

AN-1187 Application Note

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Radiated Immunity Performance of the AD7780 in Weigh Scale Applications

by Mary McCarthy and Li Ke

INTRODUCTION

The AD7780 is a low noise, low power, 24-bit sigma-delta converter which includes a PGA. The AD7780 is used in low-end to midend weigh scale systems. The radiated immunity of the weigh scale system is tested as part of the release process. This application note describes how to achieve the best-radiated immunity performance from the AD7780, taking into account the effects of board layout and component placement when designing a printed circuit board (PCB). The radiated immunity testing is performed as per standard IEC 61000-4-3 and the complete system (ADC, PCB, and load cell) is tested.

RADIATED IMMUNITY

The radiated immunity test is performed as described in the standard IEC 61000-4-3. The field strength is 10 V/m and the RF frequency is swept from 80 MHz to 1 GHz. According to the specification, a device is classified as follows:

- Class A: Normal performance within limits specified by the manufacturer, requestor, or purchaser.
- Class B: Temporary loss of function or degradation of performance, which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention.

- Class C: Temporary loss of function or degradation of performance, the correction of which requires operator intervention.
- Class D: Loss of function or degradation of performance which is not recoverable, owing to damage to hardware or software, or loss of data.

The ADC converts continuously during the frequency sweep. The error as referred to throughout this application note is the maximum deviation between the ADC conversions when an RF frequency is present versus when there is no RF frequency present.

For a weigh scale system to be Class A, the allowable error *e* in the presence of the RF interference is

 $\frac{\pm Maximum output voltage from load cell}{(2 \times number of counts)} = \frac{\pm Full - scale output}{2n}$

where n is the number of counts for the weigh scale system.

TABLE OF CONTENTS

Introduction	1
Radiated Immunity	1
Revision History	2
Radiated Immunity Test Analysis	3
Setup	3
Error	3

REVISION HISTORY

3/13—Revision 0: Initial Version

Printed Circuit Board	4
Results	6
Conclusion	6
Evaluation Board Schematics and Artwork	7
Bill of Materials	10

RADIATED IMMUNITY TEST ANALYSIS SETUP

Figure 1 is a block diagram of the circuit used for the radiated immunity testing. The AD7780 is configured as follows:

```
Output data rate = 10 Hz
Gain = 128
```

The AD7780 operates from a 3.3 V power supply. This supply is also used to excite the load cell. The load cell is 6-wire with a sensitivity of 2 mV/V. For more details on weigh scale design using the AD7780, refer to Circuits from the Lab* reference circuit (CN-0107).

ERROR

As discussed in the Radiated Immunity section, the allowable error *e* is

 $\frac{\pm Full - scale \ output}{2n}$

where *n* is the number of counts. The error is equivalent to ± 0.5 counts.

In this application note, the goal is to design a weigh scale system that has 3000 counts and is classified as Class A when the load cell is excited with 3.3 V. With a sensitivity of 2 mV/V and an excitation voltage of 3.3 V, the maximum signal from the load cell is 6.6 mV. Often, to use the most linear portion of the load cell's span, only two-thirds of this range is used. This reduces the full-scale output voltage from the load cell to 4.4 mV.

For an accuracy of 3000 counts, one count is

1 count = 4.4 mV/3000 = 1.46 μ V <u>+</u>0.5 counts = <u>+</u>1.46 μ V /2 = <u>+</u>0.73 μ V

The error must be less than $\pm 0.73 \ \mu$ V while the RF frequency is present. The load cell used in the application accepts a full weight of 2 kg so the error needs to be less than $\pm 2 \ \text{kg}/(2 \times 3000) = \pm 0.33 \ \text{grams}$ —this ensures that the digital display is not affected by the RF interference.

Figure 1. AD7780 Setup for Testing

PRINTED CIRCUIT BOARD

The standard AD7780 evaluation board is designed to give optimum analog to digital conversion performance. However, it is not optimized for EMC. For example, the standard AD7780 evaluation board includes links (vertical pins) to allow different power supply options and links are present for the noise test connection; these links act as antenna. In addition, filtering on the analog and digital inputs is not optimized in terms of location and component size (0603 components are used). However, using this board as a start point, investigation was performed to highlight any adverse effects due to EMC. See the Results section for details. The grounding, component location, and addition of extra filtering were all reviewed. The ADC performance was maintained at all stages.

In summary, the key findings were

- The link options (vertical pins) should not be included on the board. These act as antenna. Therefore, replace link options with a solder link option.
- The printed circuit board should be 4-layer, with the analog inputs and reference inputs buried in the inner layers. A single ground plane should be used. Flood the top and bottom sides of the board with ground. Also, flood the inner layers with ground. Multiple vias should be included to minimize any potential differences across the board. There is no hard rule on the density of vias required. On the AD7780 board, a ring of vias was included around the ADC and the filtering on the analog and reference inputs. In general, any islands on the board should have vias also, the number of vias being in excess of one. Any tracks on the top and bottom sides should be as short as possible since tracks will also act as antenna.
- Filtering is recommended on the analog and reference inputs. Figure 1shows the R and C values that are normally recommended on the analog and reference inputs. This filtering provides attenuation at the AD7780's sampling frequency (64 kHz) and multiples of the sampling frequency. The AD7780 itself does not provide any attenuation at these frequencies. The capacitors need to be as close as possible to the AD7780's analog inputs and reference inputs so that the track length from the component to the ADC is minimized. Using components that are physically smaller allows the user to place the components closer to the pins. The layout should ensure that track lengths from the pins to the components are well matched.
- In addition to these filters, adding additional filtering in the R and L locations shown in Figure 1 improved the immunity further. This filtering is located at the connector to the load cell. Various combinations for the L (L2, L3, L4 and L5) and C (C38, C39, and C40) values were evaluated to achieve the best results. The Bill of Materials section lists the final components selected.
- The power supplies are decoupled with a 10 µF capacitor in parallel with a 0.1 µF capacitor. Again, the components should be as close as possible to the power pins of the AD7780. The analog power supply is used as the excitation voltage to the load cell which, in turn, is used as the reference to the ADC. Therefore, the power supply tracks are also buried in an inner layer.

11441-002

Figure 2. Top Side of Standard AD7780 Evaluation Board

AN-1187

RESULTS

Following the investigation, a printed circuit board optimized for radiated immunity was developed (see Figure 3). The artwork and schematics for the board are included in the Evaluation Board Schematics and Artwork section of this application note. Using this board and the components listed in the Bill of Materials, the maximum error measured exceeded *e*. Figure 4 shows the conversions read from the AD7780 while the RF frequency is swept from 80 MHz to 1 GHz. A constant weight is placed on the load cell during the testing.

The error measured is 1.79μ V, which is higher than *e*. This is equivalent to 0.81 grams. However, the ADC continues to function while the RF interference is present and returns to within specification automatically once the interference is removed. Thus, the weigh scale system is Class B in terms of radiated immunity.

Figure 5. Radiated Immunity of AD7780 Evaluation Board

This comparison highlights the importance of layout, component selection, and component placement to achieve optimum performance in terms of radiated immunity.

To further improve the device's immunity to radiation, a copper shield can be placed over the AD7780 and the auxiliary components. This improves the system's classification to Class A.

CONCLUSION

Key factors in optimizing the performance of a weigh scale system for radiated immunity are the board layout and the component placement and selection. When the layout practices discussed in this application note are used, the weigh scale system is Class B as per IEC 61000-4-3. The weigh scale system continues to function when the RF interference is present, but the accuracy of the system is outside its specification. When the RF interference is removed, the weigh scale system's accuracy is within specification again automatically. The radiated immunity can be increased to Class A using a copper shield.

EVALUATION BOARD SCHEMATICS AND ARTWORK

Figure 6. Schematics

AN-1187

Figure 7. Layer 1

Figure 8. Layer 2

Figure 9. Layer 3

Figure 11. Silkscreen Top

C22

C26

DVDD

FILTERS

ANALOG DEVICES

L46£0

GND

11441-011

Rev. 0 | Page 9 of 12

BILL OF MATERIALS

Table 1. AD7780-EMC BOM

Name	Value	Tolerance	PCB Decal	Part Description	Manufacturer	Part Number	Stock Code	
ADC								
U1	AD7780		SO14NB	AD7780, sigma-delta ADC	Analog Devices	AD7780BRZ		
ADC Reference Inputs (Filtering)								
C4	100 pF	10%	C0402	Capacitor ceramic, 50 V, NPO	AVX		FEC 1327627	
C5	100 pF	10%	C0402	Capacitor ceramic, 50 V, NPO	AVX		FEC 1327627	
C6	1000 pF	10%	C0402	Capacitor ceramic, 50 V, X7R	AVX		FEC 1327646	
R3	100 Ω		R0402	Resistor			FEC 1697307	
R4	100 Ω		R0402	Resistor			FEC 1697307	
ADC Ar	nalog Inputs (F	iltering)	•					
C1	0.01 uF		C0402	Capacitor ceramic	Kemet		FEC 1650807	
C2	0.01 uF		C0402	Capacitor ceramic	Kemet		FEC 1650807	
C3	0.1 uF		C0402	Capacitor ceramic, 16 V, X7R	AVX		FEC 1833861	
R1	1 kΩ		R0402	Resistor			FEC 1174154	
R2	1 kΩ		R0402	Resistor			FEC 1174154	
Load Co	ell Connector	I	•					
AIN+	SMB		SMB	Connector, 50 Ω , straight	Amphenol	SMB1251B1- 3GT30G-50	FEC 111-1349	
AIN-	SMB		SMB	Connector, 50 Ω , straight	Amphenol	SMB1251B1- 3GT30G-50	FEC 111-1349	
REF+	SMB		SMB	Connector, 50 Ω , straight	Amphenol	SMB1251B1- 3GT30G-50	FEC 111-1349	
REF+	SMB		SMB	Connector, 50 Ω , straight	Amphenol	SMB1251B1- 3GT30G-50	FEC 111-1349	
AVDD	SMB		SMB	Connector, 50 Ω , straight	Amphenol	SMB1251B1- 3GT30G-50	FEC 111-1349	
GND	SMB		SMB	Connector, 50 Ω , straight	Amphenol	SMB1251B1- 3GT30G-50	FEC 111-1349	
Load Cell Connector Reference Lines (Filtering)								
C38	1 nF	10%	C0603	Ceramic capacitor, C0G, 50 V	Murata	GRM1885C1H102 JA01	FEC 8819920	
L2	100 Ω		R0402	Resistor			FEC 1127365	
L3	100 Ω		R0402	Resistor			FEC 1127365	
Load Cell Connector Analog Inputs Lines (Filtering)								
C39	1 nF	10%	C0603	Ceramic capacitor, C0G, 50 V	Murata	GRM1885C1H102 JA01	FEC 8819920	
C40	1 nF	10%	C0603	Ceramic capacitor, C0G, 50 V	Murata	GRM1885C1H102 JA01	FEC 8819920	
L4	100 Ω		R0402	Resistor			FEC 1127365	
L5	100 Ω		R0402	Resistor			FEC 1127365	

Application Note

Name	Value	Tolerance	PCB Decal	Part Description	Manufacturer	Part Number	Stock Code
ADC Power Supplies							
C7	10 μF		CAP\TAJ_A	Tantalum capacitor, TAJ series	AVX		FEC 197130
C8	0.1 μF		C0402	Ceramic capacitor, X7R, 16 V	AVX		FEC 1833861
C9	0.1 μF		C0402	Ceramic capacitor, X7R, 16 V	AVX		FEC 1833861
C10	10 µF		CAP\TAJ_A	Tantalum capacitor, TAJ series	AVX		FEC 197130
C11							Not inserted
C12	1 μF		C0603	Ceramic capacitor, 16 V	Yageo		FEC 3188840
C13	1 μF		C0603	Ceramic capacitor, 16 V	Yageo		FEC 3188840
R10	0Ω		C0805	0.063W resistor			FEC 9331662
R11	0Ω		C0805	0.063W resistor			FEC 9331662
R9	1.5 Ω	1%	R0603	Resistor	Phycomp	RC0603FR-071R5L	FEC 923-8140
L1	0Ω		R0603	0.063W resistor	Multicomp		FEC 1193418
ADC SP	l Lines		•		·		
C32	-	-	C0805	Capacitor ceramic, 50 V, X7R,			Not inserted
C33	-	-	C0805	Capacitor ceramic, 50 V, X7R,			Not inserted
C34	-	-	C0805	Capacitor ceramic, 50 V, X7R,			Not inserted
R5	0Ω		R0805	Resistor			FEC 9331662
R6	0Ω		R0805	Resistor			FEC 9331662
R8	0Ω		R0805	Resistor			FEC 9331662
R12	100 kΩ		R0805	Resistor	Multicomp		FEC 9330402
R13	100 kΩ		R0805	Resistor	Multicomp		FEC 9330402
R15	100 kΩ		R0805	Resistor	Multicomp		FEC 9330402
Regulat	tor	I					
U4			SO8NB	Voltage regulator 3.3 V	Analog Devices	ADP3303ARZ-3.3	
C21	10 µF		CAP\TAJ_C	Tantalum capacitor	AVX		FEC 9753907
C22	0.1 µF		C0603	Ceramic capacitor, 50 V, X7R	AVX		FEC 1216538
C23	0.1 µF		C0603	Ceramic capacitor, 50 V, X7R	AVX		FEC 1216538
C24	10 µF		CAP\TAJ_C	Tantalum capacitor	AVX		FEC 9753907
R20	1 kΩ			0.063W resistor	Multicomp		FEC 9330380
D1			LED-0805	Light emitting diode	Avago	HSMG-C170	FEC 579-0852
USB Interface/Microcontroller							
U2	CY7C68013		LFCSP-56_RP	Microcontroller, EZ-USB FX2LP	Cypress	CY7C68013-	FEC 126-9133
113	241 (64		DEN-8	FEPROM 12C 64k	Microchin	56LFXC 24LC64-I/MC	FFC 133-1336
C14	10 µF			Tantalum Canacitor TAI Series	AVX	212001 1/100	FEC 197130
C15	0.1 µF		C0603	Capacitor ceramic 16 V X7B			FEC 1216538
C16	0.1 µF		C0603	Capacitor ceramic, 16 V, X7R	AVX		FEC 1216538
C17	22.uF			Case A 10 V	Kemet		FEC 9753796
C18	0.1 μF		C0603	Capacitor ceramic 16 V X7R	AVX		FEC 1216538
(25	0.1 µF		C0603	Capacitor ceramic 16 V X7R	AVX		FFC 1216538
(26	0.1 µF		C0603	Capacitor ceramic 16 V X7R	AVX		FFC 1216538
(27	0.1 µF		C0603	Capacitor ceramic 16 V X7R	AVX		FEC 1216538
(28	0.1 µF		C0603	Capacitor ceramic 16 V X7R	AVX		FFC 1216538
(29	0.1 µF		C0603	Capacitor ceramic 16 V X7R	AVX		FFC 1216538
C30	0.1 µF		C0603	Capacitor ceramic 16 V X7R	AVX		FFC 1216538

AN-1187

AN-1187

Name	Value	Tolerance	PCB Decal	Part Description	Manufacturer	Part Number	Stock Code	
C31	0.1 μF		C0603	Capacitor ceramic, 16 V, X7R	AVX		FEC 1216538	
D3				Diode			Not inserted	
J1	Mini-USB		USB-OTG	Connector, USB	Molex	565790576	FEC 9786490	
J2	1 × 2-pin		CON\POWER	2-pin terminal block (5 mm pitch)	Phoenix Contact	17 25 67 2	Not inserted (solder short used)	
R16	100 kΩ	1%	R0603	Resistor	Multicomp		FEC 933-0402	
R17	100 kΩ	1%	R0603	Resistor	Multicomp		FEC 933-0402	
R18	0Ω		R0603	Resistor			FEC 9331662	
R19	10 Ω	1%	R0603	Resistor	Multicomp		FEC 933-0399	
R21	2.2 kΩ	1%	R0603	Resistor	Multicomp		FEC 923-8727	
R522	2.2 kΩ	1%	R0603	Resistor	Multicomp		FEC 923-8727	
Crystal for Microcontroller								
Y1	24 MHz		XTAL_CM309S	Crystal	AEL Crystals		FEC 9509658	
C19	12 pF	5%	C0603	Capacitor ceramic, 50V, COG	Phycomp	CC0603JRNPO9B N120	FEC 721979	
C20	12 pF	5%	C0603	Capacitor ceramic, 50V, COG	Phycomp	CC0603JRNPO9B N120	FEC 721979	

www.analog.com