FEATURES

8 - and 10-Bit Resolution
20μ s Conversion Time
Microprocessor Compatibility
Very Low Power Dissipation
Parallel and Serial Outputs
Ratiometric Operation
TTL/DTL/CMOS Logic Compatibility
CMOS Monolithic Construction

GENERAL DESCRI TO The AD7570 is a mono itho CMO mation A/D converter on 120 b only an external comparator, reference ar components. Ratiometric operation is inherensesed an e. tremely accurate multiplying DAC is used in the feedback I
The AD7570 parallel output data lines and Busy line utilize three-state logic to permit bussing with other A/D output and control lines or with other I/O interface circuitry. Two enables are available: one controls the two MSBs; the second controls the remaining 8 LSBs . This feature provides the control interface for most microprocessors which can accept only an 8 -bit byte.
The AD7570 also provides a serial data output line to be used in conjunction with the serial synchronization line. The clock can be driven externally or, with the addition of a resistor and a capacitor, can run internally as high as 0.6 MHz allowing a total conversion time (8 bits) of typically $20 \mu \mathrm{~s}$. An 8 -bit short cycle control pin stops the clock after exercising 8 bits, normally used for the " J " version (8 -bit resolution).
The AD7570 requires two power supplies, a +15 V main supply and $\mathrm{a}+5 \mathrm{~V}$ (for TTL/DTL logic) to +15 V (for CMOS logic) supply for digital circuitry. Both analog and digital grounds are available.
The AD7570 is a monolithic device using a proprietary CMOS process featuring a double layer metal interconnect, on-chip thin-film resistor network and silicon nitride passivation ensuring high reliability and excellent long term stability.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^0]

PARAMETER'	VERSIONS	$T_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	OVER SPECIFIED TEMP. RANGE

${ }^{1}$ " J " version parameters specified for $\overline{\mathrm{SC8}}=0$.
${ }^{2} \mathrm{~V}_{\text {INL }}$ and $\mathrm{V}_{\text {INH }}$ specifications applicable to all digital inputs except COMP. COMP terminal must be driven with CMOS levels (i.e., comparator output pullup must be tied to V_{CC}).
${ }^{3} \mathrm{I}_{\mathrm{NL}}, \mathrm{I}_{\mathrm{N}} \mathrm{H}$ specifications not applicable to CLK terminal. See "CLK input current" in specifications table.
${ }^{4}$ STRT NH . specifications not applicabe to
 $V_{\text {REF }}$ to GND
Analog Input to GND.
Digital Input Voltage Range
$V_{D D}$ to GND

Power Dissipation (package)
up to $+50^{\circ} \mathrm{C}$. 1000 mW
Derate above $+50^{\circ} \mathrm{C}$ by. $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION:

1. Do not apply voltages higher than V_{CC} or less than GND to any input/output terminal except $\mathrm{V}_{\text {REF }}$ or AIN.
2. The digital control inputs are zener protected; however permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
3. V_{CC} should never exceed V_{DD} by more than 0.4 V , especially during power ON or OFF sequencing.

TYPICAL PERFORMANCE CHARACTERISTICS

$\overbrace{\text { Figure 1. Do. IC vs. } f C L K}$ at Different Temperatures

ㅍ

10k
10k

PIN FUNCTION DESCRIPTION

INPUT CONTROLS

1. Convert Start (pin $25-$ STRT)

When the start input goes to Logical " 1 ", the MSB data latch is set to Logic " 1 " and all other data latches are set to Logic " 0 ". When the start input returns low, the conversion sequence begins. The start command must remain high for at least 500 nanoseconds. If a start command is reinitiated during conversion, the conversion sequence starts over.
2. High Byte Enable (pin 20 - HBEN)

This is a three-state enable for the bit 9 (MSB) and bit 8 . When the control is low, the output data lines for bits 9 and 8 are floating. When the control is high, digital data from the latches appears on the data lines.

8. $\mathrm{V}_{\mathrm{CC}}($ pin 22)
V_{CC} is the logic power supply. If +5 V is used, all control inputs/outputs (with the exception of comparator terminal) are DTL/TTL compatible. If +15 V is applied, control inputs/outputs are CMOS compatible.

OUTPUT FUNCTIONS

1. Busy (pin $28-\overline{\text { BUSY }}$)

The Busy line indicates whether conversion is complete or in process. Busy is a three-state output and floats until the Busy-Enable line is addressed with a Logic " 1 ". When addressed, Busy will indicate either a " 1 " (conversion complete) or a " 0 " (conversion in process).
2. Serial Output (pin $8-\mathrm{SRO}$)

Provides output data in serial format. Data is available only during conversion. When the A / D is not converting, the Serial Output line "floats." The Serial Sync (see next function) must be used, along with the Serial Output terminal to avoid misinterpreting data.
3. Serial Synchronization (pin $9-$ SYNC) Provides 10 positive edges, which are synchronized to the Serial Output pin. Serial Sync is floating if conversion is not takin phace.
With a Logic " 0 " input, thenverion top after 8 bits Note that a dimpurputs are TTL/DTL compatible reducing the conversion time by 2 clock periods. This when V_{CC} is 5 V , and CM compatity when V_{CC} is +15 V . control should be exercised for proper operamelete "the "bit c
version. When a Logic "1" is applied, a complete version. When a Logic " 1 " is appli
version takes place (" L " version).
6. Clock (pin 24 - CLK)

With an external RC connected, as shown in the figure below, clock activity begins upon receipt of a Convert-Start command to the A/D and ceases upon completion of conversion. An external clock (CMOS or TTL/DTL levels) can directly drive the clock terminals, if required. Figure 2 shows the internal CLK frequency versus R and C . If V_{CC} is $<4.75 \mathrm{~V}$, the internal CLK will not operate.

Generating Internal Clock Frequency

7. V_{DD} (pin 1)
V_{DD} is the positive supply for all analog circuitry plus some digital logic circuits that are not part of the TTL compatible input/output lines (back-gates to the P-channel devices). Nominal supply voltage is +15 V .

Table 1. Function Table

FUNCTIONAL ANALYSIS

BASIC DESCRIPTION

The AD7570 is a monolithic CMOS A/D converter which uses the successive approximations technique to provide up to 10 bits of digital data in a serial and parallel format. Most A/D applications require the addition of only a comparator and a voltage or current reference.
In the successive approximations technique, successive bits, starting with the most significant bit (DB9) are applied to the input of the D/A converter. The DAC output is then compared to the unknown analog input voltage (AIN) using a zero crossing detector (comparator). If the DAC output is greater than AIN, the data latch for the trial bit is reset to zero, and the next smaller data bit is tried. If the DAC output is less than AIN, the trial data bit stays in the " 1 " state, and the next smaller data bit is tried.

Each successive bit is tried, compared to AIN, and set or reset in tiss mantr until the least significant bit (DBO) decision is mad. An his ime, the AD7570 output is a valid digital representation f the a alog inpur and will remain in the data (la ches until) ang ther cenver) star (STRT)icapplied.
(STRT) goes HIGH, the MSB(DB9) is set to the Logic " 1 " state, while DB0 through DB8 are reset to the " 0 " state.
Two clock pulses plus 200ns after STRT returns LOW, the MSB decision is made, and DB8 is tried. Each succeeding trial and decision is made at ${ }^{\mathrm{t}} \mathrm{CLK}^{+}+200 \mathrm{~ns}$.
Serial NRZ data is available during conversion at the SRO terminal. SYNC provides 10 positive edges which occur in the middle of each serial output bit. SYNC out must be used in conjunction with SRO to avoid misinterpretation of data. Both SYNC and SRO "float" when conversion is not taking place.

8-BIT SHORT CYCLE NOTES

If the AD7570 is short cycled to 8 bits $(\overline{\mathrm{SC} 8}=0 \mathrm{~V})$, the following will occur:

1. The SYNC terminal will provide 8 , instead of 10 , positive output pulses.
2. DB1 goes "high" coincident with the LSB (DB2 is the LSB when short cycled to 8 bits) decision, and remains high until another STRT is initiated. DB0 remains in the " 0 " state.
 trials and decisions ioneach deta

NOTES:

1. INTERNAL CLOCK RUNS ONLY DURING CONVERSION CYCLE (EXTERNAL CLOCK SHOWN).
2. EXTERNALLY INITIATED.
3. SERIAL SYNC LAGS $\overline{\text { CLOCK }} B Y \approx 200 \mathrm{~ns}$.
4. DOTTED LINES INDICATE "FLOATING" STATE.
5. FOR ILLUSTRATIVE PURPOSES, SERIAL OUT SHOWN AS 1101001110.
6. CROSS HATCHING INDICATES "DON'T CARE" STATE.
7. SET AND RESET OF OUTPUT DATA BITS LAGS CLOCK POSITIVE EDGE BY $\approx 200 \mathrm{~ns}$.
8. $\operatorname{SHOWN} \operatorname{FOR} \overline{\mathrm{SC8}}=1$.

Figure 6. AD7570 Conversion Timing Sequence

DYNAMIC PERFORMANCE

The upper clock frequency limitation (hence the conversion speed limitation) of the AD7570 is due to the output settling characteristics of the current weighting DAC in conjunction with the propagation delay of the comparator, not to speed limitations in the digital logic.

DAC EQUIVALENT CIRCUIT

The D/A converter section of the AD7570 is a precision 10-bit multiplying DAC. The simplified DAC circuit, shown in Figure 7, consists of ten single-pole-double-throw current steering switches and an "inverted" R-2R current weighting network. (For a complete description of the DAC, refer to the AD7520 data sheet.)
The output resistance and capacitance at OUT1 (and OUT2)

are pde dependent, exhibiting resistive variations from 0.5

Figure 7. DAC Circuit

SETTLING TIME ANALYSIS

Due to the changing COUT1 and ROUT1, the time constant on OUT1 falls anywhere between 250 and 900 ns , depending on the instantaneous state of the AD7570 digital output code.

Worst case settling requirements occur when a trial bit causes the OUT1 terminal to charge towards a final value which is precisely $1 / 2$ LSB beyond zero crossing. When this occurs, the trial bit must settle and remain within $1 / 2$ LSB of final value, or an incorrect decision will be made by the comparator.
For 10-bit accuracy, the first MSB must settle to within 0.1% of final value; the second MSB to within 0.2%. The LSB settling requirement is only 50% of the LSB value. Figure 8 illustrates the settling time available during a given clock period. The pulse shown on the OUT1 terminal falling midway between t_{0} and t_{3} is a feedthrough from internal clock mechanisms and is due primarily to bonding wire and header capacitance. Two methods may be used to reduce the OUT1 settling time:

1. Load OUT1 with a 1 k resistor. This reduces the time constant by a factor of 10 . Further reduction of the $1 \mathrm{k} \Omega$ load reduces the amount of comparator overdrive, thus increasing the comparator propagation delay, resulting in a reduction of available settling time ($\mathrm{t} 1-\mathrm{t} 0$ on Figure 8).
2. Use a zero input impedance comparator. Figure 9 illustrates a comparator circuit which has an input impedance of

Figure 8. Expanded Timing Diagram

Figure 9. Current Comparator With Low Input Impedance

OPERATION GUIDELINES

UNIPOLAR BINARY OPERATION

Figure 10 shows the circuit connections required for unipolar analog inputs. If positive analog inputs are to be quantized, $\mathrm{V}_{\mathrm{REF}}$ must be negative, and the OUT1 (pin 4) terminal of the AD7570 must be connected to the " + " comparator input. For negative analog inputs, $\mathrm{V}_{\mathrm{REF}}$ must be positive, and the OUT 1 terminal connected to the "-" input of the comparator.
For clarity, the digital control functions have been omitted from the diagram. For proper use of the digital input/output control functions, refer to the pin function description.

The input voltage/output code relationship for unipolar operation is shown in Table 2. Due to the inherent multiplying capability of the internal D/A converter, the AD7570 can accurately quantize full scale ranges of 10 V to 1 V . It should be noted, however, that for smaller full scale ranges, the resolu-
tied speed limitations of the comparator impose a

Amplifier A1, conjunction wiftresistor R1 R2, a R R3, offsets the bipolar analog input by il scale, ar d red aces its gain by a factor of 2. The analog tonal applied d to th AIN a depending on the polarity of $\mathrm{V}_{\mathrm{REF}}$.

ADJUSTMENT PROCEDURES UNIPOLAR OPERATION

Gain Adjustment

1. Apply continuous start commands to the STRT input of the AD7570.
2. Apply full scale minus $1-1 / 2 \mathrm{LSB}$ to AIN.
3. Observe the SRO terminal as described under zero offset procedure above, and adjust the gain potentiometer (R4) until the LSB flickers between 0 and 1 , and all other data bits equal " 1 ". An alternate method is to adjust $\mathrm{V}_{\text {REF }}$ instead of using R4.

NOTE: IF POSITIVE $V_{\text {REF }}$ IS USED, CONNECT MINUS INPUT OF COMPARATOR TO OUT1 (PIN 4) OF THE AD7570.

Figure 11. Bipolar Operation

APPLICATION HINTS

1. Unused CMOS digital inputs should be tied to their appropriate logic level and not left floating. Open digital inputs may cause undesired digital activity in the presence of noise.
2. Analog and digital grounds should have separate returns.
3. Load the OUT1 terminal with a 1 k resistor to reduce the time constant when operating at clock frequencies $>50 \mathrm{kHz}$.
4. For 10-bit operation, the comparator offset should be adjusted to less than 1 mV . Each millivolt of comparator offset will cause approximately 0.015% of differential nonlinearity when a 10 V reference is used.
5. The comparator input and output should be isolated to prevent oscillations due to stray capacitance. (See layout on the next page).

Analog Input (AIN)	Digital Output Code
Notes 1, 2, 3	MSB LSB
+(FS - 1LSB)	1111111111
+(FS - 2LSB)	1111111110
+(1/2 FS)	1100000000
+(1LSB)	1000000001
0	1000000000
-(1LSB)	0111111111
-(1/2 FS)	0100000000
-(FS - 1LSB)	0000000001
-FS	0000000000

NOTES:

1. Analog inputs shown are nominal center values of code.
2. "FS" is full scale; i.e., ($\mathrm{V}_{\mathrm{REF}}$).
3. For 8 -bit operation, 1 LSB equals $\left(-\mathrm{V}_{\mathrm{REF}}\right)$ $\left(2^{-7}\right)$; for 10 -bit operation, 1 LSB equals $(-\sqrt{\text { RET }})\left(2^{-9}\right)$
4. If an external crocklis used the negative trantion STRT should not coincide with thailing e fige f the clock input.

OPERATING PRECAUTIONS

1. Do not allow V_{CC} to exceed V_{DD}. In cases where V_{CC} could exceed $V_{D D}$, the diode protection scheme in Figure 12 is recommended.
2. Do not apply voltages greater than V_{CC} or lower than ground to any digital output from sources which can supply $>20 \mathrm{~mA}$.
3. Do not apply voltages (from a source which can supply more than 5 mA) lower than ground to the OUT1 or OUT2 terminal (see Figure 12).

Figure 12. Diode Protection Scheme

APPLICATIONS

OPTIMIZED LAYOUT

BUSING MULTIPLE AD7570 OUTRUTS
Several AD7570's may be paralleled to a data bus to provide an A/D converter per analog channel, this providing increased system throughput rate. For example, Figure 14 shows such a system for 12 AD7570's in parallel.

The three-state output logic enables of each AD7570 is controlled by its own BUSY (status) outputs. Thus, data is

$\overline{\text { BUSY }} 2$

STRT ${ }_{12}{ }^{1}$

BUSY 12

NOTE: STRT SIGNAL $0.5 \mu \mathrm{~s}$ PULSE WIDTH, LEADING EDGE SYNCHRONIZED TO CLK TRAILING EDGE.

NOTE: BSEN ON EACH AD7570 IS "ENABLED" (LOGIC 1).

MICROPROCESSOR INTERFACE

Since most 8-bit microprocessors utilize a bidirectional data bus, each input peripheral (such as the AD7570) must be capable of isolating itself from the data bus when other I/O devices, memory, or the CPU takes control of the bus. The AD7570 output data and status (BUSY) lines all utilize threestate logic to provide this requirement.
Figure 16 illustrates a method of interfacing a TTY keyboard and printer to the AD7570, using an 8080 microprocessor as the interface controller.
The program (stored in Read Only Memory) waits for a keystroke on the TTY keyboard. When a keystroke is detected, an A/D conversion is started. When conversion is complete, the 8080 reads in the binary data from the AD7570, converts
it+e ASCII, and prints out the decimal number (preceded by a e return and line feed) on the teletype printer.
More specifi ally the min sequence of events would be as follo ws

2. BSEN is embled, D/aring BUSY (Donverston (ftatus) on the data bus. When the 808 detcy $=1$ conversion is complete, and BSEN is disatked_ its floating state.
3. LBEN is enabled, and the eight least significant data bits (DB0-DB7) are applied to the data bus for subsequent transfer to the 8080. When the data transfer is complete, LBEN is disabled, and DB0-DB7 return to their floating state.
4. HBEN is enabled, and the two most significant AD7570 data bits (DB8 and DB9) are applied to the data bus for subsequent transfer to the 8080. When the data transfer is complete, HBEN is disabled, and DB8 and DB9 return to their floating state.
5. The 8080 (in conjunction with the programmed Read Only Memory) performs a binary to decimal conversion.
6. $\overline{\text { SWE }}$ (Status Word Enable) on the UAR/T transmitter is enabled, applying XBMT (Transmitter Buffer Empty) to the data bus. When a Logic " 1 " is detected by the 8080 , $\overline{\text { SWE }}$ is disabled, and XBMT returns to a floating state.
7. TDS (Transmitter Data Strobe) strobes the converted decimal number into the UAR/T transmitter for subsequent serial clocking into the keyboard.

Figure 16. Microprocessor Controlled TTY/ADC Interface

TERMINOLOGY

Resolution

Resolution is the relative value of the LSB , or $2^{-\mathrm{n}}$ for binary devices, for n-bit converters. It may be expressed as 1 part in 2^{n}, as a percentage, in parts-per-million, or simply by " n bits."

Relative Accuracy

Relative accuracy error is the difference between the nominal and actual ratios to full scale of the analog value corresponding to a given digital input, independently of the full-scale calibretion. This error is a function of the linearity of the converter, and is usually specified at less than $\pm 1 / 2 \mathrm{LSB}$.

Gain Error

The "gain" of a converter is that analog scale factor setting that establishes the nominal conversion relationship, e.g., 10 V full scale. It is adjusted either by setting the feedback resistor of a DAC, the input resistor in a current-comparing ADC, or

Current which appears at the OUT1 terminal when all digital output (DB0 through DB9) are LOW, or on the OUT2 terminal when all digital outputs are HIGH. The effect of output leakage current will be on the offset of the A/D converter.

Differential Nonlinearity

In a converter, differential linearity error describes the variation in the analog value of transitions between adjacent pairs of digital numbers, over the full range of the digital input or output. If each transition is equal to its neighbors (ie., 1 LSB), the differential nonlinearity is zero. If a transition differs from one of its neighbors by more than 1LSB (e.g., if, at the transition $011 . .11$ to $100 \ldots 00$, the MSB is low by 1.1 LSB), a D/A converter can be non-monotonic, or an A/D converter using it may miss one or more codes. A specified maximum differential nonlinearity of 1 LSB ensures that monotonic behavior exists.

Output Leakage Current

28 Pin Ceramic Dip

[^0]: P.O. Box 280; Norwood, Massachusetts 02062 U.S. Tel:617/329-4700
 Telex: 924491
 Twx: 710/394-65 Cables: ANALOG NORWOODMA:

