FEATURES

16-bit ADC with 800 kSPS on all channels Input buffer with $5 \mathrm{M} \Omega$ analog input impedance Pin to pin compatible with the AD7606 $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical positive and negative full-scale error drift $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range Single 5 V analog supply and 1.71 V to 3.6 V V ${ }^{\text {drive }}$ supply ± 21 V input clamp protection with 8 kV ESD Extra modes available in software mode

Per channel selectable analog input ranges
Single-ended, bipolar: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 2.5 \mathrm{~V}$
Per channel system phase, offset, and gain calibration
Analog input open circuit detection feature
≤ 22 LSB (typical) open circuit code error ($\mathrm{R}_{\mathrm{PD}}=10 \mathrm{k} \Omega$)
Self diagnostics and monitoring features
CRC error checking on read/write data and registers

APPLICATIONS

Power line monitoring
Protective relays
Multiphase motor control
Instrumentation and control systems
Data acquisition systems

COMPANION PRODUCTS

Voltage References: ADR4525, LT6657, LTC6655
Digital Isolators: ADuM142E, ADuM6422A, ADuM5020, ADuM5028
AD7606x Family Software Model
Additional companion products on the AD7606B product page

FUNCTIONAL BLOCK DIAGRAM

[^0]${ }^{2}$ SDI IS A SINGLE FUNCTION OF THE DB11/SDI MULTIFUNCTION PIN.
${ }^{3} \overline{\mathrm{RD}}$ AND SCLK ARE SINGLE FUNCTIONS OF THE $\overline{\mathrm{RD}} /$ SCLK MULTIFUNCTION PIN.
Figure 1.

AD7606B

TABLE OF CONTENTS

Features 1
Applications 1
Companion Products 1
Functional Block Diagram 1
Revision History 3
General Description 4
Specifications 5
Timing Specifications 8
Absolute Maximum Ratings 12
Thermal Resistance 12
Electrostatic Discharge (ESD) Ratings 12
ESD Caution 12
Pin Configuration and Function Descriptions 13
Typical Performance Characteristics 16
Terminology 22
Theory of Operation 24
Analog Front End 24
SAR ADC 25
Reference 26
Operation Modes 26
Digital Filter 29
Padding Oversampling 30
External Oversampling Clock 30
System Calibration Features. 31
System Phase Calibration 31
System Gain Calibration 31
System Offset Calibration 32
Analog Input Open Circuit Detection 32
Digital Interface 34
Hardware Mode 34
Software Mode 34
Parallel Interface 34
Serial Interface 37
Diagnostics 41
Reset Detection. 41
Overvoltage and Undervoltage Events 41
Digital Error 41
Diagnostics Multiplexer 44
Typical Connection Diagram 46
Applications Information 48
Layout Guidelines 49
Register Summary 51
Register Details 53
Outline Dimensions 72
Ordering Guide 72

AD7606B

REVISION HISTORY

4/2021-Rev. 0 to Rev. A
Changed ADC Mode to ADC Read Mode Throughout
Changes to Features Section and Figure 1 1
Added Companion Products Section 1
Changes to Table 1 4
Changes to Table 2 5
Added Note 9, Table 2 7
Changes to $t_{\text {D_bsy }}$ Parameter, Table 3; and Figure 2 8
Change to $\mathrm{t}_{\text {__sck_do }}$ Parameter, Table 5 10
Changes to Table 6 11
Added Electrostatic Discharge (ESD) Ratings Section, ESD
Ratings for AD7606B Section, and Table 8; Renumbered
Sequentially11
Change to Figure 8 12
Replaced Figure 31 19
Changes to Figure 27 to Figure 29 and Figure 30 19
Changes to Figure 36 to Figure 38 20
Changes to Terminology Section 21
Changes to Figure 47 25
Changes to Reference Section 26
Added Simultaneous Sampling of Multiple AD7606B DevicesSection and Figure 55; Renumbered Sequentially. 30
Changes to System Gain Calibration Section and Figure 59 31
Changes to Analog Input Open Circuit Detection Section andFigure 6032
Changes to Automatic Mode Section and Table 20 33
Changes to Table 23 34
Changes to Reading During Conversion Section 35
Added Figure 64; Renumbered Sequentially 36
Changed Reading During Conversion Section to Reading
During Conversion-Serial Interface Section. 38
Changes to Reading During Conversion-Serial Interface Section 38
Changes to Memory Map CRC Section 41
Change to Interface CRC Checksum Section 42
Added Internal Clock Counters Section and Figure 84 44
Changes to Table 31, Figure 83, and Temperature SensorSection44
Changes to Internal LDOs Section 45
Changes to Applications Information Section 48
Added Figure 88 48
Changes to Table 71 67
Changes to Table 7268
Changes to Table 73 69
Changes to Table 76 71
6/2019—Revision 0: Initial Version

GENERAL DESCRIPTION

The AD7606B is a 16-bit, simultaneous sampling, analog-todigital data acquisition system (DAS) with eight channels. Each channel contains analog input clamp protection, a programmable gain amplifier (PGA), a low-pass filter, and a 16-bit successive approximation register (SAR), analog-to-digital converter (ADC). The AD7606B also contains a flexible digital filter, low drift, 2.5 V precision reference and reference buffer to drive the ADC and flexible parallel and serial interfaces.

The AD7606B operates from a single 5 V supply and accommodates $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 2.5 \mathrm{~V}$ true bipolar input ranges when sampling at throughput rates of 800 kSPS for all channels. The input clamp protection tolerates voltages up to $\pm 21 \mathrm{~V}$. The AD7606B has a $5 \mathrm{M} \Omega$ analog input impedance, resulting in less than 20 LSB bipolar zero code when the input signal is disconnected and pulled to ground through a $10 \mathrm{k} \Omega$ external resistor. The single supply operation, on-chip filtering, and high input impedance eliminates the need for external driver op amps, which require bipolar supplies. For applications with lower throughput rates, the AD7606B flexible digital filter can be used to improve noise performance.

In hardware mode, the AD7606B is fully compatible with the AD7606. In software mode, the following advanced features are available:

- Additional $\pm 2.5 \mathrm{~V}$ analog input range.
- Analog input range ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 2.5 \mathrm{~V}$), selectable per channel.
- Additional oversampling (OS) options, up to $\mathrm{OS} \times 256$.
- System gain, system offset, and system phase calibration per channel.
- Analog input open circuit detector.
- Diagnostic multiplexer.
- Monitoring functions (serial peripheral interface (SPI)) invalid read/write, cyclic redundancy check (CRC), overvoltage and undervoltage events, busy stuck monitor, and reset detection).

Note that throughout this data sheet, multifunction pins, such as the $\overline{\mathrm{RD}} /$ SCLK pin, are referred to either by the entire pin name or by a single function of the pin, for example, the SCLK pin, when only that function is relevant.

Table 1. Bipolar Input, Simultaneous Sampling, Pin to Pin Compatible Family of Devices

Input Type	Resolution (Bits)	$\mathrm{RIN}^{1}=1 \mathrm{M}$, 200 kSPS	$\mathrm{R}_{\text {IN }}=\mathbf{5} \mathbf{~ M \Omega , 8 0 0 ~ k S P S ~}$	$\mathrm{R}_{\text {IN }}=1 \mathrm{M} \Omega$, 1 MSPS	Number of Channels
Single-Ended	18	AD7608	AD7606B ${ }^{2}$	AD7606C-18 ${ }^{2}$	8
	16	AD7606		AD7606C-16 ${ }^{2}$	8
		AD7606-6			6
		AD7606-4			4
	14	AD7607			8
True Differential	18	AD7609		AD7606C-18 ${ }^{2}$	8
	16			AD7606C-16 ${ }^{2}$	8

${ }^{1}$ Rin is input impedance.
${ }^{2}$ This state-of-the-art device is recommended for newer designs as an alternative to the AD7606, AD7608, and AD7609.

AD7606B

SPECIFICATIONS

Voltage reference $\left(\mathrm{V}_{\mathrm{REF}}\right)=2.5 \mathrm{~V}$ external and internal, analog supply voltage $\left(\mathrm{AV}_{\mathrm{CC}}\right)=4.75 \mathrm{~V}$ to 5.25 V , logic supply voltage $\left(\mathrm{V}_{\mathrm{DRIVE}}\right)=$ 1.71 V to 3.6 V , sample frequency $\left(\mathrm{f}_{\text {sAMPLE }}\right)=800 \mathrm{kSPS}$, with no oversampling, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, single-ended input, and all input voltage ranges, unless otherwise noted.

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE	Input frequency ($f_{\mathrm{I}_{\mathrm{N}}}$) $=1 \mathrm{kHz}$ sine wave, unless otherwise noted				
Signal-to-Noise Ratio (SNR) ${ }^{1}$	No oversampling (OS), $\pm 10 \mathrm{~V}$ range	87.5	89.5		dB
	No OS, $\pm 5 \mathrm{~V}$ range	86.5	88.5		dB
	No OS, $\pm 2.5 \mathrm{~V}$ range	83.5	86		dB
	Oversampling ratio (OSR) $=16 \times, \pm 10 \mathrm{~V}$ range	92	93.5		dB
	OSR $=16 \mathrm{x}, \pm 5 \mathrm{~V}$ range	90.5	92		dB
	OSR $=16 \times, \pm 2.5 \mathrm{~V}$ range	87.5	89		dB
Total Harmonic Distortion (THD)	All input ranges				
	$\mathrm{f}_{\text {SAMPLE }}=200 \mathrm{kSPS}$		-105	-94	dB
	$\mathrm{f}_{\text {SAMPLE }}=800 \mathrm{kSPS}$		-100	-90	dB
Signal-to-Noise-and-Distortion	No OS, $\pm 10 \mathrm{~V}$ range	86.5	88.5		dB
	No OS, $\pm 5 \mathrm{~V}$ range	85.5	87.7		dB
	No OS, $\pm 2.5 \mathrm{~V}$ range	83	85.5		dB
	OSR $=16 \times, \pm 10 \mathrm{~V}$ range	89	92		dB
	OSR $=16 \mathrm{x}, \pm 5 \mathrm{~V}$ range	89	91.3		dB
	OSR $=16 \times \pm 2.5 \mathrm{~V}$ range	86.5	88.7		dB
Spurious-Free Dynamic Range (SFDR)			-104		dB
Channel to Channel Isolation	fin on unselected channels up to 160 kHz		-110		dB
Full-Scale Step Settling Time	0.01\% of full scale				
	$\pm 10 \mathrm{~V}$ range		70		$\mu \mathrm{s}$
	$\pm 5 \mathrm{~V}$ range		110		$\mu \mathrm{s}$
	$\pm 2.5 \mathrm{~V}$ range		130		
ANALOG INPUT FILTER					
Full Power Bandwidth	$-3 \mathrm{~dB}, \pm 10 \mathrm{~V}$ range		22.5		kHz
	$-3 \mathrm{~dB}, \pm 5 \mathrm{~V}$ range		13.5		kHz
	$-3 \mathrm{~dB}, \pm 2.5 \mathrm{~V}$ range		11.5		kHz
	$-0.1 \mathrm{~dB}, \pm 10 \mathrm{~V}$ range		3		kHz
	$-0.1 \mathrm{~dB}, \pm 5 \mathrm{~V}$ range		2		kHz
	$-0.1 \mathrm{~dB}, \pm 2.5 \mathrm{~V}$ range		2		kHz
Phase Delay	$\pm 10 \mathrm{~V}$ range		7.5		$\mu \mathrm{s}$
	$\pm 5 \mathrm{~V}$ range		12		$\mu \mathrm{s}$
	$\pm 2.5 \mathrm{~V}$ range		14		$\mu \mathrm{s}$
Phase Delay Matching	$\pm 10 \mathrm{~V}$ range			240	ns
	$\pm 5 \mathrm{~V}$ range			365	ns
	$\pm 2.5 \mathrm{~V}$ range			445	ns
DC ACCURACY					
Resolution	No missing codes	16			Bits
Differential Nonlinearity (DNL)			± 0.5	± 0.99	LSB ${ }^{2}$
Integral Nonlinearity (INL)	$\mathrm{f}_{\text {SAMPLE }}=200 \mathrm{kSPS}$		± 1	± 2	LSB ${ }^{2}$
	$\mathrm{f}_{\text {SAMPLE }}=800 \mathrm{kSPS}$		± 1	± 2.5	LSB ${ }^{2}$
Total Unadjusted Error (TUE)	External reference		± 3	± 47	LSB

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Positive and Negative Full-Scale (FS)			± 2	± 30	LSB
	$\mathrm{RFLITER}^{4}=20 \mathrm{k} \Omega$, system gain calibration disabled		126		LSB
	RFILER ${ }^{4}=0 \mathrm{k} \Omega$ to $65 \mathrm{k} \Omega$, system gain calibration enabled		4		LSB
Positive and Negative FS Error Drift			± 1	± 3	ppm $/{ }^{\circ} \mathrm{C}$
Positive and Negative FS Error Matching			3	20	LSB
Bipolar Zero Code Error			± 1	± 20	LSB ${ }^{2}$
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 1	± 14	LSB
Bipolar Zero Code Error Drift			± 0.5	± 2.5	ppm/ ${ }^{\circ} \mathrm{C}$
Bipolar Zero Code Error Matching			1.5	23	LSB ${ }^{2}$
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		1.4	14	LSB
Open Circuit Code Error	Pull-down resistor $\left(\mathrm{RPD}^{5}\right)^{5}=10 \mathrm{k} \Omega, \pm 10 \mathrm{~V}$ range		± 12	± 30	LSB
	$\text { RPD }=10 \mathrm{k} \Omega, \pm 10 \mathrm{~V} \text { range, } \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$		± 12	± 20	LSB
	$\mathrm{R}_{\text {PD }}=10 \mathrm{k} \Omega, \pm 5 \mathrm{~V}$ range		± 17	± 35	LSB
	$\mathrm{R}_{\mathrm{PD}}=10 \mathrm{k} \Omega, \pm 5 \mathrm{~V}$ range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 17	± 25	LSB
	RpD $=10 \mathrm{k} \Omega, \pm 2.5 \mathrm{~V}$ range		± 22	± 40	LSB
	$\mathrm{R}_{\text {PD }}=10 \mathrm{k} \Omega, \pm 2.5 \mathrm{~V}$ range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 22	± 30	LSB
SYSTEM CALIBRATION					
Positive Full-Scale (PFS) and Negative Full-Scale (NFS) Calibration Range	Series resistor in front of the $\mathrm{V} \times \mathrm{x}$ and $\mathrm{V} \times \mathrm{GND}$ inputs	0		64	$\mathrm{k} \Omega$
Offset Calibration Range		-128		+127	LSB
Phase Calibration Range		0		318.75	$\mu \mathrm{s}$
PFS and NFS Error	After gain calibration		± 5		LSB
Offset Error	After offset calibration		± 0.5		LSB
Phase Error	After phase calibration		± 1		$\mu \mathrm{s}$
ANALOG INPUT					
Input Voltage Ranges	Vx-VxGND				
	$\pm 10 \mathrm{~V}$ range	-10		+10	V
	$\pm 5 \mathrm{~V}$ range	-5		+5	V
	$\pm 2.5 \mathrm{~V}$ range	-2.5		+2.5	
Input Voltage Ranges	VxGND - AGND				
	$\pm 10 \mathrm{~V}$ range	-0.7		+1.9	V
	$\pm 5 \mathrm{~V}$ range	-0.1		+2.7	V
	$\pm 2.5 \mathrm{~V}$ range	-0.1		+3.1	V
Analog Input Current	See the Typical Performance Characteristics section	$\left(\mathrm{V}_{\text {IN }}-2\right) / \mathrm{R}_{\text {IN }}$			$\mu \mathrm{A}$
Input Capacitance ($\left.\mathrm{C}_{\mathbf{I}}\right)^{6}$		5			pF
Input Impedance (Ris) ${ }^{7}$		5			$\mathrm{M} \Omega$
Input Impedance Drift			± 1	± 25	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
REFERENCE INPUT/OUTPUT					
Reference Input Voltage	REF SELECT $=0$, external reference	2.495	2.5	2.505	V
DC Leakage Current				± 0.12	
Input Capacitance ${ }^{6}$			7.5		
Reference Output Voltage	REF SELSECT $=1$, internal reference, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.4975	2.5	2.5025	
Reference Temperature Coefficient			± 3	± 10	ppm $/{ }^{\circ} \mathrm{C}$
Reference Voltage to the ADC	REFCAPA (Pin 44) and REFCAPB (Pin 45)	4.39		4.41	V
LOGIC INPUTS					
Input High Voltage ($\mathrm{V}_{\text {INH }}$)		$0.7 \times V_{\text {DRVE }}$			V
Input Low Voltage ($\mathrm{V}_{\text {INL }}$)				$0.3 \times \mathrm{V}_{\text {DRVE }}$	V
Input Current (lı)				± 1	$\mu \mathrm{A}$
Input Capacitance ${ }^{6}$			5		pF

AD7606B

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
LOGIC OUTPUTS Output High Voltage (V $\mathrm{V}_{\text {он }}$) Output Low Voltage (Vol) Floating State Leakage Current Output Capacitance ${ }^{6}$ Output Coding	Current source $($ Isource $)=100 \mu \mathrm{~A}$ Current sink (Isink) $=100 \mu \mathrm{~A}$ Twos complement	$V_{\text {drive }}-0.2$	5	$\begin{aligned} & 0.2 \\ & \pm 1 \end{aligned}$	V V $\mu \mathrm{A}$ pF N / A^{8}
CONVERSION RATE Conversion Time Acquisition Time $\left(\mathrm{t}_{\mathrm{AcO}}\right)^{9}$ Throughput Rate	See Table 3 Per channel		$\begin{aligned} & 0.75 \\ & 0.5 \end{aligned}$	800	$\mu \mathrm{s}$ $\mu \mathrm{s}$ kSPS
POWER REQUIREMENTS $A V_{c c}$ VDRIVE REGCAP $\mathrm{AV}_{\mathrm{CC}}$ Current (IAVcc) Normal Mode (Static) Normal Mode (Operational) Standby Shutdown Mode $V_{\text {DRIVE }}$ Current (IDRIVE) Normal Mode (Static) Normal Mode (Operational) Standby Shutdown Mode Power Dissipation Normal Mode (Static) Normal Mode (Operational) Standby Shutdown Mode	$\begin{aligned} & \mathrm{f}_{\text {SAMPLE }}=800 \mathrm{kSPS} \\ & \mathrm{f}_{\text {SAMPLE }}=10 \mathrm{kSPS} \\ & \\ & \mathrm{f}_{\text {SAMPLE }}=800 \mathrm{kSPS} \\ & \mathrm{f}_{\text {SAMPLE }}=10 \mathrm{kSPS} \\ & \\ & \mathrm{f}_{\text {SAMPLE }}=800 \mathrm{kSPS} \\ & \mathrm{f}_{\text {SAMPLE }}=10 \mathrm{kSPS} \end{aligned}$	$\begin{aligned} & 4.75 \\ & 1.71 \\ & 1.875 \end{aligned}$	$\begin{aligned} & 5 \\ & \\ & \\ & 7.5 \\ & 43 \\ & 8 \\ & 3.5 \\ & 0.5 \\ & \\ & 1.8 \\ & 1.1 \\ & 30 \\ & 1.6 \\ & 0.8 \\ & \\ & 40 \\ & 230 \\ & 42 \\ & 18 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.25 \\ & 3.6 \\ & 1.93 \\ & 9.5 \\ & 47.5 \\ & 10 \\ & 4.5 \\ & 5 \\ & \\ & 3.5 \\ & 1.5 \\ & 75 \\ & 3 \\ & 2 \\ & \\ & 50 \\ & 255 \\ & 50 \\ & 24 \\ & 25 \end{aligned}$	V V V mA mA mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ mW mW mW mW $\mu \mathrm{W}$

${ }^{1}$ No OS means no oversampling is applied.
${ }^{2} \mathrm{LSB}$ means least significant bit. With a $\pm 2.5 \mathrm{~V}$ input range, $1 \mathrm{LSB}=76.293 \mu \mathrm{~V}$. With a $\pm 5 \mathrm{~V}$ input range, $1 \mathrm{LSB}=152.58 \mu \mathrm{~V}$. With $\mathrm{a} \pm 10 \mathrm{~V}$ input range, $1 \mathrm{LSB}=305.175 \mu \mathrm{~V}$.
${ }^{3}$ These specifications include the full temperature range variation and contribution from the reference buffer.
${ }^{4}$ R FILTeR is a resistor placed in a series to the analog input front end. See Figure 57.
${ }^{5}$ See Figure 60.
${ }^{6}$ Not production tested. Sample tested during initial release to ensure compliance.
${ }^{7}$ Input impedance variation is factory trimmed and accounted for in the System Gain Calibration section.
${ }^{8} \mathrm{~N} / \mathrm{A}$ means not applicable.
${ }^{9}$ The ADC input is settled by the internal PGA. Therefore, the acquisition time is the time between the end of the conversion and the start of the next conversion with no impact on external components

TIMING SPECIFICATIONS

Universal Timing Specifications

$A V_{C C}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DRIVE}}=1.71 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\text {Ref }}=2.5 \mathrm{~V}$ external reference and internal reference, and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Interface timing is tested using a load capacitance of 20 pF , dependent on $V_{\text {DRIVE }}$ and load capacitance for serial interface.
Table 3.

Parameter	Min	Typ	Max	Unit	Description
$\mathrm{t}_{\text {cycle }}$	1.25			$\mu \mathrm{s}$	Minimum time between consecutive CONVST rising edges (excluding oversampling modes) ${ }^{1}$
$t_{\text {LP_CNV }}$	10			ns	CONVST low pulse width
thp_cnv	10			ns	CONVST high pulse width
to_CNV_BSY					CONVST high to BUSY high delay time
			20	ns	$V_{\text {DRIVE }}>2.7 \mathrm{~V}$
			25	ns	$V_{\text {drive }}<2.7 \mathrm{~V}$
ts_BSY	0			ns	Minimum time from BUSY falling edge to $\overline{\mathrm{RD}}$ falling edge setup time (in parallel interface) or to MSB being available on Doutx line (in serial interface)
$t_{\text {_ } _ \text {BS }}$	25			ns	Minimum time between last $\overline{\mathrm{RD}}$ falling edge (in parallel interface) or last LSB being clocked out (serial interface) and the following BUSY falling edge; read during conversion
tconv	0.65		0.85	$\mu \mathrm{s}$	Conversion time; no oversampling
	2.2		2.3	$\mu \mathrm{s}$	Oversampling by 2
	4.65		4.8	$\mu \mathrm{s}$	Oversampling by 4
	9.6		9.9	$\mu \mathrm{s}$	Oversampling by 8
	19.4		20	$\mu \mathrm{s}$	Oversampling by 16
	39.2		40.2	$\mu \mathrm{s}$	Oversampling by 32
	78.7		80.8	μs	Oversampling by 64
	157.6		161.9	$\mu \mathrm{s}$	Oversampling by 128
	315.6		324	$\mu \mathrm{s}$	Oversampling by 256
$t_{\text {RESET }}$					
Partial Reset	55		2000	ns	Partial RESET high pulse width
Full Reset	3000			ns	Full RESET high pulse width
toevice_setup				$\mu \mathrm{s}$	Time between RESET falling edge and first CONVST rising edge
Partial Reset	50			ns	
Full Reset	253			$\mu \mathrm{s}$	
twake_up					Wake-up time after standby/shutdown mode
Standby	1			$\mu \mathrm{s}$	
Shutdown	10			ms	
tpower-up	10			ms	Time between stable $\mathrm{AV}_{\text {cc }} / V_{\text {dRIVE }}$ and assertion of RESET

[^1]

Rev. A | Page 8 of 72

Parallel Mode Timing Specifications

Table 4.

Parameter	Min	Typ	Max	Unit	Description
$\mathrm{ts}_{\text {-CS_RD }}$	0			ns	$\overline{\mathrm{CS}}$ falling edge to $\overline{\mathrm{RD}}$ falling edge setup time
$\mathrm{t}_{\text {_-RD_Cs }}$	0			ns	$\overline{\mathrm{RD}}$ rising edge to $\overline{\mathrm{CS}}$ rising edge hold time
thp_rd	10			ns	$\overline{\mathrm{RD}}$ high pulse width
tLP_RD	10			ns	$\overline{\mathrm{RD}}$ low pulse width
$\mathrm{thp}_{-\overline{\mathrm{Cs}}}$	10			ns	$\overline{\mathrm{CS}}$ high pulse width
$\mathrm{t}_{\text {-CS }}$-DB			35	ns	Delay from $\overline{C S}$ until DBx three-state disabled
$\mathrm{th}_{-\overline{\mathrm{Cs}} \text {-DB }}$	0			ns	$\overline{\mathrm{CS}}$ to DBx hold time
tD_RD_DB					Data access time after falling edge of $\overline{\mathrm{RD}}$
			27	ns	$V_{\text {dRIVE }}>2.7 \mathrm{~V}$
			37	ns	$\mathrm{V}_{\text {drive }}<2.7 \mathrm{~V}$
$\mathrm{t}_{\text {_-RD_D }}$	12			ns	Data hold time after falling edge of $\overline{\mathrm{RD}}$
tohz_-Cs-DB			40	ns	$\overline{\mathrm{CS}}$ rising edge to DBx high impedance
tcrc_RD					$\overline{\mathrm{RD}}$ falling edge to next $\overline{\mathrm{RD}}$ falling edge
	30			ns	$\mathrm{V}_{\text {drive }}>2.7 \mathrm{~V}$
	40			ns	$V_{\text {DRIVE }}<2.7 \mathrm{~V}$
$\mathrm{t}_{\text {-CS }}$ - $\mathrm{DD}^{\text {d }}$			26	ns	Delay from $\overline{C S}$ falling edge until FRSTDATA three-state disabled
to_RD_FDH			30	ns	Delay from $\overline{\mathrm{RD}}$ falling edge until FRSTDATA high
to_RD_FDL			30	ns	Delay from $\overline{\mathrm{RD}}$ falling edge until FRSTDATA low
tbhz_fD			28	ns	Delay from $\overline{\mathrm{CS}}$ rising edge until FRSTDATA three-state enabled
$\mathrm{ts}_{\text {_Cs_wr }}$	0			ns	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ setup time
thp_wr	213			ns	$\overline{\mathrm{WR}}$ high pulse width
tLP_WR					WR low pulse width
	88			ns	$V_{\text {drive }}>2.7 \mathrm{~V}$
	213			ns	$\mathrm{V}_{\text {DRIVE }}<2.7 \mathrm{~V}$
th_wr_cs	0			ns	$\overline{\text { WR }}$ hold time
ts_DB_WR	5			ns	Configuration data to $\overline{W R}$ setup time
th_wr_db	5			ns	Configuration data to $\overline{W R}$ hold time
tcrc_wr	230			ns	Configuration data settle time, $\overline{\mathrm{WR}}$ rising edge to next $\overline{\mathrm{WR}}$ rising edge

Figure 4. Parallel Mode Read Timing Diagram, Linked $\overline{C S}$ and $\overline{R D}$

Serial Mode Timing Specifications

Table 5.

Parameter	Min	Typ Max	Unit	Description
$\mathrm{f}_{\text {ScLk }}$				SCLK frequency; $\mathrm{f}_{\text {SCLK }}=1 / \mathrm{t}_{\text {scLk }}$
		60	MHz	$V_{\text {drive }}>2.7 \mathrm{~V}$
		40	MHz	$V_{\text {drive }}<2.7 \mathrm{~V}$
$\mathrm{t}_{\text {ScIk }}$	1/fsclk		$\mu \mathrm{s}$	Minimum SCLK period
$\mathrm{ts}_{\text {_ }}^{\text {cs }}$ - Sck	2		ns	$\overline{C S}$ to SCLK falling edge setup time
th_sck_cs	2		ns	SCLK to $\overline{C S}$ rising edge hold time
tLp_Sck	$0.4 \times \mathrm{tsclk}$		ns	SCLK low pulse width
$t_{\text {Hp_Sck }}$	$0.4 \times \mathrm{tscık}$		ns	SCLK high pulse width
$\mathrm{t}_{\text {-_Cs-Do }}$				Delay from $\overline{\mathrm{CS}}$ until Doutx three-state disabled
		9	ns	$V_{\text {drive }}>2.7 \mathrm{~V}$
		18	ns	$\mathrm{V}_{\text {DRIIE }}<2.7 \mathrm{~V}$
to_sck_do				Data out access time after SCLK rising edge
		15	ns	$V_{\text {drive }}>2.7 \mathrm{~V}$
		25	ns	$V_{\text {drive }}<2.7 \mathrm{~V}$
th_SCK_DO	5		ns	Data out hold time after SCLK rising edge
ts_sdi_Sck	8		ns	Data in setup time before SCLK falling edge
$\mathrm{t}_{\text {__SK_SDI }}$	0		ns	Data in hold time after SCLK falling edge
$t_{\text {DHz_Cs_D }}$				$\overline{\mathrm{CS}}$ rising edge to Doutx high impedance
		7	ns	$V_{\text {drive }}>2.7 \mathrm{~V}$
		22	ns	$V_{\text {DRIIE }}<2.7 \mathrm{~V}$
$t_{\text {wR }}$	25		ns	Time between writing and reading the same register or between two writes; if $\mathrm{f}_{\text {scli }}>50 \mathrm{MHz}$
$\mathrm{t}_{\text {-_Cs-FD }}$		26	ns	Delay from $\overline{\mathrm{CS}}$ until Doutx three-state disabled/delay from $\overline{\mathrm{CS}}$ until MSB valid
tD_SCK_FDL		18	ns	$16^{\text {th }}$ SCLK falling edge to FRSTDATA low
$\mathrm{t}_{\text {DHZ_FD }}$		28	ns	$\overline{\mathrm{CS}}$ rising edge until FRSTDATA three-state enabled

Figure 7. Serial Interface Timing Diagram, Register Map Read/Write Operations

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
AV $\mathrm{cc}^{\text {to }}$ AGND	-0.3 V to +6.5 V
$V_{\text {drive }}$ to AGND	-0.3 V to $\mathrm{AV}_{\text {cc }}+0.3 \mathrm{~V}$
Analog Input Voltage to AGND ${ }^{1}$	$\pm 21 \mathrm{~V}$
Digital Input Voltage to AGND	-0.3 V to $\mathrm{V}_{\text {drive }}+0.3 \mathrm{~V}$
Digital Output Voltage to AGND	-0.3 V to $\mathrm{V}_{\text {drive }}+0.3 \mathrm{~V}$
REFIN/REFOUT to AGND	-0.3 V to $\mathrm{AV}_{\text {cc }}+0.3 \mathrm{~V}$
Input Current to Any Pin Except Supplies ${ }^{1}$	$\pm 10 \mathrm{~mA}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\mathrm{Pb} / \mathrm{Sn}$ Temperature, Soldering Reflow (10 sec to 30 sec)	240 (+0) ${ }^{\circ} \mathrm{C}$
Pb-Free Temperature, Soldering Reflow	260 (+0) ${ }^{\circ} \mathrm{C}$

${ }^{1}$ Transient currents of up to 100 mA do not cause silicon controlled rectifier (SCR) latch-up.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required.
θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance.

Table 7. Thermal Resistance

Package Type	$\theta_{\mathrm{JA}}{ }^{1}$	$\theta s \mathrm{c}$	Unit
ST-64-2	40	7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
${ }^{1}$ Simulated data based on JEDEC $2 s 2 p$ thermal test PCB in a JEDEC natural convention environment.			
ELECTROSTATIC DISCHARGE (ESD) RATINGS			

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.
ESD Ratings for AD7606B
Table 8. AD7606B, 64-lead LQFP

ESD Model	Withstand Threshold (V)	Class
HBM		
\quadAll Pins Except Analog \quad Inputs Analog Input Pins Only	3500	3 A

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 9. Pin Function Descriptions

Pin No.	Type ${ }^{1}$	Mnemonic	Description
1,37, 38, 48	P	$\mathrm{AV}_{\text {cc }}$	Analog Supply Voltage, 4.75 V to 5.25 V . This supply voltage is applied to the internal front-end amplifiers and to the ADC core. Decouple these supply pins to AGND.
$\begin{gathered} 2,26,35,40 \\ 41,47 \end{gathered}$	P	AGND	Analog Ground. These pins are the ground reference points for all analog circuitry on the AD7606B. All analog input signals and external reference signals must be referred to these pins. All six of the AGND pins must connect to the AGND plane of a system.
3 to 5	DI	OSO to OS2	Oversampling Mode Pins. These inputs select the oversampling ratio or enable software mode (see Table 13 for oversampling pin decoding). See the Digital Filter section for more details about the oversampling mode of operation.
6	DI	$\overline{\text { PAR/SER SEL }}$	Parallel/Serial Interface Selection Input. If this pin is tied to a logic low, the parallel interface is selected. If this pin is tied to a logic high, the serial interface is selected. See the Digital Interface section for more information on each interface available.
7	DI	$\overline{\text { STBY }}$	Standby Mode Input. In hardware mode, this pin, in combination with the RANGE pin, places the AD7606B in one of two power-down modes: standby mode or shutdown mode. In software mode, this pin is ignored. Therefore, it is recommended to connect this pin to logic high. See the PowerDown Modes section for more information on both hardware mode and software mode.
8	DI	RANGE	Analog Input Range Selection Input. In hardware mode, this pin determines the input range of the analog input channels (see Table 10). If the $\overline{\text { STBY }}$ pin is at logic low, this pin determines the powerdown mode (see Table 15). In software mode, the RANGE pin is ignored. However, this pin must be tied high or low.
9	DI	CONVST	Conversion Start Input. When the CONVST pin transitions from low to high, the analog input is sampled on all eight SAR ADCs. In software mode, this pin can be configured as external oversampling clock. Providing a low jitter external clock improves the SNR performance for large oversampling ratios. See the External Oversampling Clock section for further details.
10	DI	$\overline{\mathrm{WR}}$	Digital Input. In hardware mode, this pin has no function. Therefore, it can be tied high, tied low, or shorted to CONVST. In software mode, this pin is an active low write pin for writing registers using the parallel interface. See the Parallel Interface section for more information.

Pin No.	Type ${ }^{1}$	Mnemonic	Description
11	DI	RESET	Reset Input, Active High. Full and partial reset options are available on the AD7606B. The type of reset is determined by the length of the reset pulse. Ensure that the device receives a full reset pulse after power-up. See the Reset Functionality section for further details.
12	DI	$\overline{\mathrm{RD}} / \mathrm{SCLK}$	Parallel Data Read Control Input when the Parallel Interface is Selected ($\overline{\mathrm{RD}})$.
			Serial Clock Input when the Serial Interface is Selected (SCLK). See the Digital Interface section for more details.
13	DI	$\overline{C S}$	Chip Select. This pin is the active low chip select input for ADC data read or register data read and write, in both serial and parallel interface. See the Digital Interface section for more details.
14	DO	BUSY	Busy Output. This pin transitions to a logic high along with the CONVST rising edge. The BUSY output remains high until the conversion process for all channels is complete.
15	DO	FRSTDATA	First Data Output. The FRSTDATA output signal indicates when the first channel, V1, is being read back on the parallel interface (see Figure 3) or the serial interface (see Figure 6). See the Digital Interface section for more details.
16 to 22	DO/DI	DB0 to DB6	Parallel Output/Input Data Bits. When using parallel interface, these pins act as three-state parallel digital input and output pins (see the Parallel Interface section). When using serial interface, tie these pins to AGND. See Table 22 and Table 23 for more details on each data interface and operation mode.
23	P	$V_{\text {drive }}$	Logic Power Supply Input. The voltage (1.71 V to 3.6 V) supplied at this pin determines the operating voltage of the interface. This pin is nominally at the same supply as the supply of the host interface, that is, data signal processing (DSP) and field-programmable gate array (FPGA).
24	DO/DI	DB7/DoutA	Parallel Output/Input Data Bit 7 (DB7). When using the parallel interface, this pin acts as a threestate parallel digital input/output pin. Serial Interface Data Output Pin ($\mathrm{Dout}_{\mathrm{A}}$). When using the serial interface, this pin functions as DoutA. See Table 22 and Table 23 for more details on each data interface and operation mode.
25	DO/DI	DB8/DoutB	Parallel Output/Input Data Bit 8 (DB8). When using the parallel interface, this pin acts as a threestate parallel digital input and output pin. Serial Interface Data Output Pin (DoutB). When using the serial interface, this pin functions as DoutB. See Table 22 and Table 23 for more details on each data interface and operation mode.
27	DO/DI	DB9/Dout ${ }^{\text {C }}$	Parallel Output/Input Data Bit 9 (DB9). When using the parallel interface, this pin acts as a threestate parallel digital input and output pin. Serial Interface Data Output Pin (DouTC). When using the serial interface, this pin functions as DoutC if in software mode and using four data output lines option. See Table 22 and Table 23 for more details on each data interface and operation mode.
28	DO/DI	DB10/DoutD	Parallel Output/Input Data Bit 10 (DB10). When using the parallel interface, this pin acts as a threestate parallel digital input/output pin. Serial Interface Data Output Pin (DoutD). When using the serial interface, this pin functions as DouTD if in software mode and using the four data output lines option. See Table 22 and Table 23 for more details on each data interface and operation mode.
29	DO/DI	DB11/SDI	Parallel Output/Input Data Bit 11 (DB11). When using the parallel interface, this pin acts as a threestate parallel digital input and output pin. Serial Data Input (SDI). When using the serial interface in software mode, this pin functions as a serial data input. See Table 22 and Table 23 for more details on each data interface and operation mode.
30 to 33	DO/DI	$\begin{aligned} & \text { DB12 to } \\ & \text { DB15 } \end{aligned}$	Parallel Output/Input Data Bits, DB12 to DB15. When using the parallel interface, these pins act as three-state parallel digital input and output pins (see the Parallel Interface section). When using the serial interface, tie these pins to AGND.
34	DI	REF SELECT	Internal/External Reference Selection Logic Input. If this pin is set to logic high, the internal reference is selected and enabled. If this pin is set to logic low, the internal reference is disabled and an external reference voltage must be applied to the REFIN/REFOUT pin.
36,39	P	REGCAP	Decoupling Capacitor Pins for Voltage Output from 1.9 V Internal Regulator, Analog Low Dropout (ALDO) and Digital Low Dropout (DLDO). These output pins must be decoupled separately to AGND using a $1 \mu \mathrm{~F}$ capacitor.

Pin No.	Type ${ }^{1}$	Mnemonic	Description
42	REF	REFIN/ REFOUT	Reference Input (REFIN)/Reference Output (REFOUT). The internal 2.5 V reference is available on the REFOUT pin for external use while the REF SELECT pin is set to logic high. Alternatively, by setting the REF SELECT pin to logic low, the internal reference is disabled and an external reference of 2.5 V must be applied to this input (REFIN). A 100 nF capacitor must be applied from the REFIN pin to ground, close to the REFGND pins, for both internal and external reference options. See the Reference section for more details.
43,46	REF	REFGND	Reference Ground Pins. These pins must be connected to AGND.
44,45	REF	REFCAPA, REFCAPB	Reference Buffer Output Force/Sense Pins. These pins must be connected together and decoupled to AGND using a low effective series resistance (ESR), $10 \mu \mathrm{~F}$ ceramic capacitor. The voltage on these pins is typically 4.4 V .
49	AI	V1	Channel 1 Positive Analog Input Pin.
50	AI GND	V1GND	Channel 1 Negative Analog Input Pin.
51	AI	V2	Channel 2 Positive Analog Input Pin.
52	AI GND	V2GND	Channel 2 Negative Analog Input Pin.
53	AI	V3	Channel 3 Positive Analog Input Pin.
54	AI GND	V3GND	Channel 3 Negative Analog Input Pin.
55	AI	V4	Channel 4 Positive Analog Input Pin.
56	AI GND	V4GND	Channel 4 Negative Analog Input Pin.
57	AI	V5	Channel 5 Positive Analog Input Pin.
58	AI GND	V5GND	Channel 5 Negative Analog Input Pin.
59	AI	V6	Channel 6 Positive Analog Input Pin.
60	AI GND	V6GND	Channel 6 Negative Analog Input Pin.
61	AI	V7	Channel 7 Positive Analog Input Pin.
62	AI GND	V7GND	Channel 7 Negative Analog Input Pin.
63	AI	V8	Channel 8 Positive Analog Input Pin.
64	AI GND	V8GND	Channel 8 Negative Analog Input Pin.

[^2]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9. Fast Fourier Transform (FFT), ± 10 V Range

Figure 10. FFT, ± 2.5 V Range

Figure 11. Typical INL, ± 10 V Range

Figure 12. FFT, ± 5 V Range

Figure 13. FFT Oversampling by $16, \pm 10$ V Range

Figure 14. Typical DNL

Figure 15. SNR vs. Input Frequency for Different OSR Values, ± 10 V Range, Internal OS Clock

Figure 16. SNR vs. Input Frequency for Different OSR Values, ± 5 V Range,
Internal OS Clock

Figure 17. SNR vs. Input Frequency for Different OSR Values, ± 2.5 V Range, Internal OS Clock

Figure 18. SNR vs. Input Frequency for Different OSR Values, ± 10 V Range, External OS Clock

Figure 19. SNR vs. Input Frequency for Different OSR Values, ± 5 V Range, External OS Clock

Figure 20. SNR vs. Input Frequency for Different OSR Values, ± 2.5 V Range, External OS Clock

Figure 21. SNR vs. Temperature

Figure 22. Reference Drift

Figure 23. Reference Drift Histogram

Figure 24. THD vs. Input Frequency for Various Source Impedances (Rsource), ± 10 V Range

Figure 25. THD vs. Input Frequency for Various Source Impedances, ± 5 V Range

Figure 26. THD vs. Input Frequency for Various Source Impedances, ± 2.5 V Range

Figure 27. PFS/NFS Error vs. Temperature, ± 10 V Range

Figure 28. PFS/NFS Error vs. Temperature, ± 5 V Range

Figure 29. PFS/NFS Error vs. Temperature, ± 2.5 V Range

Figure 30. PFS/NFS Drift Histogram, External Reference

Figure 31. Channel to Channel Isolation vs. Noise Frequency

Figure 32. AC PSRR

Figure 33. Bipolar Zero Code Error vs. Temperature, ± 10 V Range

Figure 34. Bipolar Zero Code Error vs. Temperature, ± 5 V Range

Figure 35. Bipolar Zero Code Error vs. Temperature, ± 2.5 V Range

Figure 36. Histogram of Codes, ± 10 V Range

Figure 37. Histogram of Codes, ± 5 V Range

Figure 38. Histogram of Codes, ± 2.5 V Range

Figure 39. Analog Input Current vs. Input Voltage

Figure 40. AV ${ }_{c c}$ Supply Current vs. Throughput Rate

Figure 41. AVcc Supply Current vs. Throughput Rate

TERMINOLOGY

Integral Nonlinearity (INL)
INL is the maximum deviation from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale at $1 / 2$ LSB below the first code transition and full scale at $1 / 2$ LSB above the last code transition.

Differential Nonlinearity (DNL)

DNL is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Bipolar Zero Code Error

Bipolar zero code error is the deviation of the midscale transition (all 1 s to all 0 s) from the ideal, which is $0 \mathrm{~V}-1 / 2 \mathrm{LSB}$.

Bipolar Zero Code Error Match

Bipolar zero code error match is the absolute difference in bipolar zero code error between any two input channels.

Open Circuit Code Error

Open circuit code error is the ADC output code when there is an open circuit on the analog input, and a pull-down resistor (R_{PD}) connected between the analog input pair of pins. See Figure 60 for more details.

Positive Full-Scale (PFS) Error

PFS error is the deviation of the actual last code transition from the ideal last code transition ($10 \mathrm{~V}-11 / 2 \mathrm{LSB}$ (9.99954), 5 V $11 / 2 \operatorname{LSB}$ (4.99977), and $2.5 \mathrm{~V}-11 / 2 \operatorname{LSB}(2.49988)$) after the bipolar zero code error is adjusted out. The positive full-scale error includes the contribution from the internal reference and reference buffer.

Positive Full-Scale Error Matching

PFS error matching is the absolute difference in positive fullscale error between any two input channels.

Negative Full-Scale (NFS) Error

NFS error is the deviation of the first code transition from the ideal first code transition ($-10 \mathrm{~V}+1 / 2 \mathrm{LSB}(-9.99984$), $-5 \mathrm{~V}+1 / 2$ LSB (-4.99992), and $-2.5 \mathrm{~V}+1 / 2 \operatorname{LSB}(-2.49996)$) after the bipolar zero code error is adjusted out. The negative full-scale error includes the contribution from the internal reference and reference buffer.

Negative Full-Scale Error Matching

NFS error matching is the absolute difference in negative fullscale error between any two input channels.

Total Unadjusted Error (TUE)

TUE is the maximum deviation of the output code from the ideal. TUE includes INL errors, bipolar zero code and positive and negative full-scale errors, and reference errors.

Signal-to-Noise-and-Distortion Ratio (SINAD)
SINAD ratio is the measured ratio of signal-to-noise-anddistortion at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the sum of all nonfundamental signals up to half the sampling frequency ($\mathrm{f}_{\mathrm{s}} / 2$, excluding dc).

The ratio depends on the number of quantization levels in the digitization process: the more levels, the smaller the quantization noise.
The theoretical SINAD for an ideal N-bit converter with a sine wave input is given by

$$
\operatorname{SINAD}=(6.02 N+1.76)(\mathrm{dB})
$$

Thus, for a 16-bit converter, the SINAD is 98 dB .
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the harmonics to the fundamental. For the AD7606B, THD is defined as

$$
\begin{aligned}
& T H D(\mathrm{~dB})= \\
& 20 \log \frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}+V_{6}^{2}+V_{7}^{2}+V_{8}^{2}+V_{9}^{2}}}{V_{1}}
\end{aligned}
$$

where:
V_{1} is the rms amplitude of the fundamental.
V_{2} to V_{9} are the rms amplitudes of the second through ninth harmonics.

Spurious-Free Dynamic Range (SFDR)

SFDR is the ratio of the rms signal amplitude of the input signal to the rms value of the peak spurious spectral component.

Power Supply Rejection Ratio (PSRR)

Variations in power supply affect the full-scale transition but not the linearity of the converter. The power supply rejection (PSR) is the maximum change in full-scale transition point due to a change in power supply voltage from the nominal value. The PSRR is defined as the ratio of the 100 mV p-p sinewave applied to the $A V_{C C}$ supplies of the $A D C$ frequency, f_{s}, to the power of the ADC output at that frequency, fs .

$$
\operatorname{PSRR}(\mathrm{dB})=20 \log \left(0.1 / P f_{s}\right)
$$

where:
$P f_{s}$ is equal to the power at frequency, f_{s}, coupled on the $\mathrm{AV}_{\mathrm{CC}}$ supply.

Channel to Channel Isolation

Channel to channel isolation is a measure of the level of crosstalk between all input channels. It is measured by applying a full-scale sine wave signal, up to 160 kHz , to all unselected input channels and then determining the degree to which the signal attenuates in the selected channel with a 1 kHz sine wave signal applied (see Figure 31).

AD7606B

Phase Delay

Phase delay is a measure of the absolute time delay between when an input is sampled by the converter and when the result associated with that sample is available to be read back from the ADC, including delay induced by the analog front end of the device.

Phase Delay Drift

Phase delay drift is the change in phase delay per unit temperature across the entire operating temperature of the device.
Phase Delay Matching
Phase delay matching is the maximum phase delay seen between any simultaneously sampled pair.

THEORY OF OPERATION

ANALOG FRONT END

The AD7606B is a 16-bit, simultaneous sampling, analog-todigital DAS with eight channels. Each channel contains analog input clamp protection, a PGA, a low-pass filter, and a 16-bit SAR ADC.

Analog Input Ranges

The AD7606B can handle true bipolar, single-ended input voltages. In hardware mode, the logic level on the RANGE pin determines either $\pm 10 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ as the analog input range of all analog input channels, as shown in Table 10.
A logic change on the RANGE pin has an immediate effect on the analog input range. However, there is typically a settling time of approximately 80μ s in addition to the normal acquisition time requirement. Changing the RANGE pin during a conversion is not recommended for fast throughput rate applications.
In software mode, it is possible to configure an individual analog input range per channel using Address 0×03 through Address 0×06. The logic level on the RANGE pin is ignored in software mode.

Table 10. Analog Input Range Selection

Range (V)	Hardware Mode ${ }^{\mathbf{1}}$	${\text { Software } \text { Mode }^{\mathbf{2}}}^{\text {R }}$
± 10	RANGE pin high	Address 0x03 through Address 0x06
± 5	RANGE pin low	Address 0x03 through Address 0x06
± 2.5	Not applicable	Address 0x03 through Address 0x06

${ }^{1}$ The same analog input range, $\pm 10 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$, applies to all eight channels.
${ }^{2}$ The analog input range ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, or $\pm 2.5 \mathrm{~V}$) is selected on a per channel basis using the memory map.

Analog Input Impedance

The analog input impedance (R_{IN}) of the AD7606B is typically $5 \mathrm{M} \Omega$. $\mathrm{R}_{\text {IN }}$ is a fixed input impedance that does not vary with the AD7606B sampling frequency. This high analog input impedance eliminates the need for a driver amplifier in front of the AD7606B, allowing direct connection to the source or sensor. Therefore, bipolar supplies can be removed from the signal chain.

Analog Input Clamp Protection

Figure 42 shows the analog input circuitry of the AD7606B. Each analog input of the AD7606B contains clamp protection circuitry. Despite single, 5 V supply operation, this analog input clamp protection allows an input overvoltage of up to $\pm 21 \mathrm{~V}$.

Figure 42. Analog Input Circuitry for Each Channel

Figure 43 shows the input clamp current vs. the source voltage characteristic of the clamp circuit. For input voltages of up to $\pm 21 \mathrm{~V}$, no current flows in the clamp circuit. For input voltages that are above $\pm 21 \mathrm{~V}$, the AD7606B clamp circuitry turns on.

Figure 43. Input Protection Clamp Profile
It is recommended to place a series resistor on the analog input channels to limit the current to $\pm 10 \mathrm{~mA}$ for input voltages greater than $\pm 21 \mathrm{~V}$. In an application where there is a series resistance (R) on an analog input channel, Vx , it is recommended to match the resistance (R) with the resistance on VxGND to eliminate any offset introduced to the system, as shown in Figure 44. However, in software mode, a per channel system offset calibration removes the offset of the full system (see the System Offset Calibration section).

During normal operation, it is not recommended to leave the AD7606B in a condition where the analog input is greater than the input range for extended periods of time because this condition can degrade the bipolar zero code error performance. In shutdown or standby mode, there is no such concern.

Figure 44. Input Resistance Matching on the Analog Input of the AD7606B

PGA

A PGA is provided at each input channel. The gain is configured depending on the analog input range selected (see Table 10) to scale the single-ended analog input signal to the ADC fully differential input range.

Input impedance on each input of the PGA is accurately trimmed to maintain the overall gain error. This trimmed value is then used when the gain calibration is enabled to compensate for the gain error introduced by an external series resistor. See the System Gain Calibration section for more information on the PGA feature.

Analog Input Antialiasing Filter

An analog antialiasing filter is provided on the AD7606B. Figure 45 and Figure 46 show the frequency response and phase response, respectively, of the analog antialiasing filter. In the $\pm 10 \mathrm{~V}$ range, the -3 dB frequency is typically 22.5 kHz .

Figure 45. Analog Antialiasing Filter Frequency Response

Figure 46. Analog Antialiasing Filter Phase Response

SAR ADC

The AD7606B allows the ADC to accurately acquire an input signal of full-scale amplitude to 16 -bit resolution. All eight SAR ADCs sample the respective inputs simultaneously on the rising edge of the CONVST signal.
The BUSY signal indicates when conversions are in progress. Therefore, when the rising edge of the CONVST signal is applied, the BUSY pin goes logic high and transitions low at the end of the entire conversion process. The end of the conversion process across all eight channels is indicated by the falling edge of the BUSY signal. When the BUSY signal edge falls, the acquisition time for the next set of conversions begins. The rising edge of the CONVST signal has no effect while the BUSY signal is high.

New data can be read from the output register via the parallel or serial interface after the BUSY output goes low. Alternatively, data from the previous conversion can be read while the BUSY pin is high, as explained in the Reading During Conversion section.
The AD7606B contains an on-chip oscillator that performs the conversions. The conversion time for all ADC channels is tconv (see Table 3). In software mode, there is an option to apply an external clock through the CONVST pin. Providing a low jitter external clock improves SNR performance for large oversampling ratios. See the Digital Filter section and Figure 15 to Figure 20 for further information.
Connect all unused analog input channels to AGND. The results for any unused channels are still included in the data read because all channels are always converted.

ADC Transfer Function

The output coding of the AD7606B is twos complement. The designed code transitions occur midway between successive integer LSB values, that is, $1 / 2$ LSB and 3/2 LSB. The LSB size is FSR/65,536 for the AD7606B. The ideal transfer characteristics for the AD7606B are shown in Figure 47. The LSB size is dependent on the analog input range selected, as shown in Table 11.

Figure 47. Ideal Transfer Characteristics
Table 11. Input Voltage Ranges

Range (V)	PFS (V)	Midscale (V)	NFS (V)	LSB $(\boldsymbol{\mu V})$
± 10	10	0	-10	305
± 5	5	0	-5	152
± 2.5	2.5	0	-2.5	76

REFERENCE

The AD7606B contains an on-chip, 2.5 V, band gap reference. The REFIN/REFOUT pin allows the following:

- Access to the internal 2.5 V reference, if the REF SELECT pin is tied to logic high.
- Application of an external reference of 2.5 V , like the ADR4525 or LT6657, if the REF SELECT pin is tied to logic low.

Table 12. Reference Configuration

REF SELECT Pin	Reference Selected
Logic High	Internal reference enabled
Logic Low	Internal reference disabled; an external 2.5 V reference voltage must be applied to the REFIN/REFOUT pin

The AD7606B contains a reference buffer configured to amplify the reference voltage up to approximately 4.4 V , as shown in Figure 48 . The 4.4 V buffered reference is the reference used by the SAR ADC, as shown in Figure 48. After a reset, the AD7606B operates in the reference mode selected by the REF SELECT pin. The REFCAPA and REFCAPB pins must be shorted together externally, and a ceramic capacitor of $10 \mu \mathrm{~F}$ must be applied to the REFGND pin to ensure that the reference buffer is in closedloop operation. A $10 \mu \mathrm{~F}$ ceramic capacitor is required on the REFIN/REFOUT pin.
When the AD7606B is configured in external reference mode, the REFIN/REFOUT pin is a high input impedance pin.

Using Multiple AD7606B Devices

For applications using multiple AD7606B devices, the following configurations are recommended, depending on the application requirements.

External Reference Mode

One external reference can drive the REFIN/REFOUT pins of all AD7606B devices (see Figure 49). In this configuration, decouple each REFIN/REFOUT pin of the AD7606B with at least a 100 nF decoupling capacitor.

Figure 49. Single External Reference Driving Multiple AD7606B REFIN/REFOUT Pins

Internal Reference Mode

One AD7606B device, configured to operate in internal reference mode, can drive the remaining AD7606B devices, which are configured to operate in external reference mode (see Figure 50). Decouple the REFIN/REFOUT pin of the AD7606B, configured in internal reference mode, using a $10 \mu \mathrm{~F}$ ceramic decoupling capacitor. The other AD7606B devices, configured in external reference mode, must use at least a 100 nF decoupling capacitor on their REFIN/REFOUT pins.

Figure 50. Internal Reference Driving Multiple AD7606B REFIN/REFOUT Pins

OPERATION MODES

The AD7606B can be operated in hardware or software mode by controlling the OSx pins (Pin 3, Pin 4, and Pin 5), described in Table 13.
In hardware mode, the AD7606B is configured depending on the logic level on the RANGE, OSx, or STBY pins.

In software mode, that is, when all three OSx pins are connected to logic high level, the AD7606B is configured by the corresponding registers accessed via the serial or parallel interface. Additional features are available, as described in Table 14.
The reference and the data interface is selected using the REF SELECT and $\overline{\mathrm{PAR}} /$ SER SEL pins, in both hardware and software modes.

Table 13. Oversampling Pin Decoding

OSx Pins	AD7606B
000	No OS
001	2
010	4
011	8
100	16
101	32
110	64
111	Enters software mode

Table 14. Functionality Matrix

Parameter	Hardware Mode	Software Mode
Analog Input Range ${ }^{1}$	$\pm 10 \mathrm{~V}$ or $\pm 5 \mathrm{~V}^{2}$	$\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, or $\pm 2.5 \mathrm{~V}^{3}$
System Gain, Phase, and Offset Calibration	Not accessible	Available 3
OSR	From no OS to OSR $=64$	From no OS to OSR $=256^{\text {Analog Input Open Circuit Detection }}$
Serial Data Output Lines	Not accessible	Available 3
Diagnostics	2	Selectable: 1, 2, or 4
Power-Down Modes	Not accessible	Available

${ }^{1}$ See Table 10 for the analog input range selection.
${ }^{2}$ Same input range configured in all input channels.
${ }^{3}$ On a per channel basis.

Reset Functionality

The AD7606B has two reset modes: full or partial. The reset mode selected is dependent on the length of the reset high pulse. A partial reset requires the RESET pin to be held high between 55 ns and $2 \mu \mathrm{~s}$. After 50 ns from the release of the RESET pin ($\mathrm{t}_{\text {DEvice_setur, }}$, partial reset), the device is fully functional and a conversion can be initiated. A full reset requires the RESET pin to be held high for a minimum of $3 \mu \mathrm{~s}$. After $253 \mu \mathrm{~s}$ ($t_{\text {Device_setur, }}$ full reset) from the release of the RESET pin, the device is completely reconfigured and a conversion can be initiated.
A partial reset reinitializes the following modules:

- Digital filter
- SPI and parallel, resetting to ADC read mode
- SAR ADCs
- CRC logic

After the partial reset, the RESET_DETECT bit of the status register asserts (Address 0x01, Bit 7).The current conversion result is discarded after the completion of a partial reset. The partial reset does not affect the register values programmed in software mode or the latches that store the user configuration in both hardware and software modes.
A full reset returns the device to the default power-on state, the RESET_DETECT bit of the status register asserts (Address 0x01, Bit 7), and the current conversion result is discarded. The following features, in addition to those listed previously, are configured when the AD7606B is released from full reset:

- Hardware mode or software mode
- Interface type (serial or parallel)

Power-Down Modes

In hardware mode, two power-down modes are available on the AD7606B: standby mode and shutdown mode. The $\overline{\text { STBY }}$ pin controls whether the AD7606B is in normal mode or in one of the two power-down modes, as shown in Table 15. If the $\overline{\text { STBY }}$ pin is low, the power-down mode is selected by the state of the RANGE pin.

Table 15. Power-Down Mode Selection, Hardware Mode

Power Mode	$\overline{\text { STBY Pin }}$	RANGE Pin
Normal Mode	1	X^{1}
Standby	0	1
Shutdown	0	0

' X means don't care.
In software mode, the power-down mode is selected through the OPERATION_MODE bits on the CONFIG register (Address 0 x 02 , Bits[1:0]) within the memory map. There is an extra power-down mode available in software mode called autostandby mode.

Table 16. Power-Down Mode Selection, Software Mode, Through CONFIG Register (Address 0x02)

Operation Mode	Address 0x02, Bit 1	Address 0x02, Bit 0
Normal	0	0
Standby	0	1
Autostandby	1	0
Shutdown	1	1

When the AD7606B is placed in shutdown mode, all circuitry is powered down and the current consumption reduces to $5 \mu \mathrm{~A}$, maximum. The power-up time is approximately 10 ms . When the AD7606B is powered up from shutdown mode, a full reset must be applied to the AD7606B after the required power-up time elapses.

When the AD7606B is placed in standby mode, all the PGAs and all the SAR ADCs enter a low power mode, such that the overall current consumption reduces to 4.5 mA , maximum. No reset is required after exiting standby mode.

When the AD7606B is placed in autostandby mode, available only in software mode, the device automatically enters standby mode on the BUSY signal falling edge. The AD7606B exits standby mode automatically on the CONVST signal rising edge. Therefore, the CONVST signal low pulse time is longer than $\mathrm{t}_{\text {wake_up }}(\operatorname{standby}$ mode $)=1 \mu \mathrm{~s}$.

DIGITAL FILTER

The AD7606B contains an optional digital averaging filter that can be enabled in slower throughput rate applications that require higher SNR or dynamic range.
In hardware mode, the oversampling ratio of the digital filter is controlled using the oversampling pins, OSx, as shown in Table 13. The OSx pins are latched on the falling edge of the BUSY signal.

In software mode, that is, if all OSx pins are tied to logic high, the oversampling ratio is selected through the oversampling register (Address 0x08). Two additional oversampling ratios ($\mathrm{OS} \times 128$ and $\mathrm{OS} \times 256$) are available in software mode.
In oversampling mode, the ADC takes the first sample for each channel on the rising edge of the CONVST signal. After converting the first sample, the subsequent samples are taken by the internally generated sampling signal, as shown in Figure 52. Alternatively, this sampling signal can be applied externally as described in the External Oversampling Clock section.
For example, if oversampling by eight is configured, eight samples are taken, averaged, and the result is provided on the output. A CONVST signal rising edge triggers the first sample, and the remaining seven samples are taken with an internally generated sampling signal. Consequently, turning on the
averaging of multiple samples leads to an improvement in SNR performance, at the expense of reducing the maximum throughput rate. When the oversampling function is turned on, the BUSY signal high time (tconv) extends, as shown in Table 3. Table 17 shows the trade-off in SNR vs. bandwidth and throughput for the $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 2.5 \mathrm{~V}$ ranges.

Figure 52. Oversampling by 8 Example, Read After Conversion, Parallel Interface, OS Clock Internally Generated Sampling Signal

Figure 52 shows that the conversion time ($\mathrm{t}_{\text {conv }}$) extends when oversampling is turned on. The throughput rate ($1 /$ tcycle $)$ must be reduced to accommodate the longer conversion time and to allow the read operation to occur. To achieve the fastest throughput rate possible when oversampling is turned on, the read can be performed during the BUSY signal high time as explained in the Reading During Conversion section.

Table 17. Oversampling Performance

OS Ratio	Input Frequency (Hz)	$\pm 10 \mathrm{~V}$ Range		± 5 V Range		± 2.5 V Range		Maximum Throughput (kSPS)
		SNR (dB)	$3 \mathrm{~dB} \mathrm{BW}(\mathrm{kHz})$	SNR (dB)	3 dB BW (kHz)	SNR (dB)	3 dB BW (kHz)	
No OS	1000	89.5	23.0	88.5	13.9	86	11.6	800
2	1000	91	22.7	89.9	13.8	87.2	11.5	400
4	1000	92.2	22.0	90.8	13.6	88	11.4	200
8	1000	93	20.0	91.5	13.0	88.4	11.1	100
16	1000	93.5	15.4	92	11.4	89	10.0	50
32	130	95.4	9.7	93.7	8.4	90.4	7.7	25
64	130	96.3	5.3	95	5.0	91.8	4.9	12.5
$128{ }^{1}$	50	97.1	2.7	95.9	2.7	93.3	2.7	6.25
$256{ }^{1}$	50	97.6	1.4	96.8	1.4	94.7	1.4	3.125

[^3]
PADDING OVERSAMPLING

As shown in Figure 52, an internally generated clock triggers the samples to be averaged, and then the ADC remains idle until the following CONVST signal rising edge. In software mode, through the oversampling register (Address 0×08), the internal clock (OS clock) frequency can be changed such that idle time is minimized, that is, sampling instants are equally spaced, as shown in Figure 53.

Figure 53. Oversampling by 8 Example, Oversampling Padding Enabled
Table 18. OS_PAD Bit Decoding

OS_PAD (Address 0x08, Bits[7:4])	OS Clock Frequency (kHz)
0000	800
0001	753
0010	711
0011	673.5
0100	640
0101	609.5
0110	582
0111	556.5
1000	533
1001	512
1010	492.5
1011	474
1100	457
1101	441.5
1110	426.5
1111	413

EXTERNAL OVERSAMPLING CLOCK

In software mode, there is an option to apply an external clock through the CONVST pin when oversampling mode is enabled. Providing a low jitter external clock improves SNR performance for large oversampling ratios. By applying an external clock, the
input is sampled at regular time intervals, which is optimum for antialiasing performance.
To enable the external oversampling clock, Bit 5 in the CONFIG register (Address 0x02, Bit 5) must be set. Then, the throughput rate is the following:

$$
\text { Throughput }=\frac{1}{t_{\text {CNVST }} \times O S R}
$$

That is, the sampling signal is provided externally through the CONVST pin, and every OSR number of clocks, an output is averaged and provided, as shown in Figure 55. This feature is available using either the parallel interface or the serial interface.

Simultaneous Sampling of Multiple AD7606B Devices

In general, synchronizing several SAR ADCs can easily be achieved by using a common CNVST signal. However, when oversampling is enabled, an internal clock is used by default to trigger the subsequent samples. Any deviation between these internal clocks may impede device to device synchronization. This deviation can be minimized by using external oversampling because the CNVST signal of all the samples are managed externally.
A partial reset (treser $^{<} 2 \mu \mathrm{~s}$) interrupts the oversampling process and empties the data register. Therefore, if by any reason one of the AD7606B devices is not in synchrony, issuing a partial reset easily resynchronizes them all, as shown in Figure 54.

Figure 54. Synchronizing Multiple AD7606B Devices with External Oversampling Clock Enabled

Figure 55. External Oversampling Clock Applied on the CONVST Pin (OSR = 4); Parallel Interface

SYSTEM CALIBRATION FEATURES

The following system calibration features are available in software mode by writing to corresponding registers in the memory map:

- Phase calibration
- Gain calibration
- Offset calibration
- Analog input open circuit detection

SYSTEM PHASE CALIBRATION

When using an external filter, as shown in Figure 57, any mismatch on the discrete components, or in the sensor being used, can cause phase mismatch between channels. This phase mismatch can be compensated for in software mode, on a per channel basis, by delaying the sampling instant on individual channels.
The sampling instant on any particular channel can be delayed with regard to the CONVST signal rising edge, with a resolution of $1.25 \mu \mathrm{~s}$, and up to $318.75 \mu \mathrm{~s}$, by writing to the corresponding CHx_PHASE register (Address 0x19 through Address 0x20).
For example, if the CH4_PHASE register (Address 0x1C) is written with 10 (decimal), Channel 4 is effectively sampled $12.5 \mu \mathrm{~s}$ (tphase_reg) after the CONVST signal rising edge, as shown in Figure 56.

Figure 56. System Phase Calibration Functionality
The BUSY signal high time equals tconv plus tphase_reg, as shown in Figure 56. In the previously explained example and Figure 56, if only the CH4_PHASE register is programmed, tconv increases by $12.5 \mu \mathrm{~s}$. Therefore, this scenario must be taken into account when running at higher throughput rates.

SYSTEM GAIN CALIBRATION

Using an external R $_{\text {FIITER, }}$, as shown in Figure 57, generates a system gain error. This gain error can be compensated for in software mode, on a per channel basis, by writing the series resistor value used on the corresponding register, Address 0x09 through Address 0×10. These registers can compensate up to $65 \mathrm{k} \Omega$ series resistors, with a resolution of 1024Ω.

Figure 57. System Gain Error
For example, if a $27 \mathrm{k} \Omega$ resistor is placed in series to the analog input of Channel 5 , the resistor generates a -170 LSB positive full-scale error on the system (at $\pm 10 \mathrm{~V}$ range), as shown in Figure 58. In software mode, this error is eliminated by writing 27 (decimal) to the CH5_GAIN register (Address 0x0D), which keeps the error within 0.01% of FSR, no matter the $\mathrm{R}_{\text {FILTER }}$ value of the series resistor, as shown in Figure 59.

Figure 58. System Gain Calibration with and Without Calibration

Figure 59. System Error with Gain Calibration Enabled

SYSTEM OFFSET CALIBRATION

A potential offset on the sensor, or any offset caused by a mismatch between the R RIITER $^{\text {pair placed on a particular channel (as }}$ described in the Analog Front End section), can be compensated in software mode, on a per channel basis. The CHx_OFFSET registers (Address 0x11 through Address 0x18) allow the ability to add or subtract up to 128 LSB from the ADC code automatically, with a resolution of 1 LSB, as shown in Table 19.
For example, if the signal connected to Channel 3 has a 9 mV offset, and the analog input range is set to the $\pm 10 \mathrm{~V}$ range (where LSB size $=305 \mu \mathrm{~V}$) to compensate for this offset, program - 30 LSB to the corresponding register. Writing $128($ decimal $)-30($ decimal $)=0 \times 80-0 \times 1 E=0 \times 62$ to the CH3_OFFSET register (Address 0x13) removes such offset.

Table 19. CHx_OFFSET Register Bit Decoding

CHx_OFFSET Register	Offset Calibration (LSB)
0×00	-128
0×45	-59
0×80 (Default)	0
0×83	3
$0 \times F F$	127

ANALOG INPUT OPEN CIRCUIT DETECTION

The AD7606B has an analog input open circuit detection feature available in software mode. To use this feature, R_{PD} must be placed as shown in Figure 60. If the analog input is disconnected, for example, if a switch opens in Figure 60, the source impedance changes from the burden resistor (RBURDen) to $R_{\text {pd }}$, as long as $R_{\text {burden }}<\mathrm{R}_{\text {pd }}$. It is recommended to use $\mathrm{R}_{\text {pD }}=$ $50 \mathrm{k} \Omega$ so that the AD7606B can detect changes in the source impedance by internally switching the PGA common-mode voltage. Analog input open circuit detection operates in manual mode or in automatic mode.

Figure 60. Analog Front End with $R_{P D}$

Manual Mode

In manual mode, enabled by writing $0 x 01$ to OPEN_DETECT_ QUEUE (Address 0x2C), each PGA common-mode voltage is controlled by the corresponding CHx_OPEN_DETECT_EN bit on the OPEN_DETECT_ENABLE register (Address 0x23). Setting this bit high shifts up the PGA common-mode voltage. If there is an open circuit on the analog input, the ADC output changes proportionally to the R_{PD} resistor, as shown in Figure 61. If there is no open circuit, any change on the PGA common-mode voltage has no effect on the ADC output.

Figure 61. Open Circuit Code Error Increment, Dependent of $R_{P D}$

Automatic Mode

Automatic mode is enabled by writing any value greater than 0×01 to the OPEN_DETECT_QUEUE register (Address 0x2C), as shown in Table 20. If the AD7606B detects that the ADC reported a number (specified in the OPEN_DETECT_QUEUE register) of consecutive unchanged conversions, the analog input open circuit detection algorithm is performed internally and automatically. The analog input open circuit detection algorithm automatically changes the PGA common-mode voltage, checks the ADC output, and returns to the initial common-mode voltage, as shown in Figure 62. If the ADC code changes in any channel with the PGA common-mode change, this implies that there is no input signal connected to that analog input, and the corresponding flag asserts within the OPEN_DETECTED register (Address 0x24). Each channel can be individually enabled or disabled through the OPEN_DETECT_ ENABLE register (Address 0x23).

Figure 62. Automatic Analog Input Open Circuit Detect Flowchart

If no oversampling is used, the recommended minimum number of conversions to be programmed for the AD7606B to automatically detect an open circuit on the analog input is

$$
\begin{aligned}
& \text { OPEN_DETECT_QUEUE }= \\
& 10 \times f_{\text {SAMPLE }}\left(R_{P D}+2 \times R_{\text {FLLTER }}\right) \times\left(C_{\text {FILTER }}+10 \mathrm{pF}\right)
\end{aligned}
$$

where C ${ }^{\text {fliter }}$ is the capacitor shown in Figure 60.
However, when oversampling mode is enabled, the recommended minimum number of conversions to use is

OPEN_DETECT_QUEUE =
$1+\left(f_{\text {SAMPLE }} \times 2\left(R_{P D}+2 \times R_{\text {FLLTER }}\right) \times\left(C_{\text {FLLTER }}+10 \mathrm{pF}\right) \times O S R\right)$

Table 20. Analog Input Open Circuit Detect Mode Selection and Register Functionality

OPEN_DETECT_QUEUE (Address 0x2C)	Open Detect Mode	OPEN_DETECT_ENABLE (Address 0x23)
0×00 (Default)	Disabled Manual mode	Not applicable Sets common-mode voltage high or low, on a per channel basis
0×01	Automatic; OPEN_DETECT_QUEUE is the number of consecutive conversions before asserting any CHx_OPEN flag; the minimum value for this register is 5	Enables or disables automatic analog input open circuit detection on a per channel basis

DIGITAL INTERFACE

The AD7606B provides two interface options: a parallel interface and a high speed serial interface. The required interface mode is selected via the $\overline{\mathrm{PAR}} /$ SER SEL pin.

Table 21. Interface Mode Selection

$\overline{\text { PAR/SER SEL }}$	Interface Mode
0	Parallel interface mode
1	Serial interface mode

Operation of the interface modes is discussed in the following sections.

HARDWARE MODE

In hardware mode, only ADC read mode is available. ADC data can be read from the AD7606B via the parallel data bus with standard $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ signals or via the serial interface with standard $\overline{\mathrm{CS}}, \mathrm{SCLK}$, and two Doutx signals.

See the Reading Conversion Results (Parallel ADC Read Mode) section and the Reading Conversion Results (Serial ADC Read Mode) section for more details on how ADC read mode operates.

SOFTWARE MODE

In software mode, which is active only when all three oversampling pins are tied high, both ADC read mode and register mode are available. ADC data can be read from the AD7606B, and registers can also be read from and written to the AD7606B via the parallel data bus with standard $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ signals or via the serial interface with standard $\overline{\mathrm{CS}}$, SCLK, SDI, and Dout A lines.
See the Parallel Register Mode (Writing Register Data) section and the Parallel Register Mode (Reading Register Data) section for more details on how register mode operates.
Pin functions differ depending on the interface selected (parallel or serial) and the operation mode (hardware or software), as shown in Table 22 and Table 23.

Table 22. Data Interface Pin Function per Mode of Operation (Parallel Interface)

		Software Mode		
Pin Name	Pin No.	Hardware Mode	ADC Read Mode	Register Mode
DB0 to DB6	16 to 22	DB0 to DB6	Register data	
DB7/DoutA	24	DB7	Register data (MSB)	
DB8/DouTB	25	DB8	ADD0	
DB9/DouTC	27	DB9	ADD1	
DB10/DouTD	28	DB10	ADD2	
DB11/SDI	DB11	ADD3		
DB12 to DB14	29	DB12 to DB14	ADD4 to ADD6	
DB15	30 to 32	DB15	R/ \bar{W}	

Table 23. Data Interface Pin Function per Mode of Operation (Serial Interface)

Pin Name	Pin No.	Hardware Mode	Software Mode	
			ADC Read Mode	Register Mode
DB0 to DB6	16 to 22	N/A ${ }^{1}$	N/A	N/A
DB7/DoutA	24	Douta	DoutA	DoutA
DB8/DoutB	25	DoutB	Dout ${ }^{2}$	Unused
DB9/Dout	27	N/A	DouT ${ }^{3}$	Unused
DB10/DoutD	28	N/A	DoutD ${ }^{3}$	Unused
DB11/SDI	29	N/A	Unused	SDI
DB12 to DB14	30 to 32	N/A	N/A	N/A
DB15	33	N/A	N/A	N/A

[^4]
PARALLEL INTERFACE

To read ADC data or to read/write the register content over the parallel interface, tie the $\overline{\mathrm{PAR}} /$ SER SEL pin low.

Figure 63. AD7606B Interface Diagram—One AD7606B Using the Parallel Bus, with $\overline{C S}$ and $\overline{R D}$ Shorted Together

The rising edge of the $\overline{\mathrm{CS}}$ input signal three-states the bus, and the falling edge of the $\overline{\mathrm{CS}}$ input signal takes the bus out of the high impedance state. $\overline{\mathrm{CS}}$ is the control signal that enables the data lines and it is the function that allows multiple AD7606B devices to share the same parallel data bus.

Reading Conversion Results (Parallel ADC Read Mode)

The falling edge of the $\overline{\mathrm{RD}}$ pin reads data from the output conversion results register. Applying a sequence of $\overline{\mathrm{RD}}$ pulses to the $\overline{\mathrm{RD}}$ pin clocks the conversion results out from each channel to the parallel bus, Bits[DB15:DB0], in ascending order, from V1 to V8, as shown in Figure 65.
The $\overline{\mathrm{CS}}$ signal can be permanently tied low, and the $\overline{\mathrm{RD}}$ signal can access the conversion results, as shown in Figure 3. A read operation of new data can take place after the BUSY signal goes low (see Figure 2). Alternatively, a read operation of data from the previous conversion process can take place while the BUSY pin is high.

When there is only one AD7606B in a system and it does not share the parallel bus, data can be read using one control signal from the digital host. The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ signals can be tied together, as shown in Figure 4. In this case, the falling edge of the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ signals bring the data bus out of three-state and clocks out the data.
The FRSTDATA output signal indicates when the first channel, V1, is being read back, as shown in Figure 4. When the $\overline{\mathrm{CS}}$ input is high, the FRSTDATA output pin is in three-state. The falling edge of $\overline{\mathrm{CS}}$ takes the FRSTDATA pin out of three-state. The falling edge of the $\overline{\mathrm{RD}}$ signal corresponding to the result of V1 sets the FRSTDATA pin high, indicating that the result from V1 is available on the output data bus. The FRSTDATA pin returns to a logic low following the next falling edge of $\overline{\mathrm{RD}}$.

Reading During Conversion

The data read operation from the AD7606B, as shown in Figure 64, can occur in the following three scenarios:

- After conversion, such as when the BUSY line is low
- During conversion, such as when the BUSY line is high
- Starts when the BUSY line is low and ends during the following conversion (see the Universal Timing Specifications section)

Reading during conversion has little effect on the performance of the converter, and it allows a faster throughput rate to be achieved. Data can be read from the AD7606B at any time other than on the falling edge of the BUSY signal because this falling edge is when the output data registers are updated with the new conversion data. Any data read while the BUSY signal is high must be completed before the falling edge of the BUSY signal.

Parallel ADC Read Mode with CRC Enabled

In software mode, the parallel interface supports reading the ADC data with the CRC appended, when enabled through the INT_CRC_ERR_EN bit (Address 0x21, Bit 2). The CRC is 16 bits, and it is clocked out after reading all eight channel conversions, as shown in Figure 67. The CRC calculation includes all data on the DBx pins: data, status (when appended), and zeros. See the Diagnostics section for more details on the CRC.

Parallel ADC Read Mode with Status Enabled

In software mode, the 8 -bit status header is enabled (see Table 25) by setting STATUS_HEADER in the CONFIG register (Address $0 x 02$, Bit 6), and each channel then takes two frames of data:

- The first frame clocks the ADC data out through DBx.
- The second frame clocks out the status header of the channel on DB15 to DB8, DB15 being the MSB and DB8 the LSB, while DB7 to DB0 clock out zeros.

This sequence is shown in Figure 66. Table 25 explains the status header content and describes each bit.
Table 24. CH.IDx Bits Decoding in Status Header

CH.ID2	CH.ID1	CH.ID0	Channel Number
0	0	0	Channel 1 (V1)
0	0	1	Channel 2 (V2)
0	1	0	Channel 3 (V3)
0	1	1	Channel 4 (V4)
1	0	0	Channel 5 (V5)
1	0	1	Channel 6 (V6)
1	1	0	Channel 7 (V7)
1	1	1	Channel 8 (V8)

Table 25. Status Header, Parallel Interface

Bit Details	Bit $\mathbf{7}$ (MSB)	Bit $\mathbf{6}$	Bit 5	Bit 4	Bit 3	Bit $\mathbf{2}$	Bit $\mathbf{1}$	Bit $\mathbf{0}$ (LSB)
Bit Name	RESET_DETECT	DIGITAL_ERROR	OPEN_DETECTED	AIN_OV_DIAG_ERR	AIN_UV_DIAG_ERR	CH.ID2	CH.ID1	CH.ID0
Bit Description	Reset detected	Error flag on Address 0x22	The analog input of this channel is open	Overvoltage detected on this channel	Undervoltage detected on this channel	Channel ID (see Table 24)		

[^5]

Figure 65. Parallel Interface, ADC Read Mode

Figure 66. Parallel Interface, ADC Read Mode with Status Header Enabled

Figure 67. Parallel Interface, ADC Read Mode with CRC Enabled

Parallel Register Mode (Reading Register Data)

In software mode, all the registers in Table 32 can be read over the parallel interface. Bits[DB15:DB0] leave a high impedance state when both the $\overline{\mathrm{CS}}$ signal and $\overline{\mathrm{RD}}$ signal are logic low for reading register content, or when both the $\overline{\mathrm{CS}}$ signal and $\overline{\mathrm{WR}}$ signal are logic low for writing register address and/or register content.
A register read is performed through two frames: first, a read command is sent to the AD7606B and second, the AD7606B clocks out the register content. The format for a register read command is shown in Figure 68. On the first frame, the following occurs:

- Bit DB15 must be set to 1 to select a read command. The read command places the AD7606B in register mode.
- Bits[DB14:DB8] must contain the register address.
- The subsequent eight bits, Bits[DB7:DB0], are ignored.

The register address is latched on the AD7606B on the rising edge of the $\overline{\mathrm{WR}}$ signal. The register content can then be read from the latched register by bringing the $\overline{\mathrm{RD}}$ line low on the following frame, as follows:

- Bit DB15 is pulled to 0 by the AD7606B.
- Bits[DB14:DB8] provide the register address being read.
- The subsequent eight bits, Bits[DB7:DB0], provide the register content.

To revert to ADC read mode, write to Address 0x00, as shown in the Parallel Register Mode (Writing Register Data) section. No ADC data can be read while the device is in register mode.

Parallel Register Mode (Writing Register Data)

In software mode, all the R/W registers in Table 32 can be written to over the parallel interface. To write a sequence of registers, exit ADC read mode (default mode) by reading any register on the memory map. A register write command is performed by a single frame, via the parallel bus (Bits[DB15:DB0]), $\overline{\mathrm{CS}}$ signal, and $\overline{\mathrm{WR}}$ signal. The format for a write command is shown in Figure 68. The format of a write command, as shown in Figure 68, is structured as follows:

- Bit DB15 must be set to 0 to select a write command.
- Bits[DB14:DB8] contain the register address.
- The subsequent eight bits, Bits[DB7:DB0], contain the data to be written to the selected register.
Data is latched onto the device on the rising edge of the $\overline{W R}$ pin. To revert to ADC read mode, write to Address 0×00. No ADC data can be read while the device is in register mode.

Figure 68. Parallel Interface Register Read Operation, Followed by a Write Operation

Figure 69. Serial Interface ADC Reading, One Doutx Line

SERIAL INTERFACE

To read ADC data or to read/write the registers content over the serial interface, tie the $\overline{\text { PAR } / \text { SER SEL pin high. }}$

Figure 70. AD7606B Interface Diagram—One AD7606B Using the Serial Interface with Four Doutx Lines

Reading Conversion Results (Serial ADC Read Mode)

The AD7606B has four serial data output lines: DoutA, DourB, $\mathrm{D}_{\text {out }} \mathrm{C}$, and $\mathrm{D}_{\text {out }} \mathrm{D}$. In software mode, data can be read back from the AD7606B using either one (see Figure 70), two (see Figure 71), or four Doutx lines (see Figure 72), depending on the configuration set in the CONFIG register.

Table 26. Doutx Format Selection, Using the CONFIG Register (Address 0x02)

Doutx Format	Address 0x02, Bit 4	Address 0x02, Bit 3
1 DoutX	0	0
2 Doutx	0	1
4 Doutx	1	0
1 DouTX	1	1

In hardware mode, only the 2 Doutx lines option is available. However, all channels can be read from $\mathrm{Dout}^{\text {A }}$ by providing eight 16-bit SPI frames between two CONVST pulses.

Figure 72. Serial Interface ADC Reading, Four Doutx Lines
The $\overline{\mathrm{CS}}$ falling edge takes the data output lines, $\mathrm{D}_{\text {out }} \mathrm{A}$ to $\mathrm{D}_{\text {out }} \mathrm{D}$, out of three-state and clocks out the MSB of the conversion result. In 3-wire mode ($\overline{\mathrm{CS}}$ tied low), instead of $\overline{\mathrm{CS}}$ clocking out the MSB, the falling edge of the BUSY signal clocks out the MSB. The rising edge of the SCLK signal clocks all the subsequent data bits on the serial data outputs, Dout A to DoutD, as shown in Figure 6. The $\overline{\mathrm{CS}}$ input can be held low for the entire serial read operation, or it can be pulsed to frame each channel read of 16 SCLK cycles (see

Figure 71). However, if $\overline{\mathrm{CS}}$ is pulsed during a channel conversion result transmission, the channel that was interrupted retransmits on the next frame, completely starting from the MSB.
Data can also be clocked out using only the DoutA line, as shown in Figure 69. For the AD7606B to access all eight conversion results on one Doutx line, a total of 128 SCLK cycles is required. In hardware mode, these 128 SCLK cycles must be framed in groups of 16 SCLK cycles by the $\overline{\mathrm{CS}}$ signal. The disadvantage of using just one Doutx line is that the throughput rate is reduced if reading occurs after conversion. Leave the unused Doutx lines unconnected in serial mode.

Figure 72 shows a read of eight simultaneous conversion results using four Dout X lines on the AD7606B, available in software mode. In this case, a 32 SCLK transfer accesses data from the AD7606B, and $\overline{\mathrm{CS}}$ is either held low to frame the entire 32 SCLK cycles or is pulsed between two 16 -bit frames. This mode is only available in software mode, and it is configured using the CONFIG register (Address 0x02).
Figure 6 shows the timing diagram for reading one channel of data, framed by the $\overline{\mathrm{CS}}$ signal, from the AD7606B in serial mode. The SCLK input signal provides the clock source for the serial read operation. The $\overline{\mathrm{CS}}$ signal goes low to access the data from the AD7606B.

The FRSTDATA output signal indicates when the first channel, V1, is being read back. When the $\overline{\mathrm{CS}}$ input is high, the FRSTDATA output pin is in three-state. In serial mode, the falling edge of the $\overline{\mathrm{CS}}$ signal takes the FRSTDATA pin out of three-state and sets the FRSTDATA pin high if the BUSY line is already deasserted, indicating that the result from V1 is available on the DoutA output data line. The FRSTDATA output returns to a logic low following the $16^{\text {th }}$ SCLK falling edge. If the $\overline{\mathrm{CS}}$ pin is tied permanently low (3-wire mode), the falling edge of the BUSY line sets the FRSTDATA pin high when the result from V1 is available on DoutA.

If SDI is tied low or high, nothing is clocked to the AD7606B. Therefore, the device remains clocking out conversion results. When using the AD7606B in 3-wire mode, keep SDI at a high level. While in ADC read mode, single-write operations can be performed, as shown in Figure 73. For writing a sequence of registers, switch to register mode, as described in the Serial Register Mode (Writing Register Data) section.

Reading During Conversion—Serial Interface

The data read operation from the AD7606B, as shown in Figure 64, occurs in the following three scenarios:

- After conversion, such as when the BUSY line is low
- During conversion, such as when the BUSY line is high
- Starts when the BUSY is low and ends during the following conversion (see the Universal Timing Specifications section)

Reading during conversion has little effect on the performance of the converter, and it allows a faster throughput rate to be achieved. Data can be read from the AD7606B at any time other than on the falling edge of the BUSY signal because this falling edge is when the output data registers are updated with the new conversion data. Any data read while the BUSY signal is high must be completed before the falling edge of the BUSY signal.

Serial ADC Read Mode, with CRC Enabled

In software mode, the CRC can be enabled by writing to the register map. In this case, the CRC is appended on each Doutx line after the last channel is clocked out, as shown in Figure 80. See the Interface CRC Checksum section for more information on how the CRC is calculated.

Serial ADC Read Mode, with Status Enabled

In software mode, the 8 -bit status header can be turned on when using the serial interface so that it is appended after each 16-bit data conversion, extending the frame size to 24 bits per channel, as shown in Figure 73.

Figure 73. Serial Interface, ADC Read Mode, Status On

Figure 74. AD7606B Register Mode
Table 27. Status Header, Serial Interface

Bit Details	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Bit Name	RESET_DETECT	DIGITAL_ERROR	OPEN_DETECTED	AIN_OV_DIAG_ERR	AIN_UV_DIAG_ERR	CH.ID 2	CH.ID 1	CH.ID 0
Bit Description ${ }^{1}$	Reset detected	Error flag on Address 0x22	At least one analog input is open on a channel	Overvoltage detected on a channel	Undervoltage detected on a channel	Channel ID (see Table 24)		

${ }^{1}$ See the Diagnostics section for more information.

Serial Register Mode (Reading Register Data)

All the registers in Table 32 can be read over the serial interface. The format for a read command is shown in Figure 75. A read command consists of two 16 -bit frames. On the first frame,

- The first bit in SDI must be set to 0 to enable writing the address.
- The second bit must be set to 1 to select a read command.
- Bits[3:8] in SDI contain the register address to be clocked out on DoutA on the following frame.
- The subsequent eight bits, Bits[9:16], in SDI are ignored.

If the AD7606B is in ADC read mode, the SDO keeps clocking ADC data on Bits[9:16], and then the AD7606B switches to register mode.
If the AD7606B is in register mode, the SDO reads back the content from the previous addressed register, no matter if the previous frame was a read or a write command. To exit register mode, a write to Address 0x00 is required, as shown in Figure 74.

Serial Register Mode (Writing Register Data)

In software mode, all the read/write registers in Table 32 can be written to the serial interface. To write a sequence of registers, exit ADC read mode (default mode) by reading any register on the memory map. A register write command is performed by a single 16 -bit SPI access. The format for a write command is shown in Figure 76.

The format for a write command, as shown in Figure 76, is structured as follows:

- The first bit in SDI must be set to 0 to enable a write command.
- The second bit, the R/W bit, must be cleared to 0 .
- Bits[ADD5:ADD0] contain the register address to be written.
- The subsequent eight bits (Bits[DIN7:DIN0]) contain the data to be written to the selected register. Data is clocked in from SDI on the falling edge of SCLK, while data is clocked out on $D_{\text {out }} A$ on the rising edge of SCLK.

When writing continuously to the device, the data that appears on $\mathrm{D}_{\text {out }} \mathrm{A}$ is from the register address that was written to on the previous frame, as shown in Figure 76. The $\mathrm{Dout}^{\text {B }}$, $\mathrm{D}_{\text {our }} \mathrm{C}$, and DoutD lines are kept low during the transmission.

While in register mode, no ADC data is clocked out because the Doutx lines are used to clock out register content. When finished writing all needed registers, a write to Address 0x00 returns the AD7606B to ADC read mode, where the ADC data is again clocked out on the Doutx lines, as shown in Figure 74.

In software mode, when the CRC is turned on, eight additional bits are clocked in and out on each frame. Therefore, 24-bit frames are needed.

Figure 76. Serial Interface, Single-Write Command; SDI Clocks in the Address [ADD5:ADD0] and the Register Content [DINx] During the Same Frame, DoutA Provides Register Content Requested on the Previous Frame

Figure 77. Reading Registers Through the SPI Interface with CRC Enabled

Serial Register Mode with CRC

Registers can be written to and read from the AD7606B with CRC enabled in software mode, by asserting the INT_CRC_ ERR_EN bit (Address 0x21, Bit 2).

When reading a register, the AD7606B provides eight additional bits on the DoutA line with the CRC resultant of the data shifted out previously on the same frame. The controller can then check whether the data received is correct by applying the following polynomial:

$$
x^{8}+x^{2}+x+1
$$

With the CRC enabled, the SPI frames extend to 24 bits in length, as shown in Figure 77.
When writing a register, the controller must clock the data (register address plus register content) in the AD7606B followed by an 8-bit CRC word, calculated from the previous 16 bits using the previously described polynomial. The AD7606B reads the register address and the register content, calculates the corresponding 8-bit CRC word, and asserts the INT_CRC_ERR bit (Address 0×22, Bit 2) if the calculated CRC word does not match the CRC word received between the $17^{\text {th }}$ and $24^{\text {th }}$ bit through SDI, as shown in Figure 78.

DIAGNOSTICS

Diagnostic features are available in software mode to verify correct operation of the AD7606B. The list of diagnostic monitors includes reset detection, overvoltage detection, undervoltage detection, analog input open circuit detection, and digital error detection.
If an error is detected, a flag asserts on the status header, if enabled, as described in the Digital Interface section. This flag points to the registers on which the error is located, as explained in the following sections.

In addition, a diagnostic multiplexer can dedicate any channel to verify a series of internal nodes, as explained in the Diagnostics Multiplexer section.

RESET DETECTION

The RESET_DETECT bit on the status register (Address 0x01, Bit 7) asserts if either a partial reset or full reset pulse is applied to the AD7606B. On power-up, a full reset is required. This reset asserts the RESET_DETECT bit, indicating that the power-on reset (POR) initialized correctly on the device.
The POR monitors the REGCAP voltage and issues a full reset if the voltage drops under a certain threshold.

The RESET_DETECT bit can be used to detect an unexpected device reset or a large glitch on the RESET pin, or a voltage drop on the supplies.
The RESET_DETECT bit is only cleared by reading the status register.

OVERVOLTAGE AND UNDERVOLTAGE EVENTS

The AD7606B includes on-chip overvoltage and undervoltage circuitry on each analog input pin. These comparators can be enabled or disabled using the AIN_OV_UV_DIAG_ ENABLE register (Address 0x25).

After this register is enabled, when the voltage on any analog input pin goes above the overvoltage threshold shown in Table 28, the AIN_OV_DIAG_ERROR register (Address 0x26) shows which channel or channels have an overvoltage event. When a bit within the AIN_OV_DIAG_ERROR register asserts, it stays at a high state even after the overvoltage event disappears. To clear the error bit, the error bit must be overwritten to 1 or the error checker must be disabled.

Figure 79. Overvoltage and Undervoltage Circuitry on Each Analog Input

When the voltage on any analog input pin goes below the undervoltage threshold shown in Table 28, the AIN_UV_ DIAG_ERROR register (Address 0x27) shows which channel or channels have an undervoltage event. When a bit within the AIN_UV_DIAG_ERROR register asserts, it stays at a high state after the undervoltage event disappears. To clear the error bit, the error bit must be overwritten to 1 or the error checker must be disabled.

Table 28. Overvoltage and Undervoltage Thresholds

Analog Input Range (V)	Overvoltage Threshold (V)	UndervoItage Threshold (V)
± 2.5	+6.5	-3
± 5	+8	-5.5
± 10	+12	-11

DIGITAL ERROR
Both the status register and status header contain a DIGITAL_ERROR bit. This bit asserts when any of the following monitors trigger:

- Memory map CRC, read only memory (ROM) CRC, and digital interface CRC
- SPI invalid read or write
- BUSY stuck high

To find out which monitor triggered the DIGITAL_ERROR bit, the DIGITAL_DIAG_ERR address (Address 0x22) has a bit dedicated for each monitor, as explained in the following sections.

ROM CRC

The ROM stores the factory trimming settings for the AD7606B. After power-up, the ROM content is loaded to registers during device initialization. After the load, a CRC is calculated on the loaded data and verified if the result matches the CRC stored in the ROM. If an error is found, the ROM_CRC_ERR (Address 0x22, Bit 0) asserts. When ROM_CRC_ERR asserts after power-up, it is recommended to issue a full reset to reload all factory settings.
This ROM CRC monitoring feature is enabled by default, but can be disabled by clearing the ROM_CRC_ERR_EN bit (Address 0x21, Bit 0).

Memory Map CRC

For added robustness, a CRC calculation is performed on the on-chip registers. The memory map CRC is disabled by default. After the AD7606B is configured in software mode through writing the required registers, the memory map CRC can be enabled through the MM_CRC_ERR_EN bit (Address 0x21, Bit 1). When enabled, the CRC calculation is performed on the entire memory map and stored. Every $4 \mu \mathrm{~s}$, the CRC on the memory map is recalculated and compared to the stored CRC value. If the calculated and the stored CRC values do not match, the memory map is corrupted and the MM_CRC_ERR bit asserts. Every time the memory map is written, the CRC is recalculated and the new value stored.

The error checking and correction (ECC) block can detect up to three bits of errors (Hamming distance of four bits) within the memory map. Moreover, every $4 \mu \mathrm{~s}$, the CRC on the memory map is recalculated and compared to the stored CRC value. If the calculated and the stored CRC values do not match, the memory map is corrupted and the MM_CRC_ERR bit asserts. The AD7606B uses the following 16-bit CRC polynomial to calculate the CRC checksum value on the memory map:

$$
0 x B A A D=x^{16}+x^{14}+x^{13}+x^{12}+x^{10}+x^{8}+x^{6}+x^{4}+x^{3}+x+1
$$

Every time the memory map is written, the CRC is recalculated and the new value stored.

If the MM_CRC_ERR bit asserts, it is recommended to write to the memory map to recalculate the CRC. If the error persists, it is recommended to issue a full reset to restore the default contents of the memory map.
If the MM_CRC_ERR bit asserts, it is recommended to write to the memory map to recalculate the CRC. If the error persists, it is recommended to issue a full reset to restore the default contents of the memory map.

Interface CRC Checksum

The AD7606B has a CRC checksum mode to improve interface robustness by detecting errors in data transmission. The CRC feature is available in both ADC read modes (serial and parallel) and register mode (serial only).
The AD7606B uses the following 8-bit CRC polynomial to calculate the CRC checksum value:
$0 \mathrm{xBAAD}=x^{16}+x^{14}+x^{13}+x^{12}+x^{10}+x^{8}+x^{6}+x^{4}+x^{3}+x+1$
To replicate the polynomial division in hardware, the data shifts left by 16 bits to create a number ending in 16 Logic 0 s. The polynomial is aligned so that the MSB is adjacent to the
leftmost Logic 1 of the data. An exclusive OR (XOR) function is applied to the data to produce a new, shorter number. The polynomial is again aligned so that the MSB is adjacent to the leftmost Logic 1 of the new result, and the procedure repeats. This process repeats until the original data is reduced to a value less than the polynomial, the 16-bit checksum.

An example of the CRC calculation for the 16-bit data is shown in Table 30. The CRC corresponding to the data $0 \times 064 \mathrm{E}$, using the previously described polynomial, is 0×2137.
The serial interface supports the CRC when enabled via the INT_CRC_ERR_EN bit (Address 0x21, Bit 2). The CRC is a 16-bit word that is appended to the end of each Doutx in use, after reading all the channels. An example using four Doutx lines is shown in Figure 80.

Figure 80. Serial Interface ADC Reading with CRC On, Four Doutx Lines
If using two Doutx lines (DoutA and DoutB), each 16-bit CRC word is calculated using data from four channels, that is 64 bits, as shown in Figure 81. If using only one Doutx line, all eight channels are clocked out through $\mathrm{D}_{\text {out }} \mathrm{A}$, followed by the 16 -bit CRC word calculated using data from the eight channels, that is, 128 bits.

Figure 81. Serial Interface ADC Reading with CRC On, Two Doutx Lines

When the AD7606B is in register mode, that is, when registers are being read or written, the CRC polynomial used is $\mathrm{x}^{8}+\mathrm{x}^{2}+$ $\mathrm{x}+1$. When reading a register, and CRC is enabled, each SPI frame is 24 bits long and the CRC 8-bit word is clocked out from the $17^{\text {th }}$ to $24^{\text {th }}$ SCLK cycle. Similarly, when writing a register, a CRC word can be appended on the SDI line, as shown in Figure 82 and the AD7606B checks and triggers an error, INT_CRC_ERR (Address 0x22, Bit 2), if the CRC given and the internally calculated do not match.

The parallel interface also supports CRC in ADC mode only, and it is clocked out through DB15 to DB0 after Channel 8, as shown in Figure 67. The 16-bit CRC word calculated using data from the eight channels, that is, 128 bits.

Interface Check

The integrity of the digital interface can be checked by setting the INTERFACE_CHECK_EN bit (Address 0x21, Bit 7). Selecting the interface check forces the conversion result registers to a known value, as shown in Table 29.
Verifying that the controller receives the data shown in Table 29 ensures that the interface between the AD7606B and the controller operates properly. If the interface CRC is enabled because the data transmitted is known, this mode verifies that the controller performs the CRC calculation properly.

Table 29. Interface Check Conversion Results

Channel Number	Conversion Result Forced (Hexadecimal)
V1	$0 \times A C C A$
V2	$0 \times 5 C C 5$
V3	$0 \times A 33 A$
V4	0×5335
V5	$0 \times C A A C$
V6	0xC55C
V7	0×3 AA3
V8	0×3553

SPI Invalid Read/Write

When attempting to read back an invalid register address, the SPI_READ_ERR bit (Address 0x22, Bit 4) is set. The invalid readback address detection can be enabled by setting the SPI_READ_ERR_EN bit (Address 0x21, Bit 4). If an SPI read error is triggered, it is cleared by overwriting that bit or disabling the checker.

When attempting to write to an invalid register address or a read only register, the SPI_WRITE_ERR bit (Address 0x22, Bit 3) is set. The invalid write address detection can be enabled by setting the SPI_WRITE _ERR bit (Address 0x21, Bit 3). If an SPI write error is triggered, it is cleared by overwriting that bit or disabling the checker.

Figure 82. Register Write with CRC On
Table 30. Example CRC Calculation for 16-Bit Data ${ }^{1}$

Data ${ }^{2}$	0	0	0	0	0	1	1	0	0	1	0	0	1	1	1	0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
Process Data	0	0	0	0	0	1	1	0	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Polynomial						1	0	1	1	1	0	1	0	1	0	1	0	1	1	0	1	1											
			0			1	1	1	0	0	1	1	0	1	1	0	1	1	0	1	1	0											
			1			0	1	1	1	0	1	0	1	0	1	0	1	1	0	1	1												
			0			1	0	1	1	1	0	0	0	1	1	1	0	1	1	0	1	0											
						1	0	1	1	1	0	1	0	1	0	1	0	1	1	0	1	1											
						0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0					
												1	0	1	1	1	0	1	0	1	0	1	0	1	1	0	1	1					
												0	0	1	0	1	0	1	0	1	0	0	0	1	1	0	1	1	0	0			
														1	0	1	1	1	0	1	0	1	0	1	0	1	1	0	1	1			
CRC																		0	0	1	0	0	0	0	1	0	0	1	1	0	1	1	1

[^6]
BUSY Stuck High

BUSY stuck high monitoring is enabled by setting the BUSY_STUCK_HIGH_ERR_EN bit (Address 0x21, Bit 5). After this bit is enabled, the conversion time ($\mathrm{t}_{\text {conv }}$ in Table 3) is monitored internally with an independent clock. If tconv exceeds $4 \mu \mathrm{~s}$, the AD7606B automatically issues a partial reset and asserts the BUSY_STUCK_HIGH_ERR bit (Address 0x22, Bit 5). To clear this error flag, the BUSY_STUCK_HIGH_ERR bit must be overwritten with a 1.
When oversampling mode is enabled, the individual conversion time for each internal conversion is monitored.

Internal Clock Counters

The AD7606B uses an internal clock related to functional safety features (FS_CLK) as well an internal clock for oversampling (OS_CLK). Both internal clocks run at 16 MHz . To verify the clocks are correctly operating, enable the clock counter through the CLK_FS_OS_COUNTER_EN bit in Register 0x21, Bit 6. These clock counters increment by 1 every time 64 clocks are counted. Thus, if either the FS_CLK_COUNTER register (Address 0x2D) or the OS_CLK_COUNTER register (Address 0x2E) are read after a certain known delay that corresponds to the chosen feature, the register values must match the equivalent count for the time elapsed.
For example, if the clock counter is enabled and the FS_CLK_COUNTER register is read after 20μ s between the write and read operations, the value must equal to 0×05. The following equation calculates the FS_CLK_COUNTER value:

$$
F S_{-} C L K_{-} C O U N T E R=\text { Delay } \times \frac{16 \mathrm{MHz}}{64}
$$

where Delay is the delay shown in Figure 84.

DIAGNOSTICS MULTIPLEXER

All eight input channels contain a diagnostics multiplexer in front of the PGA that allows monitoring of the internal nodes described in Table 31 to ensure the correct operation of the AD7606B. Table 31 shows the bit decoding for the diagnostic mux register on Channel 1, as an example. When an internal node is selected, the input voltage at input pins are deselected from the PGA, as shown in Figure 83.

Each diagnostic multiplexer configuration is accessed, in software mode through the corresponding register (Address 0x28 to Address 0x2B). To use the multiplexer on one channel, the $\pm 10 \mathrm{~V}$ range must be selected on that channel.

Table 31. Diagnostic Mux Register Bit Decoding of Channel 1

Address 0x28			
Bit 2	Bit 1	Bit 0	Signal on Channel 1
0	0	0	V1
0	0	1	Temperature sensor
0	1	0	$4 \times$ V $_{\text {REF }}$
0	1	1	$4 \times$ ALDO
1	0	0	$4 \times$ DLDO
1	0	1	V $_{\text {DIIVE }}$
1	1	0	AGND
1	1	1	AV

Figure 83. Diagnostic Multiplexer (Channel 1 Shown as an Example)

Temperature Sensor

The temperature sensor can be selected through the diagnostic multiplexer and converted with the ADC, as shown in Figure 83. The temperature sensor voltage is measured and is proportional to the die temperature, as per the following equation:

$$
\text { Temperature }\left({ }^{\circ} \mathrm{C}\right)=\frac{A D C_{\text {OUT }}(\mathrm{V})-0.69068(\mathrm{~V})}{0.019328\left(\mathrm{~V} /{ }^{\circ} \mathrm{C}\right)}+25\left({ }^{\circ} \mathrm{C}\right)
$$

Figure 84. FS_CLK_COUNTER Functionality

Reference Voltage

The reference voltage can be selected through the diagnostic multiplexer and converted with the ADC, as shown in Figure 85. The internal or external reference is selected as the input to the diagnostic multiplexer based on the REF SELECT pin. Ideally, the ADC output follows the voltage reference level ratiometrically. Therefore, if the ADC output goes beyond the expected 2.5 V , either the reference buffer or the PGA is malfunctioning.

Figure 85. Reference Voltage Signal Path Through the Diagnostic Multiplexer

Internal LDOs

The analog and digital LDO (REGCAP pins) can be selected through the diagnostic multiplexer and converted with the ADC, as shown in Figure 83. The ADC output is four times the voltage on the REGCAPA and REGCAPD pins for the ALDO and DLDO, respectively. This measurement verifies that each LDO is at the correct operating voltage so that the internal circuitry is biased correctly.

Supply Voltages

$A V_{C C}, V_{\text {DRIVE }}$, and $A G N D$ can be selected through the diagnostic multiplexer and converted with the ADC, as shown in Figure 83. This setup ensures the voltage and grounds are applied to the device for correct operation.

TYPICAL CONNECTION DIAGRAM

There are four $\mathrm{AV}_{\mathrm{CC}}$ supply pins on the device. It is recommended that each of the four pins is decoupled using a 100 nF capacitor at each supply pin and a $10 \mu \mathrm{~F}$ capacitor at the supply source. The AD7606B can operate with the internal reference or an externally applied reference. When using a single AD7606B device on the board, decouple the REFIN/REFOUT pin with a 100 nF capacitor. Refer to the Reference section when using an application with multiple AD7606B devices. The REFCAPA and REFCAPB pins are shorted together and decoupled with a $10 \mu \mathrm{~F}$ ceramic capacitor.

The $V_{\text {Drive }}$ supply is connected to the same supply as the processor. The V $\mathrm{V}_{\text {dive }}$ voltage controls the voltage value of the output logic signals. For more information on layout, decoupling, and grounding, see the Layout Guidelines section.
After supplies are applied to the AD7606B, apply a reset to the AD7606B to ensure that it is configured for the correct mode of operation.

In Figure 86, the AD7606B is configured in hardware mode and is operating with the internal reference because the REF SELECT pin is set to logic high. In this example, the device also uses the
parallel interface because the $\overline{\mathrm{PAR}} /$ SER SEL pin is tied to AGND. The analog input range for all eight channels is $\pm 10 \mathrm{~V}$, provided the RANGE pin is tied to a high level and the oversampling ratio is controlled through the OSx pins by the controller.
In Figure 87, the AD7606B is configured in software mode, because all three OS2, OS1, and OS0 pins are at logic level high. The oversampling ratio, as well as each channel range, are configured through accessing the memory map. In this example, the $\overline{\mathrm{PAR}} /$ SER SEL pin is at logic level high. Therefore, the serial interface is used for both reading the ADC data and reading and writing the memory map. The REF SELECT pin is tied to AGND. Therefore, the internal reference is disabled and an external reference is connected externally to the REFIN/REFOUT pin and decoupled through a 100 nF capacitor.

Figure 86 and Figure 87 are examples of typical connection diagrams. Other combinations of reference, data interface, and operation mode are also possible, depending on the logic levels applied to each configuration pin.

Figure 87. Typical Connection Diagram, Software Mode

APPLICATIONS INFORMATION

The fully integrated, 16 -bit data acquisition system (DAS) of the AD7606B enables simultaneous, high precision measurement of up to eight analog channels without requiring additional active circuits.
The AD7606B is suitable for power monitoring applications. Measure the electrical variables accurately on a power line for information about the operating status of the grid. Monitor the voltage and current amplitude, frequency, and phase to detect anomalies and faults to prevent major disruptions on the electrical service and to enable power quality analysis, power factor calculation, harmonic analysis (among other applications).
Each channel contains analog input clamp protection, a PGA, a low-pass filter, and a 16 -bit SAR ADC. The analog input impedance of the AD7606B is typically $5 \mathrm{M} \Omega$ to allow a direct

NOTES

1. IxP AND IxN REPRESENT THE CURRENTS IN PHASE x, WHERE $x=A, B, C$, OR N. VxN/VxP REPRESENT THE VOLTAGES AT THESE TWO LINES. FOR EXAMPLE, IAP (POSITIVE PATH) AND IAN (NEGATIVE PATH) REPRESENT THE CURRENTS IN PHASE A.

LAYOUT GUIDELINES

Follow these layout guidelines when designing the PCB that houses the AD7606B:

- The analog and digital sections are separated and confined to different areas of the board.
- Use at least one ground plane. This plane can be common or split between the digital and analog sections. In the case of a split plane, join the digital and analog ground planes in only one place, preferably as close as possible to the AD7606B.
- If the AD7606B is in a system where multiple devices require analog-to-digital ground connections, make the connection at only one point: a star ground point that is established as close as possible to the AD7606B.
- Make stable connections to the ground plane. Avoid sharing one connection for multiple ground pins. Use individual vias or multiple vias to the ground plane for each ground pin.
- Avoid running digital lines under the device because doing so couples noise on the die. Allow the analog ground plane to run under the AD7606B to avoid noise coupling.
- Shield fast switching signals like CONVST, or clocks with digital ground to avoid radiating noise to other sections of the board and ensure that they never run near analog signal paths.
- Avoid crossover of digital and analog signals.
- Traces on layers in close proximity on the board run at right angles to each other to reduce the effect of feedthrough through the board.
- Power supply lines to the $\mathrm{AV}_{\mathrm{CC}}$ and $\mathrm{V}_{\text {DRIVE }}$ pins on the AD7606B use as large a trace as possible to provide low impedance paths and reduce the effect of glitches on the power supply lines. Where possible, use supply planes and make stable connections between the AD7606B supply pins and the power tracks on the board. Use a single via or multiple vias for each supply pin.
- Place the decoupling capacitors close to (ideally, directly against) the supply pins and their corresponding ground pins. Place the decoupling capacitors for the REFIN/ REFOUT pin and the REFCAPA pin and REFCAPB pin as close as possible to their respective AD7606B pins. Where possible, place the pins on the same side of the board as the AD7606B device.

Figure 89 shows the recommended decoupling on the top layer of the AD7606B board. Figure 90 shows bottom layer decoupling, which is used for the four $A V_{C C}$ pins and the $V_{\text {DRIVE }}$ pin decoupling. Where the ceramic 100 nF caps for the $A V_{C C}$ pins are placed close to their respective device pins, a single 100 nF capacitor can be shared between Pin 37 and Pin 38.

Figure 89. Top Layer Decoupling REFIN/REFOUT, REFCAPA, REFCAPB, and REGCAP Pins

Figure 90. Bottom Layer Decoupling

To ensure stable device to device performance matching in a system that contains multiple AD7606B devices, a symmetrical layout between the AD7606B devices is important.
Figure 91 shows a layout with two AD7606B devices. The $\mathrm{AV}_{\mathrm{CC}}$ supply plane runs to the right of both devices, and the $V_{\text {Drive }}$ supply track runs to the left of the two devices. The reference chip is positioned between the two devices, and the reference voltage track runs north to Pin 42 of U1 and south to Pin 42 of U2. A solid ground plane is used.
These symmetrical layout principles can also be applied to a system that contains more than two AD7606B devices. The AD7606B devices can be placed in a north/south direction, with the reference voltage located midway between the devices and the reference track running in the north/south direction, similar to Figure 91.

Figure 91. Layout for Multiple AD7606B Devices—Top Layer and Supply Plane Layer

REGISTER SUMMARY

Table 32. Register Summary

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x01	STATUS	$\begin{aligned} & \hline \text { RESET_- } \\ & \text { DETECT } \end{aligned}$	DIGITAL_ ERROR	RESERVED						0x00	R
0x02	CONFIG	RESERVED	STATUS HEADER	EXT_OS_CLOCK	DOUT_FORMAT		RESERVED	OPERATION_MODE		0x08	R/W
0x03	$\begin{aligned} & \text { RANGE_CH1_ } \\ & \text { CH2 } \end{aligned}$	CH2_RANGE				CH1_RANGE				0×33	R/W
0x04	$\begin{aligned} & \text { RANGE_CH3_ } \\ & \text { CH4 } \end{aligned}$	CH4_RANGE				CH3_RANGE				0x33	R/W
0x05	$\begin{aligned} & \text { RANGE_CH5_ } \\ & \text { CH6 } \end{aligned}$	CH6_RANGE				CH5_RANGE				0×33	R/W
0x06	$\begin{aligned} & \text { RANGE_CH7_ } \\ & \text { CH8 } \end{aligned}$	CH8_RANGE				CH7_RANGE				0x33	R/W
0x08	OVERSAMPLING	OS_PAD				OS_RATIO				0x00	R/W
0x09	CH1_GAIN	RESERVED		CH1_GAIN						0x00	R/W
0x0A	CH2_GAIN	RESERVED		CH2_GAIN						0x00	R/W
0x0B	CH3_GAIN	RESERVED		CH3_GAIN						0x00	R/W
0x0C	CH4_GAIN	RESERVED		CH4_GAIN						0x00	R/W
0x0D	CH5_GAIN	RESERVED		CH5_GAIN						0x00	R/W
0x0E	CH6_GAIN	RESERVED		CH6_GAIN						0x00	R/W
0x0F	CH7_GAIN	RESERVED		CH7_GAIN						0x00	R/W
0x10	CH8_GAIN	RESERVED		CH8_GAIN						0x00	R/W
0x11	CH1_OFFSET	CH1_OFFSET								0x80	R/W
0x12	CH2_OFFSET	CH2_OFFSET								0x80	R/W
0x13	CH3_OFFSET	CH3_OFFSET								0x80	R/W
0x14	CH4_OFFSET	CH4_OFFSET								0x80	R/W
0x15	CH5_OFFSET	CH5_OFFSET								0x80	R/W
0x16	CH6_OFFSET	CH6_OFFSET								0x80	R/W
0x17	CH7_OFFSET	CH7_OFFSET								0x80	R/W
0x18	CH8_OFFSET	CH8_OFFSET								0x80	R/W
0x19	CH1_PHASE	CH1_PHASE_OFFSET								0x00	R/W
0x1A	CH2_PHASE	CH2_PHASE_OFFSET								0x00	R/W
0x1B	CH3_PHASE	CH3_PHASE_OFFSET								0x00	R/W
0x1C	CH4_PHASE	CH4_PHASE_OFFSET								0x00	R/W
0x1D	CH5_PHASE	CH5_PHASE_OFFSET								0x00	R/W
0x1E	CH6_PHASE	CH6_PHASE_OFFSET								0x00	R/W
0x1F	CH7_PHASE	CH7_PHASE_OFFSET								0x00	R/W
0x20	CH8_PHASE	CH8_PHASE_OFFSET								0x00	R/W
0x21	DIGITAL_DIAG_ ENABLE	INTERFACE CHECK_EN	$\begin{aligned} & \text { CLK_FS_OS_} \\ & \text { COUNTER_EN } \end{aligned}$	BUSY_STUCK_ HIGH_ERR_EN	$\begin{aligned} & \text { SPI_READ_ } \\ & \text { ERR_EN } \end{aligned}$	SPI_WRITE_ ERR_EN	$\begin{aligned} & \text { INT_CRC_ } \\ & \text { ERR_EN } \end{aligned}$	$\begin{aligned} & \text { MM_CRC_ } \\ & \text { ERR_EN } \end{aligned}$		0x01	R/W
0x22	DIGITAL_DIAG_ ERR	RESERVED		$\begin{aligned} & \text { BUSY_STUCK_ } \\ & \text { HIGH_ERR } \end{aligned}$	$\begin{aligned} & \hline \text { SPI_READ_ } \\ & \text { ERR } \end{aligned}$	$\begin{aligned} & \text { SPI_WRITE_ } \\ & \text { ERR } \end{aligned}$	INT_CRC_ERR	$\begin{aligned} & \text { MM_CRC_ } \\ & \text { ERR } \end{aligned}$	ROM CRC ERR	0x00	R/W
0x23	$\begin{aligned} & \text { OPEN_- } \\ & \text { DETECT_- } \\ & \text { ENABLE } \end{aligned}$	$\begin{aligned} & \text { CH8_OPEN_ } \\ & \text { DETECT_EN } \end{aligned}$	$\begin{array}{\|l} \text { CH7_OPEN_- } \\ \text { DETECT_EN } \end{array}$	$\begin{array}{\|l} \text { CH6_OPEN_ } \\ \text { DETECT_EN } \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{CH} 5 _O P E N \\ \text { DETECT_EN } \end{array}$	$\begin{aligned} & \text { CH4_OPEN_ } \\ & \text { DETECT_EN } \end{aligned}$	$\begin{aligned} & \text { CH3_OPEN_- } \\ & \text { DETECT_EN } \end{aligned}$	$\begin{aligned} & \text { CH2_OPEN_ } \\ & \text { DETECT_EN } \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{1}-{ }_{2} \mathrm{OPEN}_{-} \\ & \text {DETECT_- }_{-} \\ & \text {EN } \end{aligned}$	0x00	R/W
0x24	$\begin{aligned} & \text { OPEN_- } \\ & \text { DETECTED } \\ & \hline \end{aligned}$	CH8_OPEN	CH7_OPEN	CH6_OPEN	CH5_OPEN	CH4_OPEN	CH3_OPEN	CH2_OPEN	$\begin{aligned} & \mathrm{CH} 1- \\ & \mathrm{OPEN} \end{aligned}$	0x00	R/W
0x25	$\begin{aligned} & \text { AIN_OV_UV- } \\ & \text { DIAG_ENABLE } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CH8_OV_ } \\ \text { UV_EN } \end{array}$	CH7_OV_UV_EN	CH6_OV_UV_EN	$\begin{aligned} & \text { CH5_OV_ } \\ & \text { UV_EN } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{CH} 4 _O V_{-} \\ & \text {UV_EN } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { CH3_OV_ } \\ & \text { UV_EN } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{CH} 2 _O V_{-} \\ & \text {UV_EN } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CH1_OV_ } \\ & \text { UV_EN } \\ & \hline \end{aligned}$	0x00	R/W
0x26	AIN_OV_DIAG_ ERROR	CH8_OV_ERR	CH7_OV_ERR	CH6_OV_ERR	CH5_OV_ERR	CH4_OV_ERR	CH3_OV_ERR	CH2_OV_ERR	$\begin{aligned} & \text { CH1_- } \\ & \text { OV_ERR } \end{aligned}$	0x00	R/W
0x27	AIN_UV_DIAG_ ERROR	CH8_UV_ERR	CH7_UV_ERR	CH6_UV_ERR	CH5_UV_ERR	CH4_UV_ERR	CH3_UV_ERR	CH2_UV_ERR	CH1_ UV_ERR	0x00	R/W
0x28	$\begin{aligned} & \text { DIAGNOSTIC } \\ & \text { MUX_CH1_2 } \end{aligned}$	RESERVED		CH2_DIAG_MUX_CTRL			CH1_DIAG_MUX_CTRL			0×00	R/W
0x29	DIAGNOSTIC MUX_CH3_4	RESERVED		CH4_DIAG_MUX_CTRL			CH3_DIAG_MUX_CTRL			0x00	R/W

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2A	DIAGNOSTIC MUX_CH5_6		RESERVED	CH6_DIAG_MUX_CTRL			CH5_DIAG_MUX_CTRL			0x00	R/W
0x2B	$\begin{aligned} & \text { DIAGNOSTIC_ } \\ & \text { MUX_CH7_8 } \end{aligned}$		RESERVED		CH8_DIAG_MUX_CTRL		CH7_DIAG_MUX_CTRL			0x00	R/W
0x2C	OPEN DETECT QUEUE	OPEN_DETECT_QUEUE								0x00	R/W
0x2D	FS_CLK COUNTER	CLK_FS_COUNTER								0x00	R
0x2E	OS_CLK COUNTER	CLK_OS_COUNTER								0x00	R
0x2F	ID	DEVICE_ID					SILICON_REVISION			0x14	R

REGISTER DETAILS

Address: 0x01, Reset: 0x00, Name: STATUS

Table 33. Bit Descriptions for STATUS

Bits	Bit Name	Description	Reset	Access
7	RESET_DETECT	A reset has been detected, either full or partial reset.	0×0	R
6	DIGITAL_ERROR	Error present in DIGITAL_DIAG_ERROR register.	0×0	R
$[5: 0]$	RESERVED	Reserved.	0×0	R

Address: 0x02, Reset: 0x08, Name: CONFIG

Table 34. Bit Descriptions for CONFIG

Bits	Bit Name	Description	Reset	Access
7	RESERVED	Reserved.	0x0	R
6	STATUS_HEADER	Enable STATUS header to be appended to ADC data in both serial and parallel interface.	0x0	R/W
5	EXT_OS_CLOCK	In oversampling mode, enable external oversampling clock. Oversampling conversions are triggered through a clock signal applied to CONVST pin, instead of managed by the internal oversampling clock.	0x0	R/W
[4:3]	DOUT_FORMAT	Number of Doutx lines used in serial mode when reading conversions. $\begin{aligned} & \text { 00: } 1 \text { Doutx. } \\ & \text { 01: } 2 \text { Doutx. } \\ & \text { 10:4 Doutx. } \\ & \text { 11: } 1 \text { Doutx. } \end{aligned}$	0x1	R/W
2	RESERVED	Reserved.	0x0	R
[1:0]	OPERATION_MODE	Operation mode. 00: normal mode. 01: standby mode. 10: autostandby mode. 11: shutdown mode.	0×0	R/W

Address: 0x03, Reset: 0x33, Name: RANGE_CH1_CH2

Table 35. Bit Descriptions for RANGE_CH1_CH2

Bits	Bit Name	Description	Reset	Access
[7:4]	CH2_RANGE	Range options for Channel 2. 0000 : $\pm 2.5 \mathrm{~V}$ single-ended range. 0001: $\pm 5 \mathrm{~V}$ single-ended range. 0010: $\pm 10 \mathrm{~V}$ single-ended range. 0011: $\pm 10 \mathrm{~V}$ single-ended range. $0100: \pm 10 \mathrm{~V}$ single-ended range. $0101: \pm 10 \mathrm{~V}$ single-ended range. 0110: $\pm 10 \mathrm{~V}$ single-ended range. 0111: $\pm 10 \mathrm{~V}$ single-ended range. 1000: $\pm 10 \mathrm{~V}$ single-ended range. 1001: $\pm 10 \mathrm{~V}$ single-ended range. 1010: $\pm 10 \mathrm{~V}$ single-ended range. 1011: $\pm 10 \mathrm{~V}$ single-ended range. 1100: reserved. 1101: reserved. 1110: reserved. 1111: reserved.	0x3	R/W
[3:0]	CH1_RANGE	Range options for Channel 1. 0000 : $\pm 2.5 \mathrm{~V}$ single-ended range. 0001: $\pm 5 \mathrm{~V}$ single-ended range. $0010: \pm 10 \mathrm{~V}$ single-ended range. $0011: \pm 10 \mathrm{~V}$ single-ended range. 0100: $\pm 10 \mathrm{~V}$ single-ended range. $0101: \pm 10 \mathrm{~V}$ single-ended range. 0110: $\pm 10 \mathrm{~V}$ single-ended range. 0111: $\pm 10 \mathrm{~V}$ single-ended range. 1000: $\pm 10 \mathrm{~V}$ single-ended range. 1001: $\pm 10 \mathrm{~V}$ single-ended range. 1010: $\pm 10 \mathrm{~V}$ single-ended range. 1011: $\pm 10 \mathrm{~V}$ single-ended range. 1100: reserved. 1101: reserved. 1110: reserved. 1111: reserved.	0x3	R/W

Address: 0x04, Reset: 0x33, Name: RANGE_CH3_CH4

Table 36. Bit Descriptions for RANGE_CH3_CH4

Bits	Bit Name	Description	Reset	Access
[7:4]	CH4_RANGE	Range options for Channel 4. 0000 : $\pm 2.5 \mathrm{~V}$ single-ended range. $0001: \pm 5 \mathrm{~V}$ single-ended range. 0010: $\pm 10 \mathrm{~V}$ single-ended range. 0011: $\pm 10 \mathrm{~V}$ single-ended range. $0100: \pm 10 \mathrm{~V}$ single-ended range. $0101: \pm 10 \mathrm{~V}$ single-ended range. 0110: $\pm 10 \mathrm{~V}$ single-ended range. 0111: $\pm 10 \mathrm{~V}$ single-ended range. 1000: $\pm 10 \mathrm{~V}$ single-ended range. 1001: $\pm 10 \mathrm{~V}$ single-ended range. 1010: $\pm 10 \mathrm{~V}$ single-ended range. 1011: $\pm 10 \mathrm{~V}$ single-ended range. 1100: reserved. 1101: reserved. 1110: reserved. 1111: reserved.	0x3	R/W
[3:0]	CH3_RANGE	Range options for Channel 3. 0000 : $\pm 2.5 \mathrm{~V}$ single-ended range. $0001: \pm 5 \mathrm{~V}$ single-ended range. $0010: \pm 10 \mathrm{~V}$ single-ended range. $0011: \pm 10 \mathrm{~V}$ single-ended range. $0100: \pm 10 \mathrm{~V}$ single-ended range. $0101: \pm 10 \mathrm{~V}$ single-ended range. 0110: $\pm 10 \mathrm{~V}$ single-ended range. $0111: \pm 10 \mathrm{~V}$ single-ended range. 1000: $\pm 10 \mathrm{~V}$ single-ended range. 1001: $\pm 10 \mathrm{~V}$ single-ended range. 1010: $\pm 10 \mathrm{~V}$ single-ended range. 1011: $\pm 10 \mathrm{~V}$ single-ended range. 1100: reserved. 1101: reserved. 1110: reserved. 1111: reserved.	0x3	R/W

Address: 0x05, Reset: 0x33, Name: RANGE_CH5_CH6

Table 37. Bit Descriptions for RANGE_CH5_CH6

Bits	Bit Name	Description	Reset	Access
[7:4]	CH6_RANGE	Range options for Channel 6. 0000 : $\pm 2.5 \mathrm{~V}$ single-ended range. 0001: $\pm 5 \mathrm{~V}$ single-ended range. 0010: $\pm 10 \mathrm{~V}$ single-ended range. 0011: $\pm 10 \mathrm{~V}$ single-ended range. $0100: \pm 10 \mathrm{~V}$ single-ended range. $0101: \pm 10 \mathrm{~V}$ single-ended range. $0110: \pm 10 \mathrm{~V}$ single-ended range. 0111: $\pm 10 \mathrm{~V}$ single-ended range. 1000: $\pm 10 \mathrm{~V}$ single-ended range. 1001: $\pm 10 \mathrm{~V}$ single-ended range. 1010: $\pm 10 \mathrm{~V}$ single-ended range. 1011: $\pm 10 \mathrm{~V}$ single-ended range. 1100: reserved. 1101: reserved. 1110: reserved. 1111: reserved.	0x3	R/W
[3:0]	CH5_RANGE	Range options for Channel 5. 0000 : $\pm 2.5 \mathrm{~V}$ single-ended range. 0001: $\pm 5 \mathrm{~V}$ single-ended range. 0010: $\pm 10 \mathrm{~V}$ single-ended range. $0011: \pm 10 \mathrm{~V}$ single-ended range. 0100: $\pm 10 \mathrm{~V}$ single-ended range. $0101: \pm 10 \mathrm{~V}$ single-ended range. 0110: $\pm 10 \mathrm{~V}$ single-ended range. 0111: $\pm 10 \mathrm{~V}$ single-ended range. 1000: $\pm 10 \mathrm{~V}$ single-ended range. 1001: $\pm 10 \mathrm{~V}$ single-ended range. 1010: $\pm 10 \mathrm{~V}$ single-ended range. 1011: $\pm 10 \mathrm{~V}$ single-ended range. 1100: reserved. 1101: reserved. 1110: reserved. 1111: reserved.	0x3	R/W

Address: 0x06, Reset: 0x33, Name: RANGE_CH7_CH8

Table 38. Bit Descriptions for RANGE_CH7_CH8

Bits	Bit Name	Description	Reset	Access
[7:4]	CH8_RANGE	Range options for Channel 8. $0000: \pm 2.5 \mathrm{~V}$ single-ended range. 0001: $\pm 5 \mathrm{~V}$ single-ended range. $0010: \pm 10 \mathrm{~V}$ single-ended range. 0011: $\pm 10 \mathrm{~V}$ single-ended range. $0100: \pm 10 \mathrm{~V}$ single-ended range. 0101: $\pm 10 \mathrm{~V}$ single-ended range. 0110: $\pm 10 \mathrm{~V}$ single-ended range. 0111: $\pm 10 \mathrm{~V}$ single-ended range. 1000: $\pm 10 \mathrm{~V}$ single-ended range. 1001: $\pm 10 \mathrm{~V}$ single-ended range. 1010: $\pm 10 \mathrm{~V}$ single-ended range. 1011: $\pm 10 \mathrm{~V}$ single-ended range. 1100: reserved. 1101: reserved. 1110: reserved. 1111: reserved.	0x3	R/W
[3:0]	CH7_RANGE	Range options for Channel 7. $0000: \pm 2.5 \mathrm{~V}$ single-ended range. 0001: $\pm 5 \mathrm{~V}$ single-ended range. $0010: \pm 10 \mathrm{~V}$ single-ended range. $0011: \pm 10 \mathrm{~V}$ single-ended range. $0100: \pm 10 \mathrm{~V}$ single-ended range. 0101: $\pm 10 \mathrm{~V}$ single-ended range. $0110: \pm 10 \mathrm{~V}$ single-ended range. 0111: $\pm 10 \mathrm{~V}$ single-ended range. 1000: $\pm 10 \mathrm{~V}$ single-ended range. 1001: $\pm 10 \mathrm{~V}$ single-ended range. 1010: $\pm 10 \mathrm{~V}$ single-ended range. 1011: $\pm 10 \mathrm{~V}$ single-ended range. 1100: reserved. 1101: reserved. 1110: reserved. 1111: reserved.	0x3	R/W

AD7606B

Address: 0x08, Reset: 0x00, Name: OVERSAMPLING

Table 39. Bit Descriptions for OVERSAMPLING

Bits	Bit Name	Description	Reset	Access
[7:4]	OS_PAD	Oversampling padding, extend the internal oversampling period allowing evenly spaced sampling between CONVST rising edges.	0x0	R/W
[3:0]	OS_RATIO	Oversampling ratio. 0 : no oversampling. 1: oversampling by 2. 10: oversampling by 4. 11: oversampling by 8 . 100: oversampling by 16 . 101: oversampling by 32 . 110: oversampling by 64 . 111: oversampling by 128 . 1000: oversampling by 256 . 1001: oversampling off. 1010: oversampling off. 1011: oversampling off. 1100: oversampling off. 1101: oversampling off. 1110: oversampling off. 1111: oversampling off.	0x0	R/W

Address: 0x09, Reset: 0x00, Name: CH1_GAIN

Table 40. Bit Descriptions for CH1_GAIN

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
$[5: 0]$	CH1_GAIN	RFLTER Calibration register. Resolution: 1024Ω. Range: 0Ω to $65,536 \Omega$.	0×0	R/W

Address: 0x0A, Reset: 0x00, Name: CH2_GAIN

Table 41. Bit Descriptions for CH2_GAIN

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
$[5: 0]$	CH2_GAIN	RFLITER Calibration register. Resolution: 1024Ω. Range: 0Ω to $65,536 \Omega$.	0×0	R/W

Address: 0x0B, Reset: 0x00, Name: CH3_GAIN

Table 42. Bit Descriptions for CH3_GAIN

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
$[5: 0]$	CH3_GAIN	RFIITER calibration register. Resolution: 1024Ω. Range: 0Ω to $65,536 \Omega$.	0×0	R/W

Address: 0x0C, Reset: 0x00, Name: CH4_GAIN

Table 43. Bit Descriptions for CH4_GAIN

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
$[5: 0]$	CH4_GAIN	RFLTTER Calibration register. Resolution: 1024Ω. Range: 0Ω to $65,536 \Omega$.	0×0	R/W

Address: 0x0D, Reset: 0x00, Name: CH5_GAIN

Table 44. Bit Descriptions for CH5_GAIN

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
$[5: 0]$	CH5_GAIN	RFITER calibration register. Resolution: 1024Ω. Range: 0Ω to $65,536 \Omega$.	0×0	R/W

Address: 0x0E, Reset: 0x00, Name: CH6_GAIN

Table 45. Bit Descriptions for CH6_GAIN

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
$[5: 0]$	CH6_GAIN	RFITTER calibration register. Resolution: 1024Ω. Range: 0Ω to $65,536 \Omega$.	0×0	R/W

AD7606B

Address: 0x0F, Reset: 0x00, Name: CH7_GAIN

Table 46. Bit Descriptions for CH7_GAIN

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
$[5: 0]$	CH7_GAIN	RFITTR Calibration register. Resolution: 1024Ω. Range: 0Ω to $65,536 \Omega$.	0×0	R/W

Address: 0x10, Reset: 0x00, Name: CH8_GAIN

Table 47. Bit Descriptions for CH8_GAIN

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
$[5: 0]$	CH8_GAIN	RFLTTER Calibration register. Resolution: 1024Ω. Range: 0Ω to $65,536 \Omega$.	0×0	R / W

Address: 0x11, Reset: 0x80, Name: CH1_OFFSET

\[\)| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\(|

\]

[7:0] CH1_OFFSET (R/W)
Offset register. Range from -128
LSB to +127 LSB.

Table 48. Bit Descriptions for CH1_OFFSET

Bits	Bit Name	Description	Reset
$[7: 0]$	CH1_OFFSET	Offset register. Range from -128 LSB to +127 LSB. $0 \times 00=-128$ LSB offset; $0 \times 80=$ no offset; $0 x F F=+127$ LSB offset.	$0 x 80$

Address: 0x12, Reset: 0x80, Name: CH2_OFFSET

Table 49. Bit Descriptions for CH2_OFFSET

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH2_OFFSET	Offset register. Range from -128 LSB to +127 LSB. $0 \times 00=-128$ LSB offset; $0 \times 80=$ no offset; $0 \times F F=+127$ LSB offset.	0×80	R/W

Address: 0x13, Reset: 0x80, Name: CH3_OFFSET

7	6	5	4	3	2	1	0
1	0	0	0	0	0	0	0
L							
[7:0] CH3_OFFSET (R/W)							
Offset register. Range from -128							
LSB to +127 LSB.							

Table 50. Bit Descriptions for CH3_OFFSET

Bits	Bit Name	Description	Reset	Access
[7:0]	CH3_OFFSET	Offset register. Range from -128 LSB to +127 LSB. $0 \times 00=-128$ LSB offset; $0 \times 80=$ no offset; $0 x F F=+127$ LSB offset.	0x80	R/W

Address: 0x14, Reset: 0x80, Name: CH4_OFFSET

7	6	5	4	3	2	1	0
1	0	0	0	0	0	0	0

[7:0] CH4_OFFSET (R/W)
Offset register. Range from -128
LSB to +127 LSB.

Table 51. Bit Descriptions for CH4_OFFSET

Bits	Bit Name	Description	Reset	Access
[7:0]	CH4_OFFSET	Offset register. Range from -128 LSB to +127 LSB. $0 \times 00=-128$ LSB offset; $0 \times 80=$ no offset; $0 x F F=+127$ LSB offset.	0x80	R/W

Address: 0x15, Reset: 0x80, Name: CH5_OFFSET

Table 52. Bit Descriptions for CH5_OFFSET

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH5_OFFSET	Offset register. Range from -128 LSB to +127 LSB. $0 \times 00=-128$ LSB offset; $0 \times 80=$ no offset; $0 \times F F=+127 ~ L S B ~ o f f s e t . ~$	0×80	R/W

Address: 0x16, Reset: 0x80, Name: CH6_OFFSET

Table 53. Bit Descriptions for CH6_OFFSET

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH6_OFFSET	Offset register. Range from -128 LSB to +127 LSB. $0 \times 00=-128$ LSB offset; $0 \times 80=$ no offset; $0 \times F F=+127$ LSB offset.	0×80	R/W

AD7606B

Address: 0x17, Reset: 0x80, Name: CH7_OFFSET

7	6	5	4	3	2	1	0
1	0	0	0	0	0	0	0
2							
[7:0] CH7_OFFSET (R/W)							
Offset register. Range from -128							
LSB to +127 LSB.							

Table 54. Bit Descriptions for CH7_OFFSET

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH7_OFFSET	Offset register. Range from -128 LSB to $+127 \mathrm{LSB} .0 \times 00=-128 \mathrm{LSB}$ offset; $0 \times 80=$ no offset; $0 \times F F=+127 \mathrm{LSB}$ offset.	0×80	R/W

Address: 0x18, Reset: 0x80, Name: CH8_OFFSET

Table 55. Bit Descriptions for CH8_OFFSET

Bits	Bit Name	Description	Reset	Access
[7:0]	CH8_OFFSET	Offset register. Range from -128 LSB to +127 LSB. $0 \times 00=-128$ LSB offset; $0 \times 80=$ no offset; $0 x F F=+127$ LSB offset.	0x80	R/W

Address: 0x19, Reset: 0x00, Name: CH1_PHASE

Table 56. Bit Descriptions for CH1_PHASE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH1_PHASE_OFFSET	Phase delay from 0 to 318.75μ s in steps of $1.25 \mu \mathrm{~s}$.	0×0	R/W

Address: 0x1A, Reset: 0x00, Name: CH2_PHASE

Table 57. Bit Descriptions for CH2_PHASE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH2_PHASE_OFFSET	Phase delay from 0 to 318.75μ s in steps of $1.25 \mu \mathrm{~s}$.	0×0	R/W

Address: 0x1B, Reset: 0x00, Name: CH3_PHASE

Table 58. Bit Descriptions for CH3_PHASE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH3_PHASE_OFFSET	Phase delay from 0 to 318.75μ s in steps of $1.25 \mu \mathrm{~s}$.	0×0	R/W

Address: 0x1C, Reset: 0x00, Name: CH4_PHASE

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

[7:0] CH4_PHASE_OFFSET (R/W)
Phase delay from $0 \mu \mathrm{~s}$ to 318.75
$\mu \mathrm{s}$ in steps of $1.25 \mu \mathrm{~s}$
Table 59. Bit Descriptions for CH4_PHASE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH4_PHASE_OFFSET	Phase delay from 0 to 318.75μ s in steps of $1.25 \mu \mathrm{~s}$.	0×0	R/W

Address: 0x1D, Reset: 0x00, Name: CH5_PHASE

Table 60. Bit Descriptions for CH5_PHASE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH5_PHASE_OFFSET	Phase delay from 0 to 318.75μ s in steps of $1.25 \mu \mathrm{~s}$.	0×0	R/W

Address: 0x1E, Reset: 0x00, Name: CH6_PHASE

Table 61. Bit Descriptions for CH6_PHASE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH6_PHASE_OFFSET	Phase delay from 0 to $318.75 \mu \mathrm{~s}$ in steps of $1.25 \mu \mathrm{~s}$.	0×0	R/W

Address: 0x1F, Reset: 0x00, Name: CH7_PHASE

Table 62. Bit Descriptions for CH7_PHASE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH7_PHASE_OFFSET	Phase delay from 0 to 318.75μ s in steps of $1.25 \mu \mathrm{~s}$.	0×0	R/W

Address: 0x20, Reset: 0x00, Name: CH8_PHASE

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0

[7:0] CH8_PHASE_OFFSET (R/W)
Phase delay from 0μ s to 318.75 $\mu \mathrm{s}$ in steps of $1.25 \mu \mathrm{~s}$

Table 63. Bit Descriptions for CH8_PHASE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CH8_PHASE_OFFSET	Phase delay from 0 to 318.75μ s in steps of $1.25 \mu \mathrm{~s}$.	0×0	R/W

AD7606B

Address: 0x21, Reset: 0x01, Name: DIGITAL_DIAG_ENABLE

Table 64. Bit Descriptions for DIGITAL_DIAG_ENABLE

Bits	Bit Name	Description	Reset	Access
7	INTERFACE_CHECK_EN	Enable interface check. Provides a fixed data on each channel when reading ADC data.	0×0	R/W
6	CLK_FS_OS_COUNTER_EN	Enable FS and OS clock counter.	0×0	R/W
5	BUSY_STUCK_HIGH_ERR_EN	Enable busy stuck high check.	0×0	R/W
4	SPI_READ_ERR_EN	Enable checking if attempting to read from an invalid address.	0×0	R/W
3	SPI_WRITE_ERR_EN	Enable checking if attempting to write to an invalid address.	0×0	R/W
2	INT_CRC_ERR_EN	Enable interface CRC check.	0×0	R/W
1	MM_CRC_ERR_EN	Enable memory map CRC check.	0×0	R/W
0	ROM_CRC_ERR_EN	Enable ROM CRC check.	0×1	R/W

Address: 0x22, Reset: 0x00, Name: DIGITAL_DIAG_ERR

Table 65. Bit Descriptions for DIGITAL_DIAG_ERR

Bits	Bit Name	Description	Reset	Access
$[7: 6]$	RESERVED	Reserved.	0×0	R
5	BUSY_STUCK_HIGH_ERR	Busy stuck high error. Busy line has been at high logic level for longer than $4 \mu \mathrm{~s}$.	0×0	R/W1C
4	SPI_READ_ERR	SPI invalid read address.	0×0	R/W1C
3	SPI_WRITE_ERR	SPI invalid write address.	0×0	R/W1C
2	INT_CRC_ERR	Interface CRC error.	0×0	R/W1C
1	MM_CRC_ERR	Memory map CRC error.	0×0	R/W1C
0	ROM_CRC_ERR	ROM CRC error.	0×0	R/W1C

Address: 0x23, Reset: 0x00, Name: OPEN_DETECT_ENABLE

Table 66. Bit Descriptions for OPEN_DETECT_ENABLE

Bits	Bit Name	Description	Reset	Access
7	CH8_OPEN_DETECT_EN	In automatic mode, enables analog input open detection for Channel 8. In manual mode, sets the PGA common mode to high.	0×0	R/W
6	CH7_OPEN_DETECT_EN	In automatic mode, enables analog input open detection for Channel 7. In manual mode, sets the PGA common mode to high.	0×0	R/W
5	CH6_OPEN_DETECT_EN	In automatic mode, enables analog input open detection for Channel 6. In manual mode, sets the PGA common mode to high.	0×0	R/W
4	CH5_OPEN_DETECT_EN	In automatic mode, enables analog input open detection for Channel 5. In manual mode, sets the PGA common mode to high.	0×0	R/W
3	CH4_OPEN_DETECT_EN	In automatic mode, enables analog input open detection for Channel 4. In manual mode, sets the PGA common mode to high.	0×0	R/W
2	CH3_OPEN_DETECT_EN	In automatic mode, enables analog input open detection for Channel 3. In manual mode, sets the PGA common mode to high.	0×0	R/W
1	CH2_OPEN_DETECT_EN	In automatic mode, enables analog input open detection for Channel 2. In manual mode, sets the PGA common mode to high.	0×0	R/W
0	CH1_OPEN_DETECT_EN	In automatic mode, enables analog input open detection for Channel 1. In manual mode, sets the PGA common mode to high.	0×0	R/W

Address: 0x24, Reset: 0x00, Name: OPEN_DETECTED

Table 67. Bit Descriptions for OPEN_DETECTED

Bits	Bit Name	Description	Reset	Access
7	CH8_OPEN	Analog Input 8 open detected.	0×0	R/W1C
6	CH7_OPEN	Analog Input 7 open detected.	0×0	R/W1C
5	CH6_OPEN	Analog Input 6 open detected.	0×0	R/W1C
4	CH5_OPEN	Analog Input 5 open detected.	0×0	R/W1C
3	CH4_OPEN	Analog Input 4 open detected.	0×0	R/W1C

AD7606B

Bits	Bit Name	Description	Reset	Access
2	CH3_OPEN	Analog Input 3 open detected.	0×0	R/W1C
1	CH2_OPEN	Analog Input 2 open detected.	0×0	R/W1C
0	CH1_OPEN	Analog Input 1 open detected.	0×0	R/W1C

Address: 0x25, Reset: 0x00, Name: AIN_OV_UV_DIAG_ENABLE

Table 68. Bit Descriptions for AIN_OV_UV_DIAG_ENABLE

Bits	Bit Name	Description	Reset	Access
7	CH8_OV_UV_EN	Enable overvoltage/undervoltage error check on Channel 8.	0×0	R/W
6	CH7_OV_UV_EN	Enable overvoltage/undervoltage error check on Channel 7.	0×0	R/W
5	CH6_OV_UV_EN	Enable overvoltage/undervoltage error check on Channel 6.	0×0	R/W
4	CH5_OV_UV_EN	Enable overvoltage/undervoltage error check on Channel 5.	0×0	R/W
3	CH4_OV_UV_EN	Enable overvoltage/undervoltage error check on Channel 4.	0×0	R/W
2	CH3_OV_UV_EN	Enable overvoltage/undervoltage error check on Channel 3.	0×0	R/W
1	CH2_OV_UV_EN	Enable overvoltage/undervoltage error check on Channel 2.	0×0	R/W
0	CH1_OV_UV_EN	Enable overvoltage/undervoltage error check on Channel 1.	0×0	R/W

Address: 0x26, Reset: 0x00, Name: AIN_OV_DIAG_ERROR

Table 69. Bit Descriptions for AIN_OV_DIAG_ERROR

Bits	Bit Name	Description	Reset	Access
7	CH8_OV_ERR	Overvoltage error on Channel 8.	0×0	R/W1C
6	CH7_OV_ERR	Overvoltage error on Channel 7.	0×0	R/W1C
5	CH6_OV_ERR	Overvoltage error on Channel 6.	0×0	R/W1C
4	CH5_OV_ERR	Overvoltage error on Channel 5.	0×0	R/W1C
3	CH4_OV_ERR	Overvoltage error on Channel 4.	0×0	R/W1C
2	CH3_OV_ERR	Overvoltage error on Channel 3.	0×0	R/W1C
1	CH2_OV_ERR	Overvoltage error on Channel 2.	0×0	R/W1C
0	CH1_OV_ERR	Overvoltage error on Channel 1.	0×0	R/W1C

Address: 0x27, Reset: 0x00, Name: AIN_UV_DIAG_ERROR

Table 70. Bit Descriptions for AIN_UV_DIAG_ERROR

Bits	Bit Name	Description	Reset	Access
7	CH8_UV_ERR	Undervoltage error on Channel 8.	0×0	R/W1C
6	CH7_UV_ERR	Undervoltage error on Channel 7.	0×0	R/W1C
5	CH6_UV_ERR	Undervoltage error on Channel 6.	0×0	R/W1C
4	CH5_UV_ERR	Undervoltage error on Channel 5.	0×0	R/W1C
3	CH4_UV_ERR	Undervoltage error on Channel 4.	0×0	R/W1C
2	CH3_UV_ERR	Undervoltage error on Channel 3.	0×0	R/W1C
1	CH2_UV_ERR	Undervoltage error on Channel 2.	0×0	R/W1C
0	CH1_UV_ERR	Undervoltage error on Channel 1.	0×0	R/W1C

Address: 0x28, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH1_2

Table 71. Bit Descriptions for DIAGNOSTIC_MUX_CH1_2

Bits	Bit Name	Description	Reset	Access
[7:6]	RESERVED	Reserved.	0x0	R
[5:3]	CH2_DIAG_MUX_CTRL	```Channel 2 diagnostic mux control. Select }\pm10\textrm{V}\mathrm{ range. 000: Analog input pin. 001: Die temperature = (output voltage -0.69068)/0.019328 +25'C 010: 2.5 V Reference }\times4 011: ALDO 1.8V }\times4 100: ALDO 1.8V }\times4 101:V 110: AGND. 111: AVcc.```	0x0	R/W
[2:0]	CH1_DIAG_MUX_CTRL	```Channel 1 diagnostic mux control. Select }\pm10\textrm{V}\mathrm{ range. 000: Analog input pin. 001:}\mathrm{ Die temperature = (output voltage -0.69068)/0.019328 +25 ' C. 010: 2.5 V Reference }\times4 011: ALDO 1.8V }\times4 100: DLDO 1.8 V }\times4 101:V VRIVE. 110: AGND. 111: AVcc.```	0x0	R/W

AD7606B

Address: 0x29, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH3_4

Table 72. Bit Descriptions for DIAGNOSTIC_MUX_CH3_4

Bits	Bit Name	Description	Reset	Access
[7:6]	RESERVED	Reserved.	0x0	R
[5:3]	CH4_DIAG_MUX_CTRL	```Channel 4 diagnostic mux control. Select }\pm10\textrm{V}\mathrm{ range. 000: Analog input pin. 001:}\mathrm{ Die temperature = (output voltage - 0.69068)/0.019328 + 25 ' C. 010: 2.5 V Reference }\times4 011: ALDO 1.8V }\times4 100: ALDO 1.8V }\times4 101:VDRIVE. 110: AGND. 111: AVcc.```	0x0	R/W
[2:0]	CH3_DIAG_MUX_CTRL	```Channel 3 diagnostic mux control. Select }\pm10\textrm{V}\mathrm{ range. 000: Analog input pin. 001: Die temperature = (output voltage -0.69068)/0.019328 +25 C 010: 2.5 V Reference }\times4 011: ALDO 1.8V }\times4 100: DLDO 1.8V }\times4 101:V 110: AGND. 111: AVcc.```	0x0	R/W

Address: 0x2A, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH5_6

Table 73. Bit Descriptions for DIAGNOSTIC_MUX_CH5_6

Bits	Bit Name	Description	Reset	Access
[7:6]	RESERVED	Reserved.	0x0	R
[5:3]	CH6_DIAG_MUX_CTRL	```Channel 6 diagnostic mux control. Select }\pm10\textrm{V}\mathrm{ range. 000: Analog input pin. 001: Die temperature = (output voltage - 0.69068)/0.019328 + 25 ' C. 010: 2.5 V Reference }\times4 011: ALDO 1.8V }\times4 100: ALDO 1.8V }\times4 101:VDRIVE. 110: AGND. 111: AVcc.```	0x0	R/W
[2:0]	CH5_DIAG_MUX_CTRL	```Channel 5 diagnostic mux control. Select }\pm10\textrm{V}\mathrm{ range. 000: Analog input pin. 001: Die temperature = (output voltage -0.69068)/0.019328 +25 C 010: 2.5 V Reference }\times4 011: ALDO 1.8V }\times4 100: DLDO 1.8V }\times4 101:V VRIVE. 110: AGND. 111: AVcc.```	0x0	R/W

Address: 0x2B, Reset: 0x00, Name: DIAGNOSTIC_MUX_CH7_8

Table 74. Bit Descriptions for DIAGNOSTIC_MUX_CH7_8

Bits	Bit Name	Description	Reset	Access
[7:6]	RESERVED	Reserved.	0x0	R
[5:3]	CH8_DIAG_MUX_CTRL	```Channel 8 diagnostic mux control. Select }\pm10\textrm{V}\mathrm{ range. 000: Analog input pin. 001: Die temperature = (output voltage - 0.69068)/0.019328 + 25 ' C . 010: 2.5 V Reference }\times4\mathrm{ . 011: ALDO 1.8V }\times4 100: ALDO 1.8V }\times4 101:V唄汭. 110: AGND. 111: AVcc.```	0x0	R/W
[2:0]	CH7_DIAG_MUX_CTRL	```Channel 7 diagnostic mux control. Select }\pm10\textrm{V}\mathrm{ range. 000: Analog input pin. 001: Die temperature = (output voltage - 0.69068)/0.019328 +25 ' C 010: 2.5 V Reference }\times4\mathrm{ . 011: ALDO 1.8V }\times4 100: DLDO 1.8V }\times4``` ```110: AGND. 111: AVcc.```	0x0	R/W

Address: 0x2C, Reset: 0x00, Name: OPEN_DETECT_QUEUE

Table 75. Bit Descriptions for OPEN_DETECT_QUEUE

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	OPEN_DETECT_QUEUE	Number of conversions for no change on output codes before enabling open detect function. Range $=2$ to 256. Queue $=1$ enables manual mode.	$0 x 0$	R/W

AD7606B

Address: 0x2D, Reset: 0x00, Name: FS_CLK_COUNTER

Table 76. Bit Descriptions for FS_CLK_COUNTER

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CLK_FS_COUNTER	Determine the frequency of the FS clock oscillator. Counter is incremented at Delay \times $16 \mathrm{MHz} / 64$.	0×0	R

Address: 0x2E, Reset: 0x00, Name: OS_CLK_COUNTER

Table 77. Bit Descriptions for OS_CLK_COUNTER

Bits	Bit Name	Description	Reset	Access
$[7: 0]$	CLK_OS_COUNTER	Determine the frequency of the OS clock oscillator. Counter resolution $=200 \mathrm{kHz}$.	0×0	R

Address: 0x2F, Reset: 0x14, Name: ID

Table 78. Bit Descriptions for ID

Bits	Bit Name	Description	Reset	Access
$[7: 4]$	DEVICE_ID	Generic. $0000:$ reserved. $0001: ~ A D 7606 B ~ g e n e r i c . ~$	0×1	R
		Silicon revision.	0×4	R
$[3: 0]$	SILICON_REVISION			

OUTLINE DIMENSIONS

Figure 92. 64-Lead Low Profile Quad Flat Package [LQFP]
(ST-64-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD7606BBSTZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$64-$ Lead Low Profile Quad Flat Package [LQFP]	ST-64-2
AD7606BBSTZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	64-Lead Low Profile Quad Flat Package [LQFP]	ST-64-2
EVAL-AD7606BFMCZ		Evaluation Board for the AD7606B	
EVAL-SDP-CH1Z		Evaluation Controller Board	

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}{ }^{1}$ DOUTA A TO DOUTD ARE SINGLE FUNCTIONS OF MULTIFUNCTION PINS, DB7/DOUTA TO DB10/DOUTD.

[^1]: ${ }^{1}$ Applies to serial mode when all four Doutx lines are selected.

[^2]: ${ }^{1} \mathrm{P}$ is power supply, DI is digital input, DO is digital output, REF is reference input/output, Al is analog input, and GND is ground.

[^3]: ${ }^{1}$ Only available in software mode.

[^4]: ${ }^{1}$ N/A means not applicable. Tie all N/A pins to AGND.
 ${ }^{2}$ Only used if 2 DoutX or 4 Dout X mode is selected in the CONFIG register. Otherwise, leave unconnected.
 ${ }^{3}$ Only used if 4 Doutx mode is selected in the CONFIG register. Otherwise, leave unconnected.

[^5]: ${ }^{1}$ See the Diagnostics section for more information.

[^6]: ${ }^{1}$ Table 30 represents the division of the data. Blank cells are for formatting purposes.
 ${ }^{2} \mathrm{X}$ means don't care.

