

High Voltage, High Bandwidth, Current Sense Amplifier

AD8410

Preliminary Technical Data

FEATURES

High common-mode input voltage range -2V to +70 V continuous -20V to +75 V survival Typical 1.0 μV/°C offset drift 2.0 MHz Bandwidth Maximum ±400 μV voltage offset over full temperature range Initial gain = 20 V/V Wide operating temperature range AD8410WB: -40°C to +125°C AD8410WH: -40°C to +125°C Bidirectional operation 3.0 V to 5.5 V power supply operating range Available in 8-lead MSOP and 8-lead SOIC Common-mode rejection ratio (CMRR): 86 dB, dc to 10 kHz Qualified for automotive applications

APPLICATIONS

High-side current sensing in 48V/ 12V DC to DC Converters Motor controls Solenoid controls Power management Low-side current sensing Diagnostic protection

GENERAL DESCRIPTION

The AD8410 is a high voltage, high resolution, and high bandwidth current shunt amplifier. It features an initial gain of 20 V/V, with a 2.0 MHz bandwidth with a maximum $\pm 0.3\%$ gain error over the entire temperature range. The buffered output voltage directly interfaces with any typical converter. The AD8410 offers excellent input common-mode rejection from -2 V to +70 V. The AD8410 performs bidirectional current measurements across a shunt resistor in a variety of automotive and industrial applications, including motor control, power management, and solenoid control.

The AD8410 offers breakthrough performance throughout the -40°C to $+150^\circ\text{C}$ temperature range. It features a in package trim core, which leads to a typical offset drift of $1.0~\mu\text{V}/^\circ\text{C}$ throughout the operating temperature range and the common-mode voltage range. The AD8410 is qualified for automotive applications. The device includes patented circuitry to enable output accuracy with pulse-width modulation (PWM) type input common-mode voltages. The typical input offset voltage is $\pm 200~\mu\text{V}$. The AD8410 is offered in 8-lead MSOP or SOIC packages.

Table 1. Related Devices

Part No.	Description
AD8205	Current sense amplifier, gain = 50
AD8206	Current sense amplifier, gain = 20
AD8207	High accuracy current sense amplifier, gain = 20
AD8210	High speed current sense amplifier, gain = 20
AD8418A	High accuracy current sense amplifier, gain = 20

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev. PrE Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

SPECIFICATIONS

 $T_A = -40^{\circ}$ C to $+125^{\circ}$ C (operating temperature range) for the AD8410WB, $T_A = -40^{\circ}$ C to $+150^{\circ}$ C for the AD8410WH, $V_S = 5$ V, unless otherwise noted.

Table 2.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
GAIN					
Initial			20		V/V
Error Over Temperature	Specified temperature range			±0.3	%
Gain vs. Temperature		-10		+10	ppm/°C
VOLTAGE OFFSET					
Offset Voltage, Referred to the Input (RTI)	25°C		±200		μV
Over Temperature (RTI)	Specified temperature range			±400	μV
Offset Drift		-1.0	+0.1	+1.0	μV/°C
INPUT					
Input Bias Current			130		μA
Input Offset Current			10		μA
Input Voltage Range	Common mode, continuous	-2		+70	V
Common-Mode Rejection Ratio (CMRR)	Specified temperature range, $f = dc$	90	100		dB
	f = dc to 10 kHz		86		dB
OUTPUT					
Output Voltage Range	$R_L = 10 \ k\Omega$	0.020		$V_{\text{S}}-0.020$	V
Output Resistance			2		Ω
DYNAMIC RESPONSE					
Small Signal –3 dB Bandwidth			2000		kHz
Slew Rate			9		V/µs
NOISE					
0.1 Hz to 10 Hz (RTI)			32		μV p-p
Spectral Density, 1 kHz (RTI)			38		nV/√Hz
OFFSET ADJUSTMENT					
Ratiometric Accuracy ¹	Divider to supplies	0.499		0.501	V/V
Accuracy, Referred to the Output (RTO)	Voltage applied to $V_{REF}1$ and $V_{REF}2$ in parallel			±1	mV/V
Output Offset Adjustment Range	$V_{\rm S} = 5 V$	0.045		$V_{\text{S}} - 0.035$	V
POWER SUPPLY					
Operating Range		2.9		5.5	V
Quiescent Current Over Temperature	$V_{OUT} = 0.1 V dc$				
	AD8410WB			9	mA
	AD8410WH			9	mA
Power Supply Rejection Ratio		80			dB
Temperature Range					
For Specified Performance	Operating temperature range				
	AD8410WB	-40		+125	°C
	AD8410WH	-40		+150	°C

 1 The offset adjustment is ratiometric to the power supply when V_{REF}1 and V_{REF}2 are used as a divider between the supplies.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	6 V
Input Voltage Range	
Continuous	−2 V to +70 V
Survival	–20 V to +75 V
Differential Input Survival	±20 V
Reverse Supply Voltage	0.3 V
ESD Human Body Model (HBM)	±2000 V
Operating Temperature Range	
AD8410WB	-40°C to +125°C
AD8410WH	–40°C to +150°C
Storage Temperature Range	–65°C to +150°C
Output Short-Circuit Duration	Indefinite

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	-IN	Negative Input
2	GND	Ground
3	V _{REF} 2	Reference Input
4	NC	No Connect
5	OUT	Output
6	Vs	Supply
7	V _{REF} 1	Reference Input
8	+IN	Positive Input

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR15058-0-9/16(PrE)

Rev. PrE | Page 4 of 4

www.analog.com