the *calibrate* mode, any resulting error voltage in V_S (summing junction voltage), due to drift, etc., will be contained in the resulting display. To display the error SC1 and SC0 must be taken HIGH (only allowable when \overline{DAV} is HIGH). In the *calibrate* mode the display indicates + \emptyset .0480 \pm n (+ \emptyset .04800 \pm n in 5 1/2 digit mode) where \emptyset indicates a blanked digit and n is a number representing the reference input errors. This gives the change required in V_{REF2} ($\pm\Delta$ V_{REF2}) for proper calibration (ie., $n \approx 0$). The exact relationship between n and Δ V_{REF2} can be shown to be equal to:

$$\Delta V_{\text{REF2}} = \frac{(V_{\text{REF1}})n}{40,960 + n} \quad (4 \ 1/2 \ \text{digit operation})$$
$$\Delta V_{\text{REF2}} = \frac{(V_{\text{REF1}})10n}{40,960 + 10n} \quad (5 \ 1/2 \ \text{digit operation})$$

For this capability to operate, $|V_{REF2}|$ must be $1/2 V_{REF1} \pm 2\%$.

Figure 7 shows the hardware connections for manual calibration. With the switch in the *calibrate* mode, adjust V_{REF2} (potentiometer R5 as shown in Figure 6a) until the display reads + \emptyset .0480 (+ \emptyset 0.04800 in 5 1/2 digit mode). The AD7555 is now calibrated to the center of its error correcting range.

Return the switch to normal to resume normal conversion.

Figure 7. Hardware Requirements for Manual Calibration of n = 0

Microprocessor Interfacing

AD7555 AS A POLLED INPUT DEVICE (MCS-85 SYSTEM) Figure 8 shows an AD7555/8085 interface. The DMC clock input of the AD7555 is controlled by the microcomputer via an output port of the 8155.

Typical timing for this interface mode is shown in Figure 9. \overline{DAV} goes HIGH on the 1st DMC leading edge after SCC goes HIGH. It returns LOW on the rising edge of the 3rd DMC pulse. Digit zero is availabe on B1, B2, B4 and B8 at this time. The leading edge of the 4th DMC pulse initiates a new conversion and places digit 1 on B1, B2, B4 and B8.

Table 3 shows a procedure for polling the AD7555.

8085 AD. 7 (8)

AD0.7

PORT

AD7555 AS AN INTERRUPTING INPUT DEVICE (MCS-85 SYSTEM)

The AD7555 DMC oscillator provides DMC pulses until SCC (System Conversion Complete) goes high. This causes an interrupt on the RST 7.5 line whereby the three-state buffer is activated and the microprocessor takes control of DMC. Table 4 shows a procedure for using the AD7555 in this mode. Figure 10 shows the basic hookup.

Disable Three-State Buffer

Table 4. Procedure for Interfacing the AD7555 as an Inter-

Return to Main Program

rupting Input Device

Input Device (8085/AD7555)

Table 3. Procedure for Interfacing the AD7555 as a Polled Input Device

OPTO-ISOLATED SERIAL INTERFACE

Figure 11 shows a serial interface to the MCS-85 system. This system can accommodate a remote interface where a commonmode voltage is expected to exist between system grounds. The 8155 counter/timer is only 14 bits long, i.e., it can only count down from 2^{14} ; therefore SCO output from the AD7555 (20k counts full scale) has to be divided by 2 with consequent reduction in system resolution.

Port C of the 8155 is configured as a control port. Port B is an input port. This port configuration is necessary if sign information is required. Magnitude information is obtained by interrogating the 8155 counter value. The rising edge of \overline{DAV} is used to cause an interrupt on the RST 7.5 line. The value $\binom{2^{14} - \lfloor \frac{SCO}{2} \rfloor}{2}$ in the 8155 counter should now be read. When \overline{DAV} returns low the 8155 counter is reset to FF_H. Sign information is checked at this time since $\overline{D_0}$ BCD data is present and stable on the BCD bus (see Figure 9). The B2 line of the BCD bus is latched into port B by the signal on B STB i.e. the falling edge of \overline{DAV} . This causes a rising edge signal on BF (buffer full) to call the 8085 CPU to read the B2 bit. B2 bit is HIGH for negative data, LOW for positive data.

Figure 11. Optically Isolated Serial AD7555/MCS-85 Interface (Full Scale = 10,000 Counts)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-PIN CERAMIC DIP (SUFFIX D)

