
 

AN-900
APPLICATION NOTE 

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com 

 
Enhancing the Performance of Pedometers Using a Single Accelerometer  

by Jim Scarlett 

 

Rev. 0 | Page 1 of 16 

The AN-602 application note examined the use of an Analog 
Devices, Inc. accelerometer to make a simple but relatively 
accurate pedometer. However, newer devices have been 
introduced that allow the use of accelerometers in more cost-
sensitive applications. Thus, applications such as pedometers 
are finding themselves in many consumer devices such as 
cellular handsets. 

Given this trend, a closer examination was made of pedome- 
ters using a single accelerometer. The AN-602 technique was 
implemented in an attempt to duplicate its results. Though the 
algorithm performed well, the same accuracy was not duplicated. 
In particular, there was greater variation than expected from 
person to person, as well as when one person used a different 
pace and stride length. This led to an investigation of potential 
improvements to the algorithm used in AN-602.  

The tests were done using two different pedometer test boards, 
both utilizing an ADuC7020 ARM7® controller. One setup was 
a combination of the ADuC7020 microcontroller and ADXL322 
accelerometer evaluation boards, with an added 16 × 2 char-
acter LCD display. The other was a custom board using the 
ADuC7020 and an ADXL330 3-axis accelerometer, again with  
a 16 × 2 character LCD display. See Figure 5 for the custom 
board schematic. 

AN-602 METHOD 
The underlying reasoning in the AN-602 method is based on 
the principle that the vertical bounce in an individual’s step is 
directly correlated to that person’s stride length (see Figure 1). 

Because the angles α and θ are equal, the stride can be shown to 
be a multiple of the maximum vertical displacement. Differences 
in an individual’s leg length are accounted for, given that for the 
same angles the vertical displacement would be greater or 
smaller for taller or shorter people. 

Using an accelerometer, however, gives changes in acceleration 
rather than displacement. These acceleration measurements must 
be converted to a distance before they can be used. With the 
limited computing power available in the AN-602 setup, a 
simple formula was used to approximate the double integral 
needed for the conversion. With plenty of processing power 
available, an attempt was made to do the discrete integrals 
directly for this experiment. 

A simple method was chosen to calculate the integrals. After 
each step was determined, all of the acceleration samples  
within that step were added to obtain a set of velocity samples.  
The velocity samples for each step were normalized such that 
the final sample was zero. They were then added together to  
get a value for the displacement.  

This technique looked promising initially, because measured 
distances were relatively consistent for one subject walking  
a course multiple times. However, the variance problem from 
person to person was exacerbated, as was the variance for one 
subject at different paces. This led to an investigation of 
whether the problem is with the model itself. 

06
61

7-
00

1

BOUNCE

RIGHT
LEG

LEFT
LEG

LEFT
LEG

HIP

RIGHT
LEG

θ

α

 
Figure 1. Vertical Movement of Hip While Walking 

 



AN-900  
 

Rev. 0 | Page 2 of 16 

UNDERSTANDING THE MODEL 
This model has two primary conditions. First, it assumes that 
the foot actually makes contact with the ground at a single 
point. Second, it assumes that the impact of each foot on the 
ground is perfectly elastic. Of course, neither of these is the 
case. The question arose of whether this can explain the large 
variations encountered. Based on this experiment, it is safe to 
state that it does explain much of the variation. 

To understand this, it helps to look at the measured acceleration 
values over several steps, shown in Figure 2. Different sources of 
spring in one person’s step are shown on the data. 

340

290

240

190

140
1

06
61

7-
00

2

15 29 43 57 71 85 99 113 127 141 155 169

HEEL-TO-BALL BALL-TO-TOE

TOE UP

HEEL DOWN ACCEL

ACCELLERATION  
Figure 2. Acceleration Graph for Subject 1 at a Normal Pace 

Figure 2 demonstrates the problems encountered trying to 
translate acceleration measurements into an accurate distance 
calculation. Methods that take into account the peak-to-peak 
change (or even those that integrate the data) run into trouble 
with this type of data. The cause of this difficulty is the variation  
in spring in the steps of different people, or in the steps of one 
person using different paces from one measurement to another.  

Figure 3 shows the same subject with a longer and faster stride. 
The peak-to-peak acceleration difference is larger, and the 
various spring points look different. Thus, the amount of data 
representing spring data vs. the amount representing real data is 
different compared with Figure 2. However, the algorithm only 
sees a set of acceleration measurements and does not note the 
context of those measurements. The problem, therefore, is how 
to remove the effect of the spring in a subject’s step without 
removing useful data. 

1

06
61

7-
00

3

15 29 43 57 71 85 99 113 127 141 155 169

ACCELERATION

500

0
1

450

400

350

300

250

200

150

100

50
ACCEL

 
Figure 3. Acceleration Graph for Subject 1 at a Fast Pace 

There are some important differences between the two plots. 
The bottom part of the curve for each step is slightly narrower 
in Figure 3 and the tops of the curves are more consistent (fewer 
distinctive peaks). These differences result in a higher average 
value of the samples compared to the minimum and maximum 
sample values. 

For comparison purposes, review the data plot for a different 
individual in Figure 4. The stride length is very similar to that of 
Subject 1 in Figure 2. However, the data itself looks very different. 

1
06

61
7-

00
4

15 29 43 57 71 85 99 113 127 141 155 169

ACCELERATION

50
1

400

350

300

250

200

150

100

SERIES 1

 
Figure 4. Acceleration Graph for Subject 2 at a Normal Pace 

The stride of Subject 2 has a great deal more spring in it than 
that of Subject 1 (shown in Figure 2). Yet both sets of data 
represent roughly the same distance walked. Calculating distance 
solely on the peak values gives widely varying results. Using a 
simple double integration suffers from the same problem. 



  AN-900
 

Rev. 0 | Page 3 of 16 

SOLVING THE PROBLEM OF SPRING 
All efforts to come up with a decent solution to this problem 
using straightforward calculations had the same problems.  
This led to a series of attempts to normalize the data in a way 
that eliminated the spring, but all these attempts proved unsuc-
cessful. The main reason seemed to be that they required some 
knowledge of the context of the data. In actual use, however,  
the system has no idea what is going on outside; all it has are 
data points. The solution needs to be able to operate on the  
data without context. 

A possible solution to this problem began to emerge. It was 
noted earlier how the data changed when going from a slower 
to faster pace. There is less apparent variation due to the spring 
with a longer, quicker stride. The result was a higher average for 
the sample points, with respect to the data minima and maxima. 

Visually, it is a little difficult to be sure of this, given the amount 
of bounce in the steps shown in Figure 4. But calculations showed 
that the average-vs.-peak values are very similar to those in 
Figure 2. Therefore, a possible simple algorithm was used to 
determine the distance walked. It is 

)(
)(

minmax
minavg

kd
−
−

×=  (1) 

where: 
d is the distance calculated. 
k is a constant multiplier. 
max is the maximum acceleration value measured within this step. 
min is the minimum acceleration value. 
avg is the average acceleration value for the step. 

Equation 1 is completed for each step, as determined by a 
different step-finding algorithm. The step-finding algorithm 
uses an 8-point moving average to smooth the data. It searches 
for a maximum peak, followed by a minimum. A step is counted 
when the moving average crosses the zero point, which is the 
overall average for the step. The data used in the distance algo-
rithm takes into account the 4-point latency of the moving 
average. 

This simple solution held up well for Subject 1 over various 
stride lengths. It also did reasonably well with additional subjects. 
But some subjects produced distances that varied as much as 
10% from the average measured distance for the group. This 
was not within the ±7.5% error band that was targeted for an 
uncalibrated measurement. Another solution was needed. 

The ratio used in the last test seemed to reflect the differences 
in the spring of different subjects’ steps. It made sense to try 
combining the two methods examined here. Going back to  
the original idea of using a double integral, this ratio was used 
as a correction factor to remove the spring data from the calcu-
lation. The resulting formula is therefore 

∑∑ −
−
−

×= )(*
)(
)( avgaccel

minavg
minmaxkd  (2) 

where accel represents all measured acceleration values for  
the step. 

This algorithm held up well for a variety of subjects and paces, 
with all variation within approximately 6%. The algorithm lends 
itself to easy calibration for a specific individual/pace by adjusting 
the Multiplier k. There is also provision within the listed code  
to perform an average on the stride length to smooth out step-
to-step variation. The results noted here did not include the use 
of this averaging. 

In this experiment, only the X- and Y-axes were used. The 
3-axis accelerometer was chosen for flexibility, and two axes 
were found to be adequate for the task. An ADXL323 could  
be used in place of the ADXL330. The same layout can be used 
for both because the pin configuration is identical except for the 
Z-axis output. 

These experiments concentrated on achieving good results for 
the pedometer’s distance measurement. There was no extensive 
work done on the step-counting algorithm beyond ensuring it 
works well while walking (and running), with measured steps 
within 1 to 2 steps of the actual number over hundreds of steps 
taken. However, it is possible that a simple algorithm can be 
fooled with nonwalking motions. Improvements can be made  
in that area, such as the time-window function described in 
AN-602. The object is to ignore steps that are outside the 
expected time window, while retaining the ability to adapt  
when the subject changes pace. 

SUMMARY 
This application note represents the results of a single set of 
experiments attempting to gain decent performance from a 
simple pedometer that uses a single accelerometer. Some of  
the barriers to gaining that performance have been reviewed. 
The final results have met the stated accuracy goals, with the 
added possibility of improved accuracy with calibration. Although 
greater accuracy can be obtained with a more complex system 
(for instance, with multiple accelerometers), the algorithm 
provided in this application note is an excellent starting point 
for simple, low cost applications. 



AN-900  
 

Rev. 0 | Page 4 of 16 

06617-005

 
Figure 5. Custom Board Schematic 



  AN-900
 

Rev. 0 | Page 5 of 16 

06617-006

 
Figure 6. Custom Board Schematic (Continued) 

 



AN-900  
 

Rev. 0 | Page 6 of 16 

ADuC7020 C CODE 
The following three files contain the code used to implement this algorithm on the test boards using an ADuC7020 microcontroller. 

MAIN.C 
The file main.c is used to initialize the device: 
/********************************************************************* 

 Author        : J Scarlett 

 Date          : Nov 2006 

 Files          : main.c, display.c, ped.c 

 Hardware      : ADuC7020 

 Description   : Implements a simple pedometer based on application note AN-602 

   

*********************************************************************/ 

#include <ioaduc7020.h> 

 

// Function Prototype with required function attribute. 

extern void Monitor_Function(void); 

extern void Display_Init(void); 

 

//********************************************************************* 

// Main Function for ADuC7020 Pedometer essentially performs startup functions 

//********************************************************************* 

int main (void) 

{ 

 POWKEY1 = 0x01; 

 POWCON = 0x06;      // set to 653kHz core clock 

 POWKEY2 = 0xF4; 

 REFCON = 0x2;      // use external reference 

        // (connected to VDD) 

//********************************************************************* 

// Initialize Peripherals 

//********************************************************************* 

// GPIO Configuration 

 GP4DAT = 0x04000000;     // P4.2 configured as an output.  

        // LED is turned on  

 GP0CON = 0x00000000;      // 

 GP0DAT = 0xE0000000;     // 0.7, 0.6, and 0.5 are outputs 

        // 0.7 = E, 0.5 = R/W*, 0.6 = RS 

 GP1DAT = 0xFF000000;     // All P1 pins are outputs 

 

 ADCCON = 0x20;      // Turn ADC on but do not enable 

 

 Display_Init();      // found in File display.c 

 Monitor_Function();     // found in File ped.c 

//********************************************************************* 

// Main Loop 

//********************************************************************* 

 while(1) 

 { 

 } 

} // main() 

 



  AN-900
 

Rev. 0 | Page 7 of 16 

DISPLAY.C 
The file display.c contains all functions that access the display: 
// File "display.c" 

// performs all LCD display interface functions 

 

#include <ioaduc7020.h> 

 

extern char stepbcd[6];   // found in File ped.c 

extern char distbcd[6];   // this too 

 

void Display_Init(void); 

void display_data(void); 

void display_data_clear(void); 

void char_load(int RS, int data); 

void delay(unsigned int cycles); 

int reverse_data(int data); 

 

void Display_Init() 

{ 

     // used once to initialize display and write 

     // the "Steps" and "Distance" headers 

 int rs, data; 

 

 // Display initialization 

 rs = 0;      // no RAM access yet 

 

 data = 0x30;     // function set:  2-line mode, display off 

 char_load(rs, data);   

 

 data = 0x38;     // function set:  2-line mode, display off 

 char_load(rs, data); 

 

 data = 0x08;     // display off, cursor off, blink off 

 char_load(rs, data); 

 

 data = 0x01;     // clear display 

 char_load(rs, data); 

 delay(49);     // ~1.5 ms additional delay is required 

 

 data = 0x06;     // increment mode, no shift 

 char_load(rs, data); 

 

 data = 0x0C;     // display on, cursor off, blink off 

 char_load(rs, data); 

 

 data = 0x80;     // set data address to home, just to be sure 

 char_load(rs, data); 

 

 rs = 1;      // now writing to data RAM 

 data = 0x53;     // start of sequence to send 

 char_load(rs, data);    // "Steps   Distance" for title line 

 

 data = 0x74;     // "t" 



AN-900  
 

Rev. 0 | Page 8 of 16 

 char_load(rs, data); 

 

 data = 0x65;     // "e" 

 char_load(rs, data); 

 

 data = 0x70;     // "p" 

 char_load(rs, data); 

 

 data = 0x73;     // "s" 

 char_load(rs, data); 

 

 data = 0x20;     // " " times 3 

 char_load(rs, data); 

 char_load(rs, data); 

 char_load(rs, data); 

 

 data = 0x44;     // "D" 

 char_load(rs, data); 

 

 data = 0x69;     // "i" 

 char_load(rs, data); 

 

 data = 0x73;     // "s" 

 char_load(rs, data); 

 

 data = 0x74;     // "t" 

 char_load(rs, data); 

 

 data = 0x61;     // "a" 

 char_load(rs, data); 

 

 data = 0x6E;     // "n" 

 char_load(rs, data); 

 

 data = 0x63;     // "c" 

 char_load(rs, data); 

 

 data = 0x65;     // "e" 

 char_load(rs, data); 

 

} // Display_Init() 

 

 

void display_data() 

{ 

       // displays the data contained in stepbcd[] & distbcd[] 

       // beginning at the first and ninth characters 

       // on row 2 of the display 

 int i, rs, data, zero; 

 

 rs = 0;      // want to set address, not data 

 data = 0xC0;     // start of second line 

 char_load(rs, data); 



  AN-900
 

Rev. 0 | Page 9 of 16 

 

 rs = 1; 

 zero = 0; 

 for (i=5; i>=0; i--)     // display steps 

 { 

  if ((stepbcd[i] > 0) || (zero ==1))  // suppress leading zeroes, 

  {      // but not embedded zeroes 

   zero = 1; 

   data = 0x30 | stepbcd[i];  // numbers on display character table 

        // begin at 0x30 

   char_load (rs, data); 

  } // if 

 } // for 

 

 rs = 0;       // set address 

 data = 0xC8;      // ninth character of second line 

 char_load(rs, data); 

 

 rs = 1; 

 zero = 0; 

 for (i=5; i>=0; i--)     // display distance 

 { 

  if ((distbcd[i] > 0) || (zero ==1)) 

  { 

   zero = 1; 

   data = 0x30 | distbcd[i]; 

   char_load (rs, data); 

  } // if 

 } // for 

 

} // display_data() 

 

 

void display_data_clear(void) 

{ 

        // used to clear display data field 

        // before new measurement 

 int i, rs, data; 

 

 rs = 0;       // want to set address 

 data = 0xC0;      // start of second line 

 char_load(rs, data); 

 

 rs = 1; 

 data =0x20; 

 for (i=0; i<16; i++)     // put spaces across Row 2 

  char_load (rs, data); 

 

} // display_data_clear() 

 

 

void char_load(int rs, int data) 

{ 



AN-900  
 

Rev. 0 | Page 10 of 16 

 // signal timing assumes a core clock < 4MHz 

 // delay at end is ~61us, to allow write to complete 

 

        data = reverse_data(data);         // board layout dictated reversing MSB/LSB 

 GP1CLR = 0x00FF0000;     // ensure clean slate for next character 

 GP1SET = data << 16;     // set Port 1 to new character data 

 

 if (rs) 

  GP0SET = 0x00400000;    // RS bit = 1 

 else 

  GP0CLR = 0x00400000;    // RS bit = 0 

 

 GP0CLR = 0x00200000;     // WR bit = 0 (this is a write command) 

 

 GP0SET = 0x00800000;     // set E bit to begin transfer process 

 GP0CLR = 0x00800000;     // clear E bit to complete transfer process 

 

 delay(2); 

 

} // char_load() 

 

void delay(unsigned int cycles) 

{ 

 T2CON = 0; 

 T2CLRI = 0; 

 T2LD = cycles; 

 T2CON = 0xC0;      // enable Timer 2, periodic mode, 32.768 kHz 

 while (!(IRQSIG & WAKEUP_TIMER_BIT));   // wait for timeout 

 T2CON = 0;      // disable Timer 2 

 

} // delay() 

 

int reverse_data(int data) 

{ 

        int i, temp; 

 

        temp = 0; 

 

        for (i=0; i<4; i++) 

        { 

                temp |= (((0x01 << i) & data) << (7 - (2 * i))); 

        } // fill top 4 bits of temp 

 

        for (i=4; i<8; i++) 

        { 

                temp |= (((0x01 << i) & data) >> ((2 * i) - 7)); 

        } // fill bottom 4 bits of temp 

 

        return temp; 

 

} // reverse_data() 

 



  AN-900
 

Rev. 0 | Page 11 of 16 

PED.C 
The file ped.c contains those functions used by the pedometer algorithm: 
// file "ped.c" 

// performs pedometer and misc functions 

 

#include <ioaduc7020.h> 

#include <math.h> 

#include <stdlib.h> 

 

// Function Prototype & variables 

char stepbcd[6]; 

char distbcd[6]; 

char stepflag; 

float stride, avgstride, accel_dat[50]; 

float maxavg, minavg, accel_avg, velocity, displace; 

float distance; 

int steps; 

 

void Monitor_Function(void); 

void get_sample(unsigned int *xdat, unsigned int *ydat, unsigned int *zdat); 

char IsStep(float avg, float oldavg); 

void display_prep(void); 

long int bin_to_bcd(long int bin_no); 

extern void display_data(void);    // found in File display.c 

extern void display_data_clear(void);     // found in File display.c 

 

// functions 

 

void Monitor_Function() 

{ 

 char flag; 

        unsigned int xdat, ydat, zdat; 

 int i, cycle_count, tot_samples, avgconst = 1, latency = 4, avglen = 8; 

 float rssdat, newmax, newmin, oldavg, newavg, avgthresh=1.0; 

 float walkfudge = 0.0249; 

 

 

 flag = 0; 

 

 T1CON = 0;     // turn off interval timer and clear any IRQ 

 T1CLRI = 0; 

 

 while (1) 

 { 

  if (IRQSIG & XIRQ0_BIT)   // XIRQ0 button has been pressed 

  { 

   while(GP0DAT & 0x00010); // wait for XIRQ to be low again 

   if (!flag) 

   { 

    T1CON = 0;  // turn off interval timer 

    T1CLRI = 0;  // clear any timer IRQ 

 

    stepflag = 2; 



AN-900  
 

Rev. 0 | Page 12 of 16 

    maxavg = -10000.0; 

    minavg = 10000.0; 

    newmax = -10000.0; 

    newmin = 10000.0; 

    oldavg = 0.0; 

    newavg = 0.0; 

    cycle_count = 0; 

    tot_samples = 0; 

    steps = 0; 

    distance = 0.0; 

    accel_avg = 0.0; 

                                velocity = 0.0; 

                                displace = 0.0; 

    avgstride = 0.0; 

 

    display_data_clear();  // clear old data from display 

    flag = 1; 

                                T1LD = 1092;   // ~30 Hz sample rate 

    T1CON = 0x2C0;   // 32.768 kHz clock, timer on, 

        // periodic mode 

   } // if not running, start. 

                } // look for stop button 

                if (GP2DAT & 0x01) 

                { 

                         while(GP2DAT & 0x01); 

                        flag = 0; 

                } // if running, stop 

 

  if (((IRQSIG & GP_TIMER_BIT) && (flag)) != 0)  // wait for timeout 

        // and flag 

  { 

   T1CLRI = 0;   

   if (tot_samples > 7)      // subtract first sample in sliding boxcar avg 

   { 

    oldavg = newavg; 

    newavg -= accel_dat[cycle_count - avglen]; 

   } // if 

 

   get_sample(&xdat, &ydat, &zdat); // get data from accelerometer 

   xdat -= 8192;    // subtract Zero g value 

   ydat -= 8192; 

   rssdat = sqrt((float)(xdat*xdat + ydat*ydat)/16.0); // vector sum 

   accel_dat[cycle_count] = rssdat; // place current sample data in buffer 

 

                          newavg += rssdat;       // add new sample to sliding boxcar avg 

   if((abs(newavg-oldavg)) < avgthresh) 

    newavg = oldavg; 

 

                          if (rssdat > newmax) 

    newmax = rssdat; 

   if (rssdat < newmin) 

    newmin = rssdat; 

 



  AN-900
 

Rev. 0 | Page 13 of 16 

   tot_samples++; 

   cycle_count++;    // increment count of samples in current step 

 

   if (tot_samples > 8) 

   { 

    if (IsStep(newavg, oldavg)) 

    { 

                                        for (i = latency; i < (cycle_count - latency); i++) 

                                                accel_avg += accel_dat[i]; 

                                        accel_avg /= (cycle_count - avglen); 

 

                                        for (i = latency; i < (cycle_count - latency); i++) 

                                        { 

                                                velocity += (accel_dat[i] - accel_avg); 

                                                displace += velocity; 

                                        } // create integration and double integration 

 

                                // calculate stride length 

     stride = displace * (newmax - newmin) / (accel_avg - newmin); 

                                        stride = sqrt(abs(stride)); 

 

                                // use appropriate constant to get stride length 

     stride *= walkfudge; 

 

                                // generate exponential average of stride length to smooth data 

                                        if (steps < 2) 

      avgstride = stride; 

     else 

      avgstride = ((avgconst-1)*avgstride + stride)/avgconst; 

     

     steps++; 

     distance += avgstride; 

 

                                // need all data used in calculating newavg 

                                        for (i = 0; i < avglen; i++) 

                                                accel_dat[i] = accel_dat[cycle_count + i - avglen]; 

 

                                        cycle_count = avglen; 

     newmax = -10000.0; 

     newmin = 10000.0; 

     maxavg = -10000.0; 

     minavg = 10000.0; 

                                        accel_avg = 0; 

                                        velocity = 0; 

                                        displace = 0; 

 

     display_prep(); 

     display_data(); 

 

// temporary 

      if (GP4DAT & 0x04)  // toggle LED to reflect step 

      GP4CLR = 0x040000; 

     else 



AN-900  
 

Rev. 0 | Page 14 of 16 

      GP4SET = 0x040000; 

      

           } // we have a new step 

   } // enough samples to start checking for step (need at least 8) 

 

  } // if timeout 

 } // continual loop 

 

}  // Monitor_Function() 

 

 

void get_sample(unsigned int *xdat, unsigned int *ydat, unsigned int *zdat) 

{ 

       // gets new samples for x, y, z axes 

       // sums together 4 measurments to get average 

 int i; 

 

 *xdat = 0; 

 *ydat = 0; 

        *zdat = 0; 

 

 for (i=0; i<15; i++) 

 { 

  ADCCP = 0;    // x axis 

  i++;     // delay one command cycle 

  ADCCON = 0xA3; 

  while (!(ADCSTA)); 

  *xdat += ((ADCDAT >> 16) & 0xFFF); // data is in bits 16 - 27, so shift is necessary 

        

  ADCCP = 1;       // y axis 

  i++; 

  ADCCON = 0xA3; 

  while (!(ADCSTA)); 

  *ydat += ((ADCDAT >> 16) & 0xFFF); 

 

  ADCCP = 2;       // z axis 

  i++; 

  ADCCON = 0xA3; 

  while (!(ADCSTA)); 

  *zdat += ((ADCDAT >> 16) & 0xFFF); 

        } // for 

 

} // get_sample() 

 

 

char IsStep(float avg, float oldavg) 

{ 

      // this function attempts to determine when a step is complete 

 

 float step_thresh = 5.0;  // used to prevent noise from fooling the algorithm 

 

 if (stepflag == 2) 

 { 



  AN-900
 

Rev. 0 | Page 15 of 16 

  if (avg > (oldavg + step_thresh)) 

   stepflag = 1; 

  if (avg < (oldavg - step_thresh)) 

   stepflag = 0; 

  return 0; 

 } // first time through this function 

 

 if (stepflag == 1) 

 { 

  if ((maxavg > minavg) && (avg >  

((maxavg+minavg)/2)) && 

    (oldavg < ((maxavg+minavg/2)))) 

   return 1; 

  if (avg < (oldavg - step_thresh)) 

  { 

   stepflag = 0; 

   if (oldavg > maxavg) 

    maxavg = oldavg; 

  } // slope has turned down 

  return 0; 

 } // slope has been up 

 

 if (stepflag == 0) 

 { 

  if (avg > (oldavg + step_thresh)) 

  { 

   stepflag = 1; 

   if (oldavg < minavg) 

    minavg = oldavg; 

  } // slope has turned up 

  return 0; 

 } // slope has been down 

 

 return 0; 

 

} // IsStep() 

 

 

void display_prep() 

{ 

 int i; 

 long int temp; 

 

 // convert steps to BCD values for sending to display 

 temp = steps; 

 temp = bin_to_bcd(temp);    // function to convert binary 

 for (i=0; i<6; i++)     // to BCD 

 { 

  stepbcd[i] = (char)(0xF & temp);  // load each digit 

  temp = temp >> 4; 

 } // for 

 

 // convert distance to BCD values for sending to display 



AN-900  
 

Rev. 0 | Page 16 of 16 

 temp = (long int)(distance);    // convert float to long int 

 temp = bin_to_bcd(temp); 

 for (i=0; i<6; i++) 

 { 

  distbcd[i] = (char)(0xF & temp);  // load each digit 

  temp = temp >> 4; 

 } // for 

 

} // display_prep() 

 

 

long int bin_to_bcd(long int bin_no) 

{ 

 int i; 

 long int divisor, multiplier, bcd_no, temp; 

 

 divisor = 100000; 

 multiplier = 1048576; 

 bcd_no = 0; 

 temp = 0; 

 

 if (bin_no > 999999) 

  bin_no = 999999; 

 

 for (i=0; i<6; i++) 

 {       // determine each digit starting 

  temp = bin_no/divisor;    // with most significant 

  bin_no -= temp*divisor;    // subtract this amt 

  temp *= multiplier;    // generate hex equivalent 

  bcd_no += temp;     // put bcd value together 

 

  divisor /= 10;     // go to next digit 

  multiplier = multiplier >> 4; 

 } // for 

 

 return bcd_no; 

  

} // bin_to_bcd() 

 

 

©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
 registered trademarks are the property of their respective owners. 
  AN06617-0-7/07(0)  


	AN-602 METHOD 
	UNDERSTANDING THE MODEL 
	SOLVING THE PROBLEM OF SPRING 
	SUMMARY 
	ADuC7020 C CODE 
	MAIN.C 
	DISPLAY.C 
	PED.C 


