

8-Channel DAS with 16-Bit, 800 kSPS Bipolar Input, Simultaneous Sampling ADC

FEATURES

- ▶ 16-bit ADC with 800 kSPS on all channels
- Input buffer with 5 MΩ analog input impedance
- ▶ 1 ppm/°C typical positive and negative full-scale error drift
- ► -40°C to +125°C operating temperature range
- ▶ Single 5 V analog supply and 1.71 V to 3.6 V V_{DRIVE} supply
- ▶ ±21 V input clamp protection with 8 kV ESD
- Per channel selectable analog input ranges
 - ► Single-ended, bipolar: ±10 V, ±5 V, and ±2.5 V
- ▶ Per channel system phase, offset, and gain calibration
- ► Analog input open circuit detection feature
- ► ≤22 LSB (typical) open circuit code error (R_{PD} = 10 k Ω)
- Self diagnostics and monitoring features
- CRC error checking on read/write data and registers

FUNCTIONAL BLOCK DIAGRAM

APPLICATIONS

- Power line monitoring
- Protective relays
- Multiphase motor control
- Instrumentation and control systems
- Data acquisition systems

COMPANION PRODUCTS

- ▶ Voltage References: ADR4525, LT6657, LTC6655
- Digital Isolators: ADuM142E, ADuM6422A, ADuM5020, ADuM5028
- AD7606x Family Software Model
- Additional companion products on the AD7606B product page

 $^{1}\text{D}_{\text{OUT}}\text{A}$ TO $\text{D}_{\text{OUT}}\text{D}$ are single functions of multifunction pins, db7/d_{out}\text{A} to db10/d_outd. ^{2}SDI is a single function of the db11/SDI multifunction pin. $^{3}\overline{\text{RD}}$ and SCLK are single functions of the $\overline{\text{RD}}$ /SCLK multifunction pin.

Figure 1.

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

00

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Companion Products	. 1
Functional Block Diagram	.1
General Description	.3
Specifications	. 4
Timing Specifications	6
Universal Timing Specifications	6
Parallel Mode Timing Specifications	8

REVISION HISTORY

2/2022—Revision 0: Initial Version

Serial Mode Timing Specifications	9
Absolute Maximum Ratings	11
Electrostatic Discharge (ESD) Ratings	11
ESD Caution	11
Pin Configuration and Function Descriptions	12
Outline Dimensions	17
Die Specifications and Assembly	
Recommendations	17
Ordering Guide	17

GENERAL DESCRIPTION

The AD7606BBCHIPS is a 16-bit, simultaneous sampling, analog-to-digital data acquisition system (DAS) with eight channels. Each channel contains analog input clamp protection, a programmable gain amplifier (PGA), a low-pass filter, and a 16-bit successive approximation register (SAR), analog-to-digital converter (ADC). The AD7606BBCHIPS also contains a flexible digital filter, low drift, 2.5 V precision reference and reference buffer to drive the ADC and flexible parallel and serial interfaces.

The AD7606BBCHIPS operates from a single 5 V supply and accommodates ± 10 V, ± 5 V, and ± 2.5 V true bipolar input ranges when sampling at throughput rates of 800 kSPS for all channels. The input clamp protection tolerates voltages up to ± 21 V. The AD7606BBCHIPS has a 5 M Ω analog input impedance, resulting in less than 20 LSB bipolar zero code when the input signal is disconnected and pulled to ground through a 10 k Ω external resistor. The single supply operation, on-chip filtering, and high input impedance eliminate the need for external driver op amps, which require bipolar supplies. For applications with lower throughput rates, the AD7606BBCHIPS flexible digital filter can be used to improve noise performance.

Table 1. Bipolar Input, Simultaneous Sampling Family of Devices

In hardware mode, the AD7606BBCHIPS is fully compatible with the AD7606. In software mode, the following advanced features are available:

- ▶ Additional ±2.5 V analog input range.
- ► Analog input range (±10 V, ±5 V, and ±2.5 V), selectable per channel.
- Additional oversampling (OS) options, up to OS × 256.
- System gain, system offset, and system phase calibration per channel.
- ► Analog input open circuit detector.
- ▶ Diagnostic multiplexer.
- Monitoring functions (serial peripheral interface (SPI)) invalid read/write, cyclic redundancy check (CRC), overvoltage and undervoltage events, busy stuck monitor, and reset detection).

Note that throughout this data sheet, multifunction pads, such as the $\overline{\text{RD}}/\text{SCLK}$ pad, are referred to either by the entire pad name or by a single function of the pad, for example, the SCLK pad, when only that function is relevant.

Input Type	Resolution (Bits)	R _{IN} ¹ = 1 MΩ, 200 kSPS	R _{IN} = 5 MΩ, 800 kSPS	R _{IN} = 1 MΩ, 1 MSPS	Number of Channels
Single-Ended	18	AD7608		AD7606C-18 ²	8
	16	AD7606	AD7606B ²	AD7606C-16 ²	8
		AD7606-6			6
		AD7606-4			4
	14	AD7607			8
True Differential	18	AD7609		AD7606C-18 ²	8
	16			AD7606C-16 ²	8

¹ R_{IN} is input impedance.

² This state-of-the-art device is recommended for newer designs as an alternative to the AD7606, AD7608, and AD7609.

Voltage reference (V_{REF}) = 2.5 V external and internal, analog supply voltage (AV_{CC}) = 4.75 V to 5.25 V, logic supply voltage (V_{DRIVE}) = 1.71 V to 3.6 V, sample frequency (f_{SAMPLE}) = 800 kSPS, with no oversampling, T_A = -40°C to +125°C, single-ended input, and all input voltage ranges, unless otherwise noted.

ladie 2.				1	
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE	Input frequency (f_{IN}) = 1 kHz sine wave, unless otherwise noted				
Signal-to-Noise Ratio (SNR) ¹	No OS, ±10 V range		89.5		dB
	No OS, ±5 V range		88.5		dB
	No OS, ±2.5 V range		86		dB
	Oversampling ratio (OSR) = 16×, ±10 V range		93.5		dB
	OSR = 16×, ±5 V range		92		dB
	OSR = 16×, ±2.5 V range		89		dB
Total Harmonic Distortion (THD)	All input ranges				
	f _{SAMPLE} = 200 kSPS		-102		dB
	f _{SAMPLE} = 800 kSPS		-97		dB
Signal-to-Noise-and-Distortion	No OS, ±10 V range		88.5		dB
	No OS, ±5 V range		87.7		dB
	No OS, ±2.5 V range		85.5		dB
	OSR = 16×, ±10 V range		92		dB
	OSR = 16×, ±5 V range		91.3		dB
	OSR = 16×, ±2.5 V range		88.7		dB
Spurious-Free Dynamic Range (SFDR)			-104		dB
Channel to Channel Isolation	f _{IN} on unselected channels up to 160 kHz		-110		dB
Full-Scale Step Settling Time	1% of full scale				
1 5	±10 V range		70		us
	±5 V range		110		us
	±2.5V range		130		us
ANALOG INPUT FILTER					
Full Power Bandwidth	-3 dB, ±10 V range		22.5		kHz
	-3 dB, ±5 V range		13.5		kHz
	-3 dB. ±2.5 V range		11.5		kHz
	-0.1 dB. ±10 V range		3		kHz
	-0.1 dB, +5 V range		2		kHz
	-0.1 dB, +2.5 V range		2		kHz
Phase Delay	+10 V range		75		us
That Dolay	+5 V range		12		115
	+2.5.V range		14		115
Phase Delay Matching	+10 V range			240	ns
Thuse being matering	+5 V range			365	ns
	+2.5 V range			445	ns
DC ACCURACY					
Resolution	No missing codes	16			Bits
Differential Nonlinearity (DNIL)		-0 99	+0 5	+1 4	LSB ²
Integral Nonlinearity (INL)	former = 200 kSPS	0.00	±0.0 +1	·T	LSB ²
	fample = 200 kSPS		∸ ' +1		LSR ²
Total Upadiusted Error (TUE)	SAMPLE - 000 KOT O		±1 +3		
Positive and Negative Full-Scale (FS) Error ³			±0 +2	+30	
I USILIVE AILU INEYALIVE FUII-SUAIE (FS) EITOI"	$R_{}4 = 20 \text{ kO}$ system as a solibration disabled		12 12	100	
	$r_{FILTER} = 20 \text{ k}_2$, system gain calibration usabled		120		
Depitive and Negative FS Free Drift			4 14	±2	LOD
FOSILIVE and Negative FS Effor Drift			ΞI	τJ	phu/ C

AD7606BBCHIPS

SPECIFICATIONS

Table 2.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
Positive and Negative FS Error Matching			3	20	LSB
Bipolar Zero Code Error			±1	±20	LSB ²
	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		±1	±14	LSB
Bipolar Zero Code Error Drift			±0.5	±2.5	ppm/°C
Bipolar Zero Code Error Matching			1.5	23	LSB ²
	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		1.4	14	LSB
Open Circuit Code Error	Pull-down resistor (R_{PD}) = 10 k Ω , ±10 V range		±12	±30	LSB
	R_{PD} = 10 kΩ, ±10 V range, T_A = -40°C to +85°C		±12	±20	LSB
	R_{PD} = 10 k Ω , ±5 V range		±17	±35	LSB
	R_{PD} = 10 k Ω , ±5 V range, T_A = -40°C to +85°C		±17	±25	LSB
	R_{PD} = 10 k Ω , ±2.5 V range		±22	±40	LSB
	R_{PD} = 10 kΩ, ±2.5 V range, T_A = −40°C to +85°C		±22	±30	LSB
SYSTEM CALIBRATION					
Positive Full-Scale (PFS) and Negative Full- Scale (NFS) Calibration Range	Series resistor in front of the Vx+ and VxGND inputs	0		64	kΩ
Offset Calibration Range		-128		+127	LSB
Phase Calibration Range		0		318.75	μs
PFS and NFS Error	After gain calibration		±5		LSB
Offset Error	After offset calibration		±0.5		LSB
Phase Error	After phase calibration		±1		μs
ANALOG INPUT					
Input Voltage Ranges	Vx – VxGND				
	±10 V range	-10		+10	V
	±5 V range	-5		+5	V
	±2.5 V range	-2.5		+2.5	V
Input Voltage Ranges	VxGND - AGND				
	±10 V range	-0.7		+1.9	V
	±5 V range	-0.1		+2.7	V
	±2.5 V range	-0.1		+3.1	V
Analog Input Current			(V _{IN} - 2)/	R _{IN}	μA
Input Capacitance (C _{IN}) ⁵			5		pF
Input Impedance (R _{IN}) ⁶			5		MΩ
Input Impedance Drift			±1	±25	ppm/°C
REFERENCE INPUT/OUTPUT					
Reference Input Voltage	REF SELECT = 0, external reference	2.495	2.5	2.505	V
DC Leakage Current				±0.12	μA
Input Capacitance ⁶			7.5		pF
Reference Output Voltage	REF SELSECT = 1, internal reference, $T_A = 25^{\circ}C$	2.4975	2.5	2.5025	V
Reference Temperature Coefficient			±3	±10	ppm/°C
Reference Voltage to the ADC	REFCAPA and REFCAPB pads	4.39		4.41	V
LOGIC INPUTS	· · · · · · · · · · · · · · · · · · ·				
Input High Voltage (V _{INH})		0.7 × V _{DRIVE}			V
Input Low Voltage (V _{INI})		Ditte		0.3 × V _{DRIVE}	V
Input Current (I _{IN})				±1	uА
Input Capacitance ⁶			5		pF
					I
Output High Voltage (Vou)	Current source (Isource) = 100 uA	$V_{DBWE} = 0.2$			V
Output Low Voltage (Vol.)	Current sink $(I_{SINK}) = 100 \text{ µA}$			0.2	V
Floating State Leakage Current				±1	μA
	1	1			1.

Table 2.

Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
Output Capacitance ⁶			5		pF
Output Coding	Twos complement				N/A ⁷
CONVERSION RATE					
Conversion Time	See Table 3		0.75		μs
Acquisition Time (t _{ACQ}) ⁸			0.5		μs
Throughput Rate	Per channel			800	kSPS
POWER REQUIREMENTS					
AV _{CC}		4.75	5	5.25	V
V _{DRIVE}		1.71		3.6	V
REGCAP		1.875		1.93	V
AV _{CC} Current (I _{AVCC})					
Normal Mode (Static)			7.5	9.5	mA
Normal Mode (Operational)	f _{SAMPLE} = 800 kSPS		43	47.5	mA
	f _{SAMPLE} = 10 kSPS		8	10	mA
Standby			3.5	4.5	mA
Shutdown Mode			0.5	5	μA
V _{DRIVE} Current (I _{DRIVE})					
Normal Mode (Static)			1.8	3.5	μA
Normal Mode (Operational)	f _{SAMPLE} = 800 kSPS		1.1	1.5	mA
	f _{SAMPLE} = 10 kSPS		30	75	μA
Standby			1.6	3	μA
Shutdown Mode			0.8	2	μA
Power Dissipation					
Normal Mode (Static)			40	50	mW
Normal Mode (Operational)	f _{SAMPLE} = 800 kSPS		230	255	mW
	f _{SAMPLE} = 10 kSPS		42	50	mW
Standby			18	24	mW
Shutdown Mode			2.5	25	μW

¹ No OS means no oversampling is applied.

² LSB means least significant bit. With a ±2.5 V input range, 1 LSB = 76.293 μV. With a ±5 V input range, 1 LSB = 152.58 μV. With a ±10 V input range, 1 LSB = 305.175 μV.

³ These specifications include the full temperature range variation and contribution from the reference buffer.

⁴ R_{FILTER} is a resistor placed in a series to the analog input front end.

⁵ Not production tested. Sample tested during initial release to ensure compliance.

⁶ Input impedance variation is factory trimmed and accounted for in the system gain calibration.

⁷ N/A means not applicable.

⁸ The ADC input is settled by the internal PGA. Therefore, the acquisition time is the time between the end of the conversion and the start of the next conversion with no impact on external components.

TIMING SPECIFICATIONS

UNIVERSAL TIMING SPECIFICATIONS

 AV_{CC} = 4.75 V to 5.25 V, V_{DRIVE} = 1.71 V to 3.6 V, V_{REF} = 2.5 V external reference and internal reference, and T_A = -40°C to +125°C, unless otherwise noted. Interface timing is tested using a load capacitance of 20 pF, dependent on V_{DRIVE} and load capacitance for serial interface.

Table 3.					
Parameter	Min	Тур	Max	Unit	Description
t _{CYCLE}	1.25			μs	Minimum time between consecutive CONVST rising edges (excluding oversampling modes) ¹
t _{LP CNV}	10			ns	CONVST low pulse width
t _{HP CNV}	10			ns	CONVST high pulse width
t _{D CNV BSY}					CONVST high to BUSY high delay time
			20	ns	V _{DRIVE} > 2.7 V
			25	ns	V _{DRIVE} < 2.7 V
t _{S_BSY}	0			ns	Minimum time from BUSY falling edge to $\overline{\text{RD}}$ falling edge setup time (in parallel interface) or to MSB being available on D _{OUT} x line (in serial interface)
t _{D_BSY}	25			ns	Minimum time between last RD falling edge (in parallel interface) or last LSB being clocked out (serial interface) and the following BUSY falling edge; read during conversion
t _{CONV}	0.65		0.85	μs	Conversion time; no oversampling
	2.2		2.3	μs	Oversampling by 2
	4.65		4.8	μs	Oversampling by 4
	9.6		9.9	μs	Oversampling by 8
	19.4		20	μs	Oversampling by 16
	39.2		40.2	μs	Oversampling by 32
	78.7		80.8	μs	Oversampling by 64
	157.6		161.9	μs	Oversampling by 128
	315.6		324	μs	Oversampling by 256
t _{RESET}					
Partial Reset	55		2000	ns	Partial RESET high pulse width
Full Reset	3000			ns	Full RESET high pulse width
t _{DEVICE_SETUP}				μs	Time between RESET falling edge and first CONVST rising edge
Partial Reset	50			ns	
Full Reset	253			μs	
t _{WAKE_UP}					Wake-up time after standby/shutdown mode
Standby	1			μs	
Shutdown	10			ms	
t _{POWER-UP}	10			ms	Time between stable AV _{CC} /V _{DRIVE} and assertion of RESET

 $^{1}\;$ Applies to serial mode when all four $D_{OUT}x$ lines are selected.

PARALLEL MODE TIMING SPECIFICATIONS

Table 4.					
Parameter	Min	Тур	Мах	Unit	Description
ts cs rd	0			ns	CS falling edge to RD falling edge setup time
t _{H RD} CSi	0			ns	$\overline{\text{RD}}$ rising edge to $\overline{\text{CS}}$ rising edge hold time
t _{HP RD}	10			ns	RD high pulse width
t _{LP RD}	10			ns	RD low pulse width
t _{HP CS}	10			ns	CS high pulse width
t _D CS DB			35	ns	Delay from \overline{CS} until DBx three-state disabled
t _H cs db	0			ns	CS to DBx hold time
t _{d RD DB}					Data access time after falling edge of \overline{RD}
			27	ns	$V_{DRIVE} > 2.7 V$
			37	ns	V_{DRIVE} < 2.7 V
t _{h rd db}	12			ns	Data hold time after falling edge of RD
t _{DHZ} CS DB			40	ns	CS rising edge to DBx high impedance
t _{CYC_RD}					RD falling edge to next RD falling edge
_	30			ns	$V_{DRIVE} > 2.7 V$
	40			ns	V_{DRIVE} < 2.7 V
t _{D_CS_FD}			26	ns	Delay from $\overline{\text{CS}}$ falling edge until FRSTDATA three-state disabled
t _{D_RD_FDH}			30	ns	Delay from RD falling edge until FRSTDATA high
t _{D_RD_FDL}			30	ns	Delay from RD falling edge until FRSTDATA low
t _{DHZ_FD}			28	ns	Delay from rising edge until FRSTDATA three-state enabled
ts_cs_wr	0			ns	CS to WR setup time
t _{HP_WR}	213			ns	WR high pulse width
t _{LP_WR}					WR low pulse width
	88			ns	$V_{DRIVE} > 2.7 V$
	213			ns	V_{DRIVE} < 2.7 V
t _{H_WR_CS}	0			ns	WR hold time
t _{S_DB_WR}	5			ns	Configuration data to WR setup time
t _{H_WR_DB}	5			ns	Configuration data to \overline{WR} hold time
t _{CYC WR}	230			ns	Configuration data settle time, $\overline{\text{WR}}$ rising edge to next $\overline{\text{WR}}$ rising edge

Figure 3. Parallel Mode Read Timing Diagram, Separate and Pulses

Figure 4. Parallel Mode Read Timing Diagram, Linked and

Figure 5. Parallel Mode Write Operation Timing Diagram

SERIAL MODE TIMING SPECIFICATIONS

Table 5.

Parameter	Min	Тур	Max	Unit	Description
f _{SCLK}					SCLK frequency; f _{SCLK} = 1/t _{SCLK}
			60	MHz	V _{DRIVE} > 2.7 V
			40	MHz	V_{DRIVE} < 2.7 V
t _{SCLK}	1/f _{SCLK}			μs	Minimum SCLK period
ts_cs_scк	2			ns	CS to SCLK falling edge setup time
t _{H_SCK_CS}	2			ns	SCLK to \overline{CS} rising edge hold time
t _{LP_SCK}	0.4 × t _{SCLK}			ns	SCLK low pulse width
t _{HP_SCK}	0.4 × t _{SCLK}			ns	SCLK high pulse width
t _{D_CS_DO}					Delay from \overline{CS} until D _{OUT} x three-state disabled
			9	ns	$V_{DRIVE} > 2.7 V$
			18	ns	$V_{DRIVE} < 2.7 V$
t _{D_SCK_DO}					Data out access time after SCLK rising edge
			15	ns	$V_{DRIVE} > 2.7 V$
			25	ns	$V_{DRIVE} < 2.7 V$
t _{H_SCK_DO}	5			ns	Data out hold time after SCLK rising edge
ts_sdl_sck	8			ns	Data in setup time before SCLK falling edge
t _{H_SCK_SDI}	0			ns	Data in hold time after SCLK falling edge
t _{DHZ_CS_DO}					CS rising edge to D _{OUT} x high impedance
			7	ns	$V_{DRIVE} > 2.7 V$
			22	ns	$V_{DRIVE} < 2.7 V$
t _{WR}	25			ns	Time between writing and reading the same register or between two writes; if f _{SCLK} >50 MHz
t _{D_CS_FD}			26	ns	Delay from $\overline{\text{CS}}$ until $\text{D}_{\text{OUT}} x$ three-state disabled/delay from $\overline{\text{CS}}$ until MSB valid
t _{D_SCK_FDL}			18	ns	16 th SCLK falling edge to FRSTDATA low
t _{DHZ_FD}			28	ns	CS rising edge until FRSTDATA three-state enabled

Figure 6. Serial Timing Diagram, ADC Read Mode (Channel 1)

Figure 7. Serial Interface Timing Diagram, Register Map Read/Write Operations

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 6.

Parameter	Rating
AV _{CC} to AGND	-0.3 V to +6.5 V
V _{DRIVE} to AGND	-0.3 V to AV _{CC} + 0.3 V
Analog Input Voltage to AGND ¹	±21 V
Digital Input Voltage to AGND	-0.3 V to V _{DRIVE} + 0.3 V
Digital Output Voltage to AGND	-0.3 V to V _{DRIVE} + 0.3 V
REFIN/REFOUT to AGND	-0.3 V to AV _{CC} + 0.3 V
Input Current to Any Pad Except Supplies ¹	±10 mA
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	-65°C to +150°C
Junction Temperature	150°C
Pb/Sn Temperature, Soldering	
Reflow (10 sec to 30 sec)	240 (+0)°C
Pb-Free Temperature, Soldering Reflow	260 (+0)°C

¹ Transient currents of up to 100 mA do not cause silicon controlled rectifier (SCR) latch-up.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

ESD Ratings for AD7606BBCHIPS

Table 7. AD7606BBCHIPS, 64-Pad CHIP

ESD Model	Withstand Threshold (V)	Class
НВМ		
All Pads Except Analog Inputs	3500	3A
Analog Input Pads Only	8000	3A

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Figure 8. Pad Configuration

Pad No.	Pad Type	Mnemonic	X-Axis (µm)	Y-Axis (µm)	Description
1A	Single	AV _{CC}	-2881	2628	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
1B	Single	AV _{CC}	-2881	2501	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
1C	Single	AV _{CC}	-2628	2881	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
2A	Single	AGND	-2881	2374	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
2B	Single	AGND	-2881	2247	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
2C	Single	AGND	-2881	2120	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
3	Single	OS0	-2880	1666	Oversampling Mode 0.
4	Single	OS1	-2880	1336	Oversampling Mode 1.
5	Single	OS2	-2880	1006	Oversampling Mode 2.
6	Single	PAR/SER SEL	-2880	746	Parallel/Serial Interface Selection Input. If this pad is tied to a logic low, the parallel interface is selected. If this pad is tied to a logic high, the serial interface is selected.
7	Single	STBY	-2880	321	Standby Mode Input. In hardware mode, this pad, in combination with the RANGE pad, places the AD7606BBCHIPS in one of two power-down modes: standby mode or shutdown mode. In software mode, this pad is ignored. Therefore, it is recommended to connect this pad to logic high.
8	Single	RANGE	-2880	61	Analog Input Range Selection Input. In hardware mode, this pad determines the input range of the analog input channels. If the pad is at logic low, this pad determines the power-down mode. In software mode, the RANGE pad is ignored. However, this pad must be tied high or low.
9	Single	CONVST	-2880	-253	Conversion Start Input. When the CONVST pad transitions from low to high, the analog input is sampled on all eight SAR ADCs.

Pad No.	Pad Type	Mnemonic	X-Axis (µm)	Y-Axis (µm)	Description
10	Single	WR	-2880	-568	Digital Input. In hardware mode, this pad has no function. Therefore, it can be tied high, tied low, or shorted to CONVST. In software mode, this pad is an active low write pad for writing registers using the parallel interface.
11	Single	RESET	-2880	-828	Reset Input, Active High. Full and partial reset options are available on the AD7606BBCHIPS. The type of reset is determined by the length of the reset pulse. It is recommended that the device receives a full reset pulse after power-up.
12	Single	RD/SCLK	-2880	-1253	Parallel Data Read Control Input when the Parallel Interface is Selected (\overline{RD}).
					Serial Clock Input when the Serial Interface is Selected (SCLK).
13	Single	CS	-2880	-1513	Chip Select. This pad is the active low chip select input for ADC data read or register data read and write, in both serial and parallel interface.
14	Single	BUSY	-2880	-1814	Busy Output. This pad transitions to a logic high along with the CONVST rising edge. The BUSY output remains high until the conversion process for all channels is complete.
15	Single	FRSTDATA	-2880	-2045	First Data Output. The FRSTDATA output signal indicates when the first channel, V1, is being read back on the parallel interface or the serial interface.
16	Single	DB0	-2880	-2455	Parallel Output DB0. When using serial interface, tie this pad to AGND.
17	Single	DB1	-2455	-2880	Parallel Output DB1. When using serial interface, tie this pad to AGND.
18	Single	DB2	-2235	-2880	Parallel Output DB2. When using serial interface, tie this pad to AGND.
19	Single	DB3	-2014	-2880	Parallel Output DB3. When using serial interface, tie this pad to AGND.
20	Single	DB4	-1794	-2880	Parallel Output DB4. When using serial interface, tie this pad to AGND.
21	Single	DB5	-1573	-2880	Parallel Output DB5. When using serial interface, tie this pad to AGND.
22	Single	DB6	-1353	-2880	Parallel Output DB6. When using serial interface, tie this pad to AGND.
23A	Single	V _{DRIVE}	-1042	-2812	Logic Power Supply Input. The voltage (1.71 V to 3.6 V) supplied at this pad determines the operating voltage of the interface. This pad is nominally at the same supply as the supply of the host interface, that is, data signal processing (DSP) and field programmable gate array (FPGA).
23B	Single	V _{DRIVE}	-915	-2812	Logic Power Supply Input. The voltage (1.71 V to 3.6 V) supplied at this pad determines the operating voltage of the interface. This pad is nominally at the same supply as the supply of the host interface, that is, DSP and FPGA.
23C	Single	V _{DRIVE}	-788	-2812	Logic Power Supply Input. The voltage (1.71 V to 3.6 V) supplied at this pad determines the operating voltage of the interface. This pad is nominally at the same supply as the supply of the host interface, that is, DSP and FPGA.
24	Single	DB7/D _{OUT} A	-258	-2880	Parallel Output/Input Data Bit 7 (DB7)/Serial Interface Data Output Pad (D _{OUT} A). When using the parallel interface, this pad acts as a three-state parallel digital input/ output pad. When using the serial interface, this pad functions as D _{OUT} A.
25	Single	DB8/D _{OUT} B	-478	-2880	Parallel Output/Input Data Bit 8 (DB8)/Serial Interface Data Output Pad ($D_{OUT}B$). When using the parallel interface, this pad acts as a three-state parallel digital input and output pad. When using the serial interface, this pad functions as $D_{OUT}B$.
26A	Single	AGND	441	-2812	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
26B	Single	AGND	314	-2812	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
26C	Single	AGND	187	-2812	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
27	Single	DB9/D _{OUT} C	886	-2880	Parallel Output/Input Data Bit 9 (DB9)/Serial Interface Data Output Pad (D _{OUT} C). When using the parallel interface, this pad acts as a three-state parallel digital input and output pad. When using the serial interface, this pad functions as D _{OUT} C if in software mode and using four data output lines option.
28	Single	DB10/D _{OUT} D	1106	-2880	Parallel Output/Input Data Bit 10 (DB10)/Serial Interface Data Output Pad ($D_{OUT}D$). When using the parallel interface, this pad acts as a three-state parallel digital input/

Pad No.	Pad Type	Mnemonic	X-Axis (µm)	Y-Axis (µm)	Description
					output pad. When using the serial interface, this pad functions as $D_{OUT}D$ if in software mode and using the four data output lines option.
29	Single	DB11/SDI	1327	-2880	Parallel Output/Input Data Bit DB11/Serial Data Input. When using the parallel interface, this pad acts as a three-state parallel digital input and output pad. When using the serial interface in software mode, this pad functions as a serial data input.
30	Single	DB12	1547	-2880	Parallel Output DB12. When using serial interface, tie this pad to AGND.
31	Single	DB13	1768	-2880	Parallel Output DB13. When using serial interface, tie this pad to AGND.
32	Single	DB14	1988	-2880	Parallel Output DB14. When using serial interface, tie this pad to AGND.
33	Single	DB15	2554	-2880	Parallel Output DB15. When using serial interface, tie this pad to AGND.
34	Single	REF SELECT	2881	-2575	Internal/External Reference Selection Logic Input. If this pad is set to logic high, the internal reference is selected and enabled. If this pad is set to logic low, the internal reference is disabled and an external reference voltage must be applied to the REFIN/REFOUT pad.
35A	Single	AGND	2881	-2410	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
35B	Single	AGND	2881	-2283	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
36A	Single	REGCAP	2881	-2029	Decoupling Capacitor Pads for Voltage Output from 1.9 V Internal Regulator, Analog Low Dropout (ALDO) and Digital Low Dropout (DLDO).
36B	Single	REGCAP	2881	-2156	Decoupling Capacitor Pads for Voltage Output from 1.9 V Internal Regulator, ALDO and DLDO.
37A	Single	AV _{CC}	2881	-1775	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
37B	Single	AV _{CC}	2881	-1902	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
38A	Single	AV _{CC}	2881	-1117	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
38B	Single	AV _{CC}	2881	-1244	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
38C	Single	AV _{CC}	2881	-1371	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
39A	Single	REGCAP	2881	-559	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
39B	Single	REGCAP	2881	-686	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
39C	Single	REGCAP	2881	-813	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
40A	Single	AGND	2881	-432	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
40B	Single	AGND	2881	-305	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
40C	Single	AGND	2881	-178	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
41A	Single	AGND	2881	-36	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.

Pad No.	Pad Type	Mnemonic	X-Axis (µm)	Y-Axis (µm)	Description
41B	Single	AGND	2881	91	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
41C	Single	AGND	2881	218	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
42	Single	REFIN/ REFOUT	2881	360	Reference Input (REFIN)/Reference Output (REFOUT). The internal 2.5 V reference is available on the REFOUT pad for external use while the REF SELECT pad is set to logic high. Alternatively, by setting the REF SELECT pad to logic low, the internal reference is disabled and an external reference of 2.5 V must be applied to this input (REFIN).
43A	Single	REFGND	2881	856	Reference Ground Pads. This pad must be connected to AGND.
43B	Single	REFGND	2881	729	Reference Ground Pads. This pad must be connected to AGND.
43C	Single	REFGND	2881	602	Reference Ground Pads. This pad must be connected to AGND.
44A	Single	REFCAPA	2881	1235	Reference Buffer Output Force/Sense Pads. This pad must be connected together. The voltage on this pad is typically 4.4 V.
44B	Single	REFCAPA	2881	1108	Reference Buffer Output Force/Sense Pads. This pad must be connected together. The voltage on this pad is typically 4.4 V.
44C	Single	REFCAPA	2881	981	Reference Buffer Output Force/Sense Pads. This pad must be connected together. The voltage on this pad is typically 4.4 V.
45A	Single	REFCAPB	2881	1614	Reference Buffer Output Force/Sense Pads. This pad must be connected together. The voltage on this pad is typically 4.4 V.
45B	Single	REFCAPB	2881	1487	Reference Buffer Output Force/Sense Pads. This pad must be connected together. The voltage on this pad is typically 4.4 V.
45C	Single	REFCAPB	2881	1360	Reference Buffer Output Force/Sense Pads. This pad must be connected together. The voltage on this pad is typically 4.4 V.
46A	Single	REFGND	2881	1993	Reference Ground Pads. This pad must be connected to AGND.
46B	Single	REFGND	2881	1866	Reference Ground Pads. This pad must be connected to AGND.
46C	Single	REFGND	2881	1739	Reference Ground Pads. This pad must be connected to AGND.
47A	Single	AGND	2881	2374	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad.
47B	Single	AGND	2881	2247	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad
47C	Single	AGND	2881	2120	Analog Ground. This pad is the ground reference point for all analog circuitry on the AD7606BBCHIPS. All analog input signals and external reference signals must be referred to this pad
48A	Single	AV _{CC}	2628	2881	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
48B	Single	AV _{CC}	2881	2628	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
48C	Single	AV _{CC}	2881	2501	Analog Supply Voltage, 4.75 V to 5.25 V. This supply voltage is applied to the internal front-end amplifiers and to the ADC core.
49	Single	V1	2029	2887	Channel 1 Positive Analog Input Pad.
50	Single	V1GND	1891	2887	Channel 1 Negative Analog Input Pad.
51	Single	V2	1529	2887	Channel 2 Positive Analog Input Pad.
52	Single	V2GND	1391	2887	Channel 2 Negative Analog Input Pad.
53	Single	V3	953	2887	Channel 3 Positive Analog Input Pad.
54	Single	V3GND	815	2887	Channel 3 Negative Analog Input Pad.
55	Single	V4	452	2887	Channel 4 Positive Analog Input Pad.
56	Single	V4GND	315	2887	Channel 4 Negative Analog Input Pad.

Pad No.	Pad Type	Mnemonic	X-Axis (µm)	Y-Axis (µm)	Description
57	Single	V5	-315	2887	Channel 5 Positive Analog Input Pad.
58	Single	V5GND	-452	2887	Channel 5 Negative Analog Input Pad.
59	Single	V6	-815	2887	Channel 6 Positive Analog Input Pad.
60	Single	V6GND	-953	2887	Channel 6 Negative Analog Input Pad.
61	Single	V7	-1391	2887	Channel 7 Positive Analog Input Pad.
62	Single	V7GND	-1529	2887	Channel 7 Negative Analog Input Pad.
63	Single	V8	-1891	2887	Channel 8 Positive Analog Input Pad.
64	Single	V8GND	-2029	2887	Channel 8 Negative Analog Input Pad.

OUTLINE DIMENSIONS

Figure 9. 64-Pad Bare Die [CHIP] (C-64-2) Dimensions shown in millimeters

DIE SPECIFICATIONS AND ASSEMBLY RECOMMENDATIONS

Table 9. Die Specifications

Parameter	Value	Unit
Die Size	5970 × 5970	μm
Thickness	380	μm
Bond Pad	70 × 70	μm
Bond Pad Composition	Aluminum (Al), 0.5 Copper (Cu)	%

Table 10. Assembly Recommendations

Assembly Component	Recommendation
Die Attach	Epoxy dispense
Bonding Method	Thermosonic gold ball bonding
Bonding Sequence	Bond Pad 47A first

Updated: December 21, 2021

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD7606BBCHIPS	-40°C to +125°C	CHIPS OR DIE	C-64-2

¹ AD7606BBCHIPS is an RoHS compliant part.

