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Op Amp Total Output Noise Calculations for Single-Pole System 
 
 
 
We have already pointed out that any noise source which produces less than one third to one fifth 
of the noise of some greater source can be ignored, with little error. When so doing, both noise 
voltages must be measured at the same point in the circuit. To analyze the noise performance of 
an op amp circuit, we must assess the noise contributions of each part of the circuit, and 
determine which are significant. To simplify the following calculations, we shall work with noise 
spectral densities, rather than actual voltages, to leave bandwidth out of the expressions (the 
noise spectral density, which is generally expressed in nV/√Hz, is equivalent to the noise in a 1 
Hz bandwidth). 
 
If we consider the circuit in Figure 1 below, which is an amplifier consisting of an op amp and 
three resistors (R3 represents the source resistance at node A), we can find six separate noise 
sources: the Johnson noise of the three resistors, the op amp voltage noise, and the current noise 
in each input of the op amp. Each source has its own contribution to the noise at the amplifier 
output. Noise is generally specified RTI, or referred to the input, but it is often simpler to 
calculate the noise referred to the output (RTO) and then divide it by the noise gain (not the 
signal gain) of the amplifier to obtain the RTI noise.  
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Figure 1: Op Amp Noise Model for Single Pole System 
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Figure 2 (below) is a detailed analysis of how each of the noise sources in Fig. 1 is reflected to 
the output of the op amp. Some further discussion regarding the effect of the current noise at the 
inverting input is warranted. This current, IN–, does not flow in R1, as might be expected—the 
negative feedback around the amplifier works to keep the potential at the inverting input 
unchanged, so that a current flowing from that pin is forced, by negative feedback, to flow in R2 
only, resulting in a voltage at the output of IN– R2. We could equally well consider the voltage 
caused by IN– flowing in the parallel combination of R1 and R2 and then amplified by the noise 
gain of the amplifier, but the results are identical—only the calculations are more involved.  
 
 NOISE SOURCE EXPRESSED AS

A VOLTAGE

Johnson noise in R3:
√(4kTR3)

Non-inverting input current
noise flowing in R3:

IN+R3

Input voltage noise:
VN

Johnson noise in R1:
√(4kTR1)

Johnson noise in R2:
√(4kTR2)

Inverting input current noise
flowing in R2:

IN–R2
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Figure 2: Noise Sources Referred to the Output (RTO) 
 
Notice that the Johnson noise voltage associated with the three resistors has been included in the 
expressions of Fig. 2. All resistors have a Johnson noise of √(4kTBR), where k is Boltzmann's 
Constant (1.38×10–23 J/K), T is the absolute temperature, B is the bandwidth in Hz, and R is the 
resistance in Ω. A simple relationship which is easy to remember is that a 1000 Ω resistor 
generates a Johnson noise of 4 nV/√Hz at 25ºC.  
 
The analysis so far assumes a single-pole system where the feedback network is purely resistive 
and that the noise gain versus frequency is flat. This applies to most applications, but if the 
feedback network contains reactive elements (usually capacitors) the noise gain is not constant 
over the bandwidth of interest, and more complex techniques must be used to calculate the total 
noise. Second-order system noise considerations can be found in Tutorial MT-050. 
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