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Circuits from the Lab® reference designs are engineered and 
tested for quick and easy system integration to help solve today’s 
analog, mixed-signal, and RF design challenges. For more 
information and/or support, visit www.analog.com/CN0374. 

Devices Connected/Referenced 

ADL5380 

400 MHz to 6000 MHz Quadrature 
Demodulator 

ADA4940-2 Ultralow Power, Low Distortion ADC Driver 

AD7903 Dual Differential 16-Bit, 1 MSPS PulSAR 
12.0 mW ADC 

ADR435 Ultralow Noise XFET 5.0 V Voltage Reference 
with Current Sink and Source Capability 

RF-to-Bits Solution Offers Precise Phase and Magnitude Data to 6 GHz 
 

EVALUATION AND DESIGN SUPPORT 
Circuit Evaluation Boards  

ADL5380 Evaluation Board (ADL5380-EVALZ) 
ADA4940-2 Evaluation Board (ADA4940-2ACP-EBZ) 
AD7903 Evaluation Board (EVAL-AD7903SDZ) 
System Demonstration Platform (EVAL-SDP-CB1Z) 

Design and Integration Files  
Schematics, Layout Files, Bill of Materials 

CIRCUIT FUNCTION AND BENEFITS 
The circuit shown in Figure 1 precisely converts a 400 MHz to 
6 GHz RF input signal to its corresponding digital magnitude 
and digital phase. The signal chain achieves 0° to 360° of phase 
measurement with 1° of accuracy at 900 MHz. The circuit uses 
a high performance quadrature demodulator, a dual differential 
amplifier, and a dual differential 16-bit, 1 MSPS successive 
approximation analog-to-digital converter (SAR ADC).  

 

 
Figure 1. Simplified Receiver Subsystem for Magnitude and Phase Measurements (All Connections and Decoupling Not Shown) 
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CIRCUIT DESCRIPTION 
Quadrature Demodulator 

A quadrature demodulator provides an in-phase (I) signal and a 
quadrature (Q) signal that are exactly 90° out of phase. The I and 
Q signals are vector quantities; therefore, the amplitude and phase 
shift of the received signal can be calculated using trigonometric 
identities, as shown in Figure 2. The local oscillator (LO) input 
is the original transmitted signal and the RF input is the received 
signal. The demodulator generates a sum and difference term. 
Both the RF and LO signals are at the exact same frequency, 
ωLO = ωRF, and therefore the high frequency sum term is filtered, 
while the difference term resides at dc. The received signal has a 
different phase (φRF) than that of the transmitted signal (φLO), 
and this phase shift can be represented as φLO − φRF. 

A real-world I/Q demodulator has many imperfections, including 
quadrature phase error, gain imbalance, and LO to RF leakage, 
all of which can degrade the quality of the demodulated signal. 
To select a demodulator, first determine the requirements for RF 
input frequency range, amplitude accuracy, and phase accuracy.  

Powered from a single 5 V supply, the ADL5380 demodulator 
accepts RF or IF input frequencies from 400 MHz to 6 GHz, 
making it ideal for the receiver signal chain. Configured to 
provide a 5.36 dB voltage conversion gain, the differential I and Q 
outputs of the ADL5380 can drive a 2.5 V p-p differential signal 
into a 500 Ω load. Its 10.9 dB noise figure (NF), 11.6 dBm first-
order intercept (IP1), and 29.7 dBm third-order intercept (IP3) 

at 900 MHz provide outstanding dynamic range; and its 0.07 dB 
amplitude balance and 0.2° phase balance achieve excellent 
demodulation accuracy. Manufactured using an advanced SiGe 
bipolar process, the ADL5380 is available in a tiny 4 mm × 4 mm, 
24-lead LFCSP package. 

ADC Driver and High Resolution Precision ADC 

The excellent dynamic performance and adjustable output 
common-mode voltage of the ADA4940-2 fully differential dual 
amplifier make it ideal for driving high resolution, dual SAR 
ADCs. Powered from a single 5 V supply, the ADA4940-2 provides 
±5 V differential outputs with a 2.5 V common-mode voltage. 
Configured to provide a gain of 2 (6 dB), it drives the ADC 
inputs to full-scale. The RC filter (22 Ω/2.7 nF) limits the noise 
and reduces the kickback coming from the capacitive digital-to-
analog converter (DAC) at the ADC input. Manufactured using 
a proprietary SiGe complementary bipolar process, the ADA4940-2 
is available in a tiny 4 mm × 4 mm, 24-lead LFCSP package. 

The AD7903 dual 16-bit, 1 MSPS SAR ADC offers excellent 
precision, with ±0.006% FS gain error and ±0.015 mV offset 
error. Operating from a single 2.5 V power supply, the AD7903 
dissipates only 12 mW at 1 MSPS. The main goal of using a 
high resolution ADC is to achieve ±1° phase accuracy, especially 
when the input signal has a small dc amplitude. The 5 V 
reference required by the ADC is generated by the ADR435 
low noise reference. 

 

 
Figure 2. Magnitude and Phase Measurement Using a Quadrature Demodulator 
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COMMON VARIATIONS 
The frequency range of the circuit can be extended to lower 
frequencies by using the ADL5387 30 MHz to 2 GHz 
quadrature demodulator. 

Depending on the specific application, the amplifier between 
the demodulator and ADC may or may not be necessary. The 
ADL5380 can interface directly to the AD7903 because the 
common-mode voltages of both devices are compatible. If using 
an alternative ADC with a common-mode voltage that is not 
within the range of the demodulator, an amplifier is necessary 
to achieve the level translation with minimal power loss.  

The AD798x and AD769x family of ADCs can be used as 
alternatives to the AD7903. 

CIRCUIT EVALUATION AND TEST 
As shown in Figure 3, the receiver subsystem is implemented 
using the ADL5380-EVALZ, ADA4940-2ACP-EBZ, EVAL-
AD7903SDZ, and EVAL-SDP-CB1Z evaluation kits. These 
circuit components are optimized for interconnection in the 
subsystem. Two high frequency, phase-locked input sources 
provide the RF and LO input signals. 

Table 1 summarizes the input and output voltage levels for each 
of the components in the receiver subsystem. An 11.6 dBm 
signal at the RF input of the demodulator produces an input 
within −1 dB of the ADC full-scale range. Table 1 assumes a 
500 Ω load, 5.3573 dB conversion gain, and −4.643 dB power 
gain for the ADL5380, and 6 dB gain for the ADA4940-2. The 
calibration routine and performance results achieved for this 
receiver subsystem are discussed in the following sections.  

Table 1. Input and Output Voltage Levels of Figure 1 

RF Input  ADL5380 Output AD7903 Input  
+11.6 dBm +6.957 dBm 4.455 V p-p −1.022 dBFS 
0 dBm −4.643 dBm 1.172 V p-p −12.622 dBFS 

−20 dBm −24.643 dBm 0.117 V p-p −32.622 dBFS 

−40 dBm −44.643 dBm 0.012 V p-p −52.622 dBFS 
−68 dBm −72.643 dBm 466 μV p-p −80.622 dBFS 
 

Receiver Subsystem Error Calibration 

The receiver subsystem contains three major error sources: 
offset, gain, and phase.  

The individual differential dc magnitudes of the I and Q 
channels have sinusoidal relationships with respect to the 
relative phase of the RF and LO signals. As a result, the ideal dc 
magnitude of the I and Q channels can be calculated as follows: 

Voltage ICHANNEL = Max I/Q Output × cos(θ) (3) 

Voltage QCHANNEL = Max I/Q Output × sin(θ) (4) 

As the phase moves through the polar grid, some locations 
ideally produce the same voltage. For example, the voltage on 
the I (cosine) channel should be identical with phase shifts of 
+90° or −90°. However, a constant phase shift error, independent 
of the relative phase of RF and LO, causes the subsystem channel 
to generate different results for input phases that should produce 
the same dc magnitude. This is illustrated in Figure 4 and 
Figure 5, where two different output codes are generated when 
the input should be at 0 V. In this case, the −37° phase shift is 
much larger than expected in a real-world system containing 
phase-locked loops. The result is +90° actually appearing as +53°, 
and −90° as −127°. 

 

 
Figure 3. Receiver Subsystem Evaluation Platform 
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Table 2 Measured Phase Shift for 0 dBm RF Input 
Input Phase 
RF to LO 

Average I Channel 
Output Code 

Average Q Channel 
Output Code 

I Channel 
Voltage 

Q Channel 
Voltage 

Measured  
Phase 

Measured Receiver  
Subsystem Phase Shift 

−180° −5851.294 +4524.038 −0.893 V +0.690 V +142.29° −37.71° 
−90° −4471.731 −5842.293 −0.682 V −0.891 V −127.43° −37.43° 
0° +5909.982 −4396.769 +0.902 V −0.671 V −36.65° −36.65° 
+90° +4470.072 +5858.444 +0.682 V +0.894 V +52.66° −37.34° 
+180° −5924.423 +4429.286 −0.904 V +0.676 V +143.22° −36.78° 

 

Results were gathered in 10° steps from −180° to +180°, with 
the uncorrected data generating the elliptical shapes shown in 
Figure 4 and Figure 5. This error can be accounted for by 
determining the amount of additional phase shift present in the 
system. Table 2 shows that the system phase shift error is 
constant throughout the transfer function. 

System Phase Error Calibration 

With a step size of 10°, the average measured phase shift error 
was −37.32° for the system shown in Figure 3. With this 
additional phase shift known, the adjusted subsystem dc 
voltages can now be calculated. The variable φPHASE_SHIFT is 
defined as the average observed additional system phase shift. 
The dc voltage generated in the phase-compensated signal 
chain can be computed as 

Voltage ICHANNEL = Max I/Q Output × 
(cos(θTARGET)cos(φPHASE_SHIFT) − sin(θTARGET)sin(φPHASE_SHIFT)) (5) 

Voltage QCHANNEL = Max I/Q Output × 
(sin(θTARGET)cos(φPHASE_SHIFT) + cos(θTARGET)sin(φPHASE_SHIFT)) (6) 

Equation 5 and Equation 6 provide the target input voltage for 
a given phase setting. The subsystem has now been linearized, 
and the offset error and gain error can now be corrected. The 
linearized I and Q channel results can also be seen in Figure 4 
and Figure 5. A linear regression on the data sets generates the 
best fit line shown in the figures. This line is the measured 
subsystem transfer function for each conversion signal chain. 

 
Figure 4. Linearized I Channel Results  

 

 
Figure 5. Linearized Q Channel Results  

System Offset and Gain Error Calibration 

The offset of each signal chain within the receiver subsystem is 
ideally 0 LSB; however, the measured offsets were −12.546 LSB 
and +22.599 LSB for the I and Q channels, respectively. The 
slope of the best fit line represents the slope of the subsystem. 
The ideal subsystem slope can be calculated as 
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The results in Figure 4 and Figure 5 show that that measured 
slopes were 6315.5 and 6273.1 for the I and Q channels, 
respectively. These slopes must be adjusted to correct the 
system gain error. Correcting for gain error and offset error 
ensures that the signal magnitude computed using Equation 1 
matches the ideal signal magnitude. The offset correction is the 
opposite of the measured offset error: 

Offset Error Correction = −Measured Offset Error (8) 

The gain error correction coefficient is 

SlopeMeasured
SlopeIdeal

CorrectionErrorGain   (9) 
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The received conversion result can be corrected by 

CorrectionErrorOffset
SlopeMeasured

SlopeIdealeOutput CodReceived
CodeOutputCorrected

+
×

=

 (10) 

The calibrated dc input voltage of the subsystem is calculated as 

12
2

−

××

=

N
REF eOutput CodCorrectedV

VoltageInputSignalMeasured

 (11) 

Use Equation 11 on both the I and Q channels to compute the 
perceived analog input voltage for each subsystem signal chain. 
These fully adjusted I and Q channel voltages are used to compute 
the RF signal amplitude as defined by the individual dc signal 
magnitudes. To evaluate the accuracy of the full calibration 
routine, convert the collected results to ideal subsystem voltages 
produced at the output of the demodulator as if no phase shift 
error were present; multiply the average dc magnitude computed 
previously by the sinusoidal fraction of the measured phase at 
each trial with the computed phase shift error removed. The 
calculation is as follows: 

Fully Corrected I Channel Voltage =  
Average Post Calibration Magnitude × 
(cos(θMEASURED)cos(φPHASE_SHIFT) +  
sin(θMEASURED)sin(φPHASE_SHIFT)) (12) 

Fully Corrected Q Channel Voltage =  
Average Post Calibration Magnitude × 
(sin(θMEASURED)cos(φPHASE_SHIFT) −  
cos(θMEASURED)sin(φPHASE_SHIFT)) (13) 

where: 
φPHASE_SHIFT is the phase error previously computed. 
Average Post Calibration Magnitude is the dc magnitude result 
from Equation 1 that has been compensated for offset error and 
gain error.  

Table 3 shows the results of the calibration routine at various 
target phase inputs for the 0 dBm RF input amplitude case. The 
calculations performed in Equation 12 and Equation 13 are the 
correction factors to be built into any system intended to sense 
phase and magnitude in the manner described in this circuit note.  

Table 3. Results Achieved at Certain Target Phase Inputs 
with 0 dBm RF Input Amplitude 

Target  
Phase 

I Channel  
Fully 
Corrected  
Input Voltage 

Q Channel  
Fully 
Corrected  
Input Voltage 

Fully  
Corrected  
Phase  
Result 

Absolute  
Measured  
Phase  
Error 

−180° −1.172 V +0.00789 V −180.386° 0.386° 
−90° −0.00218 V −1.172 V −90.107° 0.107° 
0° +1.172 V +0.0138 V +0.677° 0.676° 
+90° +0.000409 V +1.171 V +89.98° 0.020° 
+180° −1.172 V −0.0111 V +180.542° 0.541° 
 

Figure 6 is a histogram of the measured absolute phase error 
showing better than 1° accuracy for every 10° step from −180° 
to +180°. 

 
Figure 6. Measured Absolute Phase Error Histogram for 0 dBm Input Level 

with 10° Phase Steps 

For accurate phase measurements at any given input level, the 
perceived phase shift error (φPHASE_SHIFT) of RF relative to LO 
must be constant. If the measured phase shift error begins to 
change as a function of the target phase step (θTARGET) or amplitude, 
the calibration routine presented in this section begins to lose 
accuracy. Evaluation results at room temperature show that the 
phase shift error is relatively constant for RF amplitudes ranging 
from a maximum of 11.6 dBm to approximately −20 dBm at 
900 MHz. 

Figure 7 shows the dynamic range of the receiver subsystem 
along with the corresponding amplitude-induced additional 
phase error. As the input amplitude decreases past −20 dBm, 
the phase error calibration accuracy begins to degrade. The 
system user must determine the acceptable level of signal chain 
error to determine the minimum acceptable signal magnitude. 

 
Figure 7. Dynamic Range of Receiver Subsystem and Corresponding 

Additional Phase Error 

The results shown in Figure 7 were collected with a 5 V ADC 
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provides an incremental improvement in phase error accuracy 
for small signals but increases the chance for system saturation. 
To increase system dynamic range, another option is to implement 
an oversampling scheme that increases the noise-free bit resolution 
of the ADC. Every doubling in samples averaged provides a ½ LSB 
increase in system resolution. The oversampling ratio for a given 
resolution increase is calculated as follows: 

Oversampling Ratio = 22N (14) 

where N is the number of bits increase. 

Oversampling reaches a point of diminishing returns when the 
noise amplitude is no longer sufficient to randomly change the 
ADC output code from sample to sample. At this point, the 
effective resolution of the system can no longer be increased. 
The bandwidth reduction from oversampling is not a significant 
concern because the system is measuring signals with a slowly 
changing magnitude. 

The AD7903 evaluation software is available with a calibration 
routine that allows the user to correct the ADC output results 
for the three sources of error: phase, gain, and offset. The user 
must collect uncorrected results with their system to determine 
the calibration coefficients calculated in this circuit note. Figure 8 
shows the Amp/Phase Panel tab of the GUI with the calibration 
coefficients highlighted. When the coefficients are determined, 
this tab can also be used to deliver phase and magnitude results 
from the demodulator. The polar plot provides a visual indication 
of the observed RF input signal. The amplitude and phase 
calculations are performed using Equation 1 and Equation 2. The 
oversampling ratio can be controlled by adjusting the number of 
samples per capture using the Num Samples drop-down box.  

 
Figure 8. Receiver Subsystem Calibration GUI 

Equipment Needed 

The following equipment are used to evaluate the circuit. 

 A Windows® XP, Windows Vista (32-bit), or Windows 7 
(32-bit) PC with USB port 

 The ADL5380-EVALZ, ADA4940-2ACP-EBZ, EVAL-
AD7903SDZ, and EVAL-SDP-CB1Z evaluation boards  

 Two RF signal generators with phase control (such as the 
R&S SMT06) 

 A digital multimeter  
 5 V and 9 V power supplies 
 The AD7903 evaluation software, used to digitally process 

the resulting magnitude and phase information 

Figure 9 shows a block diagram of the test setup. 

 

 
Figure 9. Test Setup Functional Diagram 

  

1
2

94
0

-0
0

8
ADL5380-EVALZ ADA4940-2ACP-EB EVAL-AD7903SDZ

+IN1

−IN1

+IN2

−IN2

+OUT1

+OUT2

−OUT1

−OUT2
LO_SE RFx

IPx

INx

QPx

QNx

VIN1+

VIN1−

VIN2+

VIN2−

9V
SUPPLY

EVAL-SDP-CB1Z

PC

USB

120

CON A OR CON B

LO RF

5V
SUPPLY

VPOS VIN+VS1

RF
GENERATOR

LO
GENERATOR

1
2

94
0

-0
09

http://www.analog.com/AD7903?doc=CN0374.pdf
http://www.analog.com/ADL5380-EVALZ?doc=CN0374.pdf
http://www.analog.com/ADA4940-2ACP-EBZ?doc=CN0374.pdf
http://www.analog.com/EVAL-AD7903SDZ?doc=CN0374.pdf
http://www.analog.com/EVAL-AD7903SDZ?doc=CN0374.pdf
http://www.analog.com/EVAL-SDP-CB1Z?doc=CN0374.pdf
http://www.analog.com/AD7903?doc=CN0374.pdf


Circuit Note CN-0374
 

Rev. 0 | Page 7 of 7 
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