FEATURES

7 ns Propagation Delay
Single Supply Operation: +3 V to +10 V
Low Power
Symmetrical Layout
Latch Function
TSSOP Packages
APPLICATIONS

Battery Operated Instrumentation

GENERAL DESCRIPTION

The AD8598 is a dual 7 ns comparator with digital latches. Separate supplies enable the input stage to be operated from +5 V to as high as $\pm 5 \mathrm{~V}$.
Ultrafast 7 ns propagation delay makes the AD8598 a good choice for timing circuits and line receivers. Propagation delays for rising and falling signals are closely matched and track over temperature. This matched delay makes the AD8598 a good choice for clock recovery, since the duty cycle of the output will match the duty cycle of the input.
The AD8598 has the same pinout as the DIP version of the AD9698. For a single comparator like the AD8598, please refer to the AD8561 data sheet.
The AD8598 is specified over the industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range. The AD8598 is available in both the 16 -lead plastic DIP, 16-lead TSSOP or narrow R-16A surface mount packages.

REV. A

[^0]PIN CONFIGURATIONS

AD8598-SPECIFICATIONS
ELECTRICAL SPECIFICATIONS (ev $+=+5.0, \mathrm{~V}, \mathrm{v}=\mathrm{V}_{\mathrm{van}}=0 \mathrm{OV}, \mathrm{T}_{\mathrm{a}}=+25^{\circ} \mathrm{m}$ uness othemisise notete)

NOTES
${ }^{1}$ Guaranteed by design.
Specifications subject to change without notice.

ELECTRICAL SPECIFICATIONS ($\cup+=+5.0 v, V_{\text {kin }}=0 v, V_{-}=-5 v, T_{A}=+25^{\circ} \mathrm{c}$ unless otherwise noted)

NOTES

${ }^{1}$ Guaranteed by design.
Specifications subject to change without notice.

AD8598-SPECIFICATIONS

Differential Input Voltage $\pm 8 \mathrm{~V}$
Output Short-Circuit Duration to GND
Indefinite Storage Temperature Range

N, R, RU Package $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature Range
N, R, RU Package $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 10 sec) $\ldots+300^{\circ} \mathrm{C}$

ORDERING GUIDE

Model	Temperature Range	Package Descriptions	Package Options
AD8598AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Plastic DIP	$\mathrm{N}-16$
AD8598ARU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline (TSSOP)	RU-16
AD8598AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Narrow Body IC	$\mathrm{R}-16 \mathrm{~A}$

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8598 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics $\left(v_{+}=+5, v, v_{-}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 4. Propagation Delay vs. Load Capacitance

Figure 7. Propagation Delay vs. Temperature

Figure 2. Typical Distribution of Input Offset Voltage

Figure 3. Propagation Delay vs. Overdrive

Figure 6. Propagation Delay vs. Positive Supply Voltage

Figure 9. Latch Setup-and-Hold Time vs. Temperature

AD8598

Figure 10. Qutput Low Voltage, $V_{O L}$

Figure 13. Analog Supply Current vs. Supply Voltage

Figure 16. Input Bias Current vs. Temperature

Figure 11. Output High Voltage, $V_{O H}$ vs. Source Current

Figure 12. Analog Supply Current vs. Temperature for ± 5 V Supplies

Figure 15. Input Bias Current vs. Input Common-Mode Voltage for $\pm 5 \mathrm{~V}$ Supplies

APPLICATIONS

Optimizing High Speed Performance

As with any high speed comparator or amplifier, proper design and layout techniques should be used to ensure optimal performance from the AD8598. The performance limits of high speed circuitry can easily be a result of stray capacitance, improper ground impedance or other layout issues.
Minimizing resistance from source to the input is an important consideration in maximizing the high speed operation of the AD8598. Source resistance in combination with equivalent input capacitance could cause a lagged response at the input, thus delaying the output. The input capacitance of the AD8598, in combination with stray capacitance from an input pin to ground could result in several picofarads of equivalent capaciance. A cqmbination of $3 \mathrm{k} \Omega$ source resistance and 5 pF of input capacjtanceprields a time constant of 15 ns , which is slower than the 5 ns capability of the AD8598. Source imped(ances should be less than $\mathrm{k} \Omega$ for the best performance. tt is also important to provide byp ass apacitors for the power supply in 2 high speed applifation A $\angle \mathrm{F}$ electivolytic bypass cap citor should be placed within 0 . Sinches of eafh power supply pin to ground. These capacitors wid reque apy potential voltage ripples from the power supply In ddifion, a 10 nF ceramic capacitor should be placedas close 2 s possible from the power supply pins to ground. These capacitors act as a charge reservoir for the device during high frequency switching.
A ground plane is recommended for proper high speed performance. This can be created by using a continuous conductive plane over the surface of the circuit board, only allowing breaks in the plane for necessary current paths. The ground plane provides a low inductance ground, eliminating any potential differences at different ground points throughout the circuit board caused from "ground bounce." A proper ground plane also minimizes the effects of stray capacitance on the circuit board.

Replacing the MAX912

The AD8598 is pin compatible with the MAX912 comparator. While it is easy to replace the MAX912 with the higher performance AD8598, please note that there are differences, and it is useful to check these to ensure proper operation.
There are five major differences between the AD8598 and the MAX912; input voltage range, input bias currents, speed, output swing and power consumption.
When operated on a +5 V single supply, the MAX912 has an input voltage range from -0.2 V to +3.5 V . The AD 8598 has an input range from 0 V to +3.0 V . Signals above +3.0 V may result in slower response times (see Figure 8). If both signals exceed +3.0 V , the signals may be shifted or attenuated to bring them into range, keeping in mind the note about source resistance in Optimizing High Speed Performance. If only one of the signals exceeds +3.0 V only slightly, and the other signal is always well within the 0 V to +3 V range, the comparator may operate without changes to the circuit.
Example: A comparator compares a fast moving signal to a fixed +2.5 V reference. Since the comparator only needs to operate when the signal is near +2.5 V , both signals will be within the input range (near +2.5 V and well under +3.0 V) when the comparator needs to change output.

Note that signals much greater than +3.0 V will result in increased input currents and may cause the device to operate more slowly.
The input bias current of the AD8598 is the same magnitude ($-3 \mu \mathrm{~A}$ typical) as the MAX912 (+3 $\mu \mathrm{A}$ typical), and the current flows out of the AD8598 and into MAX912. If relatively low value resistors and/or low impedance sources are used on the inputs, the voltage shift due to bias current should be small.
The AD8598 (6.75 ns typical) is faster than the MAX912 (10 ns typical). While this is beneficial to many systems, timing may need to be adjusted to take advantage of the higher speed.
The AD8598 has slightly more output voltage swing when the output is lightly loaded.
The AD8598 uses less current (typically 10 mA) than the MAX912 (typically 12 mA).

Increasing Output Swing

Although not required for normal operation, the output voltage swing of the AD8598 can be increased by connecting a $5 \mathrm{k} \Omega$ resistor from the output of the device to the $\mathrm{V}+$ power supply. This configuration can be useful in low voltage power supply ap plications where maximizing output voltage swing is important. Adding a 5 pull-up resistor to the device's output will not odversely affect the specifications of the AD8598.
 without any sifnifjcantincrease in plopoggation delay. The
output of the device should not be condected to me than twenty (20) FTL input togic gates no. drive a/load resistance less than 100Ω.
To ensure the best performance from the AD 8598 is important to minimize capacitive loading of the output the derice. Capacitive loads greater than 50 pF will cause ringing on the output waveform and will reduce the operating bandwidth of the comparator.

Setup and Hold Times for Latching the Output

The latch inputs can be used to retain data at the outputs of the AD8598. When the voltage at the latch input goes high, the output of the device will remain constant regardless of the input voltages. The setup time for the latch is $2 \mathrm{~ns}-3 \mathrm{~ns}$ and the hold time is 3 ns . This means that to ensure data retention at the output, the input signal must be valid at least 5 ns before the latch pin goes high and must remain valid at least 3 ns after the latch pin goes high. Once the latch input voltage goes low, new output data will appear in approximately 8 ns .
A logic high for the latch input is a minimum of +2.0 V and a logic low is a maximum of +0.8 V . This makes the latch input easily interface with TTL or CMOS logic gates. The latch circuitry in the AD8598 has no built-in hysteresis.

Input Stage and Bias Currents

The AD8598 uses a PNP differential input stage that enables the input common-mode range to extend all the way from the negative supply rail to within +2.2 V of the positive supply rail. The input common-mode voltage can be found as the average of the voltage at the two inputs of the device. To ensure the fastest response time, care should be taken not to allow the input common-mode voltage to exceed either of these voltages.

AD8598

The input bias current for the AD8598 is $3 \mu \mathrm{~A}$. As with any PNP differential input stage, this bias current will go to zero on an input that is high and will double on an input that is low. Care should be taken in choosing resistor values to be connected to the inputs as large resistors could cause significant voltage drops due to the input bias current.
The input capacitance for the AD8598 is typically 3 pF . This is measured by inserting a $5 \mathrm{k} \Omega$ source resistance to the input and measuring the change in propagation delay.

Using Hysteresis

Hysteresis can easily be added to a comparator through the addition of positive feedback. Adding hysteresis to a comparator offers an advantage in noisy environments where it is not desirable for the output to toggle between states when the input sighal is near the switching threshold. Figure 17 shows a

Figure 17. Configuring the $A D 8598$ with Hysteresis approaches $\mathrm{V}_{\mathrm{HI}}=\mathrm{V}_{+}-1$ and 0 V. At frequencies less apprфaches $\mathrm{V}_{\mathrm{HI}}=\mathrm{V}_{+}-1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{LO}}=0 \mathrm{~V}$. At frequencies less

AD8598

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead Plastic DIP
($\mathrm{N}-16$)

16-Lead Narrow Body IC
 (R-16A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

