

AN-1093
APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Synchronization of Multiple AD9122 TxDAC+ Converters

by Yi Zhang

Rev. 0 | Page 1 of 12

INTRODUCTION
The AD9122 is a dual 16-bit, high dynamic range, digital-
to-analog converter (DAC) that provides a sample rate of
1230 MSPS. In some applications, such as those requiring
beam steering, the user needs to synchronize multiple DACs in
the system. The AD9122 features multichip synchronization,
where DAC outputs from multiple AD9122 devices can be
synchronized within a DAC clock cycle. There are two
synchronization modes in the AD9122. This application note
describes the differences between the two modes and when and
how to use the multichip synchronization function in the
AD9122. The content in this application note also applies to
synchronization of multiple AD9125 and AD9148 TxDAC+®
converters.

SOURCES OF VARIATION
A DAC introduces a variation of pipeline latency to a system.
The latency variation causes the DAC output from different
DAC devices to not be aligned and the skew to vary from
power-on to power-on. In applications where fixed latency is
desired, the variation must be removed. Fixed latency in this
application note is defined as fixed time delay from the digital
input to the analog output in a DAC from power-on to power-
on. It assumes the same clocking conditions, that is, same data
clock input (DCI), frame clock, DAC clock, and sync clock.
With fixed latency, synchronization of multiple DACs is
achieved.

There are two areas in the AD9122 where the latency can vary,
the FIFO and the interpolation filters. The FIFO introduces a

latency variation up to one data clock period. The interpolation
filters add a variation up to

PeriodClockData
RateionInterpolat

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

11

Therefore, the maximum latency variation without turning on
the synchronization in the AD9122 is

PeriodClockData
RateionInterpolat

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

12

For example, given the data clock rate fDATA = 300 MHz, 4×
interpolation in a system, the maximum latency variation, or
the maximum skew between DAC outputs from multiple
AD9122 devices, is (2 − ¼) × 3.3 ns = 5.8 ns.

Based on this calculation, the first question to ask in the design
is whether synchronization of the DACs is needed. Because extra
system design efforts together with turning on the synchroniza-
tion state machine in the AD9122 is required to make DACs
synchronized, synchronization adds complexity to the system
design (described in detail in the System Design Considerations
for Synchronization section). It is highly recommended that the
user define the synchronization requirements and assign a
timing budget for the DACs before determining whether
synchronization needs to be implemented. If the maximum
DAC latency variation is within the budget, synchronization
does not need to be implemented. Otherwise, the synchroniza-
tion state machine needs to be turned on to reduce the latency
variation.

09
33

4-
00

1

DAC

DAC

DAC

DAC

CLOCK
SOURCE

DAC CLK
SYNC CLK

DATA[15:0], DCI,
FRAME

18-BIT

18-BIT

18-BIT

18-BIT

18-BIT

FPGA/
ASIC

REFCLK FOR
FPGA/ASIC

Figure 1. Block Diagram of Synchronizing Multiple AD9122 TxDAC+ Converters

http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9125
http://www.analog.com/ad9148
http://www.analog.com/ad9122
http://www.analog.com/ad9122

AN-1093 Application Note

Rev. 0 | Page 2 of 12

TABLE OF CONTENTS
Introduction .. 1

Revision History ... 2

Sources of Variation ... 1

Theory of FIFO Operation.. 3

Data Rate Mode vs. FIFO Rate Mode .. 3

FIFO Resetting Methods ... 3

Recommended Operation Mode for Applications with
Synchronization Off ... 4

Synchronization Scheme ..4

Data Rate Mode and FIFO Rate Mode with Synchronization
On..6

System Design Considerations for Synchronization8

An Example of Synchronization Design ..9

One-Time Synchronization Implementation9

Conclusion..9

REVISION HISTORY
9/10—Revision 0: Initial Version

Application Note AN-1093

Rev. 0 | Page 3 of 12

THEORY OF FIFO OPERATION
The FIFO in the AD9122 is a multi-data-slot buffer that helps to
hand off the data from the DCI clock domain to the DAC clock
domain. In the AD9122, there are eight dual-word (8 × 32-bit)
slots in the FIFO. Each slot stores a pair of I and Q data. There
are two pointers for the input and output data of the FIFO, the
FIFO write pointer and the FIFO read pointer. The two pointers
circulate the FIFO from Slot 0 to Slot 7 and back to Slot 0. They
indicate, at a particular time, which FIFO slot the input data is
going into and which FIFO slot the output data is coming out
of. This operation is analogous to the operation of a water
reservoir.

A reservoir holds a certain amount of water and has incoming
and outgoing water. To keep a constant water level in the reser-
voir, the speed of the incoming water must be the same as that
of the outgoing water. It is fine if the two speeds fluctuate a little
because the reservoir absorbs the difference between them,
accumulating up to half of its volume. As long as the volume of
the incoming and outgoing water is the same on average, the
reservoir is never empty or overflowing.

In the AD9122, the empty or overflowing status of the FIFO is
reached when the read pointer and write pointer point to the
same FIFO slot. At this time, the data transfer in the FIFO is
corrupted and thus the DAC output is incorrect. When the FIFO
operates normally, the input data goes into the FIFO at the data
rate, and the output data goes out of the FIFO at the same rate
on average. The FIFO write pointer is controlled by an internal
clock derived from the DCI clock. The FIFO read pointer is
controlled by an internal clock derived (divided down) from the
DAC clock. The action of FIFO reset snaps these two pointers
apart and the offset between them is determined by the FIFO
phase offset (Register 0x17). Typically its value is 4 for maximizing
the capacity of absorbing the rate fluctuation between the read
and write side.

DATA RATE MODE vs. FIFO RATE MODE
The major difference between the data rate mode and the FIFO
rate mode is the way the FIFO is reset. In the data rate mode,
the write pointer of the FIFO is reset when the read pointer
goes to Slot 0. Upon a triggering event (see the FIFO Resetting
Methods section for details on triggering events), the write pointer
is not reset until the read pointer goes to Slot 0.

If the FIFO phase offset is set to 4, the write pointer is reset to
Slot 4 when FIFO reset happens in the data rate mode. Because
of this FIFO reset mechanism, the phase relation between the
DCI and DAC clock is uncritical as long as the FIFO is not reset
constantly. Regardless of the phase relation between these two
clocks upon system power-on, the FIFO reset in the data rate
mode ensures that the read and write pointers are always about
four (can be three, four, or five) FIFO slots apart. During the
operation, the DAC requires the phase between the DCI and
DAC clock to be locked. Unlocked phase translates to a situa-
tion in which the read and write pointers randomly skip around
in the FIFO and thus corrupt the transmit data. The normal

FIFO operation requires the pointers to run in an order from
Slot 0 to Slot 7 and back to Slot 0.

In the FIFO rate mode, the write side of the FIFO is reset to Slot 4
(when Register 0x17 is set to 4) immediately after the trigger.
The part does not care where the read pointer is when resetting
the write pointer. The read pointer can be at Slot 0, Slot 1, or
any possible FIFO slot. Therefore, the phase offset between the
read and write pointer is arbitrary upon each FIFO reset.

As previously mentioned, the optimal FIFO setting is for the
phase offset between the two pointers to equal half of the FIFO
depth, which is 4 in the AD9122. To achieve this optimal level,
in the FIFO rate mode, the user must manually add an extra
offset in Register 0x17 if the offset after the FIFO reset is not
optimal. For example, upon power-on, Register 0x17 is set to 4.
After the FIFO reset, the FIFO thermometer readback (Register
0x19) is 0x03, which means the offset between the pointers is 2.
It is two slots away from the optimal setting. To obtain the
optimal setting, the user must change the value of Register 0x17
to 6, which is the original value plus 2. The FIFO thermometer
readback should be 0xF after the adjustment.

FIFO RESETTING METHODS
There are two FIFO resetting methods (triggers). The first is
through SPI commands. The user can write 0x02 to Register 0x18
for a FIFO reset, and verify its completeness by reading back the
value in the same register. When the reset is complete, the read-
back value is 0x07. The second way to reset the FIFO is using
the frame signal. The period and the positive pulse length of the
frame signal must meet the requirements listed in Table 1 to be
deemed a FIFO reset trigger.

Table 1. AD9122 Frame Clock Requirements for FIFO Reset
Synchronization
Mode

Frame Clock
Maximum Rate

Positive Pulse
Length

FIFO Rate Mode fDATA/8 ≥1/fDATA
Data Rate Mode fDATA/2 ≥1/fDATA

The requirements in Table 1 apply to word mode. The pulse
length should be doubled in byte mode and quadrupled in
nibble mode. The first FIFO resetting method is called software
reset and the second method is called hardware reset because
the first one does not require external hardware to generate a
frame signal. In the software reset, the FIFO resets once only
when the part receives a valid SPI command. In the hardware
reset, the FIFO is reset every time a valid frame pulse is received.

A caveat of the hardware reset is that it poses a timing requirement
between the DCI and DAC clock in the data rate mode if the
frame signal is a periodic signal. When the DAC clock happens
to be inside of the setup and hold time window of the DCI, the
FIFO can be reset into either the predefined phase offset or the
predefined offset ± 1. This ambiguity causes the DAC to lose
data points and thus corrupts the DAC output. The user needs
to make sure that the DCI and DAC clock meets the timing
requirements specified in the AD9122 data sheet in this circum-
stance. Note that the FIFO rate mode does not have this timing

http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122

AN-1093 Application Note

Rev. 0 | Page 4 of 12

constraint when the FIFO is reset periodically. This timing
constraint only exists in the data rate mode with periodic
hardware reset of the FIFO.

RECOMMENDED OPERATION MODE FOR
APPLICATIONS WITH SYNCHRONIZATION OFF
The recommended mode for applications that do not require
synchronization is the data rate mode + one-time software FIFO
reset. This operation mode is the most straightforward way to
set the FIFO into the optimal setting, and it poses no timing
constraint on the DCI and DAC clock. To prevent the FIFO
from accidentally resetting due to noise, it is required that the
frame input be set to Logic 0, that is, FrameP to 0 and FrameN
to 1 in the word interface mode. Figure 2 is the recommended
SPI command sequence when synchronization is off in the
AD9122.

SYNCHRONIZATION SCHEME
Based on the calculation from the Sources of Variation section,
if a smaller variation is required, the AD9122 provides a
synchronization scheme that achieves synchronization accuracy
of one DAC clock cycle. The scheme requires the user to
generate two external clocks, frame and sync clock. Depending
on the synchronization mode, there are timing requirements
between the clocks that must be met. These two clocks help
remove the two types of the variation in the AD9122, described
in the Sources of Variation section.

The sync clock serves as a reference clock in the system to align
the internal clocks in multiple AD9122 devices and to remove
the variation in the interpolation filters. To serve this purpose,
the sync clock has to run at the same speed as or slower than
the slowest clock in the AD9122. In the data rate synchroniza-
tion mode, the sync clock rate (fSYNC) should be at data rate
(fDATA) or slower by a factor of 2n, n being an integer. In the
FIFO rate synchronization mode, fSYNC should be at 1/8 × fDATA
or slower by a factor of 2n, n being an integer. The maximum
rate of the sync clock is shown in Table 2. Note that there is a
limit on how slow the sync clock can be due to the ac coupling
nature of the sync clock receiver. An appropriate value of the ac
coupling capacitors should be chosen to ensure the signal swing
meets the data sheet specification. The following is an example
of the maximum speed of fSYNC. Given fDATA = 200 MHz, the
maximum sync clock rate is 25 MHz in the FIFO rate mode or
200 MHz in the data rate mode.

Table 2. AD9122 Sync Clock Maximum Speed
Synchronization Mode Sync Clock Maximum Speed
FIFO Rate Mode fDATA/8
Data Rate Mode fDATA

The frame clock helps to remove the variation caused by the
FIFO. The FIFO is reset by the frame clock as stated in the FIFO
Resetting Methods section.

http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122

Application Note AN-1093

Rev. 0 | Page 5 of 12

09
33

4-
00

2

SET FIFO REQUEST

FIFO ALIGN ACK? READ REG 0x18.

REG 0x18[2] = 0b0

READ REG 0x19 FIVE TIMES. ALL FIVE READBACKS SHOULD BE THE SAME.
IT SHOULD BE ONE OF THE FOLLOWINGS, 0x07, 0x0F, OR 0x1F.

FIFO THERMOMETER2
READBACK STABLE?

REG 0x18[2] = 0b1

NO

YES

CLEAR FIFO REQUEST;
ENABLE FIFO WARNING INTERRUPT

FIFO WARNING
FLAG BITS?

READ REG 0x06. NO FIFO WARNING FLAGS MEANS THE
FIFO IS CORRECTLY RESET AND RUNNING NORMALLY.

WAKE UP DACs AND RUN

REG 0x06[1] = 0b0 AND [0] = 0b0

SYSTEM SETUP1;
PROGRAM DAC INTERPOLATION MODES

REG 0x06[1] ≠ 0b0
OR [0] ≠ 0b0

1. DAC HARDWARE RESET.
PULL THE DAC RESET PIN FROM HIGH TO LOW THEN BACK TO HIGH.

2. SLEEP DACs.
WRITE REG 0x41[7] = 0b1,WRITE REG 0x45[7] = 0b1.

3. SET UP DAC INTERPOLATION MODE.
PROGRAM REG 0x1C TO 0x1E.

4. RUN CLOCKS (DAC CLOCK, DCI).
5. LEAVE THE DAC IN DATA RATE MODE.

WRITE REG 0x10 = 0x48.

1. WAKE UP DACs.
WRITE REG 0x41[7] = 0b0, WRITE REG 0x45[7] = 0b0.

2. RUN THE DATA.

1. WRITE REG 0x17 = 0x04.
2. WRITE REG 0x18[1] = 0b1.

1. WRITE REG 0x18[1] = 0b0.
2. WRITE REG 0x04[1:0] = 0b11.

1IN WORD MODE, THE FRAME INPUT MUST BE DRIVEN AT LOGIC 0.
2THERMOMETER CODE IS BASE ONE CODE. FOR EXAMPLE, THERMOMETER CODE 00001111 IS 3 IN DECIMAL CODE.

Figure 2. SPI Command Flowchart, Synchronization Off

AN-1093 Application Note

Rev. 0 | Page 6 of 12

DATA RATE MODE AND FIFO RATE MODE WITH
SYNCHRONIZATION ON
Both the data rate mode and the FIFO rate mode achieve the
same synchronization accuracy when synchronization is on.
As described in the Data Rate Mode and FIFO Rate Mode with
Synchronization On section, the difference between the two
modes is how the FIFO is reset. Figure 3 illustrates the FIFO
reset operation in the two modes. When synchronization is on,
the read side of the FIFO is always synchronized to the sync clock.

In the data rate mode, the write side of the FIFO is synchro-
nized to the read side after the FIFO reset. If the same DCI,
frame clock, DAC clock, and sync clock are shared between
multiple AD9122 devices, the same input data is written into
and read out from the FIFOs at the same time. Thus, the DACs
are synchronized and their outputs are aligned.

The FIFO rate mode allows the write side of the FIFO to be
reset at different times on different devices. In this mode, the
read side of the FIFO is still synchronized to the sync clock so
that the data is pulled out from the FIFO at the same time from
the same slot. The write side of the FIFO can be reset at a differ-
ent time, which means the same input data can be written into
different slots in different devices.

Therefore, a manual adjustment on the FIFO phase offset
(Register 0x17) is required in the FIFO rate mode. Despite this
extra step, the FIFO rate mode is the recommended mode for
synchronization due to its loose requirements on the timing of the
clocks. A recommended sequence for FIFO rate synchronization
is shown in Figure 4.

09
33

4-
00

3

AD9122 PART 1
FIFO READ
POINTER

FIFO WRITE
POINTER

SYNCHRONIZED
INTERNALLY

0
AD9122 PART 2

1

2

3

4

5

6

7

FIFO READ
POINTER

FIFO WRITE
POINTER

SYNCHRONIZATION IN THE DATA RATE MODE

READ POINTERS SYNCHRONIZED BY THE SYNC CLOCK

0
AD9122 PART 1

1

2

3

4

5

6

7

FIFO READ
POINTER

FIFO WRITE
POINTER

0
AD9122 PART 2

1

2

3

4

5

6

7

FIFO READ
POINTER

FIFO WRITE
POINTER

NEED MANUAL ADJUSTMENT

SYNCHRONIZATION IN THE FIFO RATE MODE

READ POINTERS SYNCHRONIZED BY THE SYNC CLOCK

0

1

2

3

4

5

6

7

SYNCHRONIZED
INTERNALLY

Figure 3. FIFO Reset Operation, Data Rate Mode vs. FIFO Rate Mode

http://www.analog.com/ad9122

Application Note AN-1093

Rev. 0 | Page 7 of 12

09
33

4-
00

4

ENABLE FIFO WARNING INTERRUPT

FIFO THERMOMETER1
READBACK STABLE?

FIFO WARNING
FLAG BITS?

SYSTEM SETUP;
PROGRAM DAC INTERPOLATION MODES

WAKE UP DACs AND RUN

REG 0x06[1] ≠ 0b0
OR [0] ≠ 0b0

REG 0x06[1] = 0b0
AND [0] = 0b0

REG 0x06[5:4] = 0b01

NO

YES

READ FIFO THERMOMETER;
CALCULATE AND RECORD

OPTIMAL FIFO OFFSET

ENABLE SYNC ENGINE

ENABLE SYNC LOST INTERRUPT

SYNC LOST/LOCK
FLAG BITS?

REG 0x06[5:4] = 0b00

REG 0x06[5] = 0b1

DISABLE SYNC;
DISABLE SYNC LOST

INTERRUPT;
CLEAR SYNC LOST FLAG

SET FIFO OFFSET

1. WRITE REG 0x10[7] = 0b0.
2. WRITE REG 0x04[5] = 0b0.
3. WRITE REG 0x06[5] = 0b1.

DISABLE FIFO WARNINGS
AND CLEAR FLAGS

1. WRITE REG 0x04[1:0] = 0b00.
2. WRITE REG 0x06[1:0] = 0b11.

1THERMOMETER CODE IS BASE ONE CODE.
FOR EXAMPLE, THERMOMETER CODE
00001111 IS 3 IN DECIMAL CODE.

1. DAC HARDWARE RESET.
PULL THE DAC RESET PIN FROM HIGH TO LOW THEN
BACK TO HIGH.

2. SLEEP DACs.
WRITE REG 0x41[7] = 0b1, WRITE REG 0x45[7] = 0b1.

3. SET UP DAC INTERPOLATION MODE.
PROGRAM REG 0x1C TO 0x1E.

4. RUN CLOCKS (DAC CLOCK, SYNC CLOCK, DCI, AND
FRAME CLOCK).

5. SET UP SYNC MODE. IN THIS CASE, IT IS FIFO RATE.
WRITE REG 0x10[6] = 0b0.

WRITE REG 0x17 = OFFSET.
OFFSET IS DETERMINED BY THE STEP IN THE DOTTED BOX BELOW.
OFFSET = 0 WHEN THE DOTTED BOX IS IN THE FLOW.
OFFSET = (SAVED VALUE) WHEN THE DOTTED BOX IS NOT IN THE FLOW.

WRITE REG 0x10 = 0x88, IF RISING EDGE SYNC.
OR = 0x80, IF FALLING EDGE SYNC.

READ REG 0x06[5:4] ([SYNC SIGNAL LOST; SYNC SIGNAL LOCKED]).

IF THE SYNC-DAC SETUP/HOLD TIMES ARE NOT MET, THE SYNC MAY
NOT LOCK. CHANGE THE SYNC EDGE WHEN REENABLING THE SYNC
NEXT ROUND.

WRITE REG 0x04[5] = 0b1.

WRITE REG 0x04[1:0] = 0b11.

READ REG 0x19 FIVE TIMES.
ALL FIVE READBACKS SHOULD BE THE SAME.
THE VALUE CAN BE ANY LEGAL THERMOMETER VALUE.

READ REG 0x06. IF NO FIFO WARNING FLAGS COME ON,
THE SYSTEM IS SYNCHRONIZED AND OPERATING NORMALLY.

THIS OPERATION IS A CALIBRATION STEP. IT NEEDS TO BE DONE
ONLY ONCE IN THE SYSTEM DEVELOPMENT ON ANY OF THE DACs
THAT NEED TO BE SYNCHRONIZED IN THE SYSTEM. IT SHOULD BE
BYPASSED IN THE FLOW LATER ON. THE VALUE IS SAVED IN THE
MEMORY FOR STEP 2 (SET FIFO OFFSET).

READ REG 0x19 AND CALCULATE ITS OFFSET FROM THE OPTIMAL
VALUE ACCORDING TO THE EQUATIONS BELOW.
IF REG 0x19 READBACK (CONVERTED TO DECIMAL NUMBER) ≤ 4,
OFFSET = 4 – (REG 0x19 READBACK);
IF REG 0x19 READBACK > 4,
OFFSET = 12 – (REG 0x19 READBACK);

1. WAKE UP DACs.
WRITE REG 0x41[7] = 0b0, WRITE REG 0x45[7] = 0b0.

2. RUN THE DATA.

Figure 4. SPI Command Flowchart, FIFO Rate Mode, Synchronization On

AN-1093 Application Note

Rev. 0 | Page 8 of 12

SYSTEM DESIGN CONSIDERATIONS FOR
SYNCHRONIZATION
To achieve synchronization accuracy of one DAC clock cycle,
the user must provide two clock signals, frame and sync clock,
for the AD9122. Depending on the synchronization mode the
user chooses, there are setup and hold timing requirements that
need to be met (see Table 3).

In the synchronization state machine, the sync clock is sampled
by the DAC clock to generate a reference point for aligning the
internal clocks, so there is a setup and hold timing between the
sync clock edges and the DAC clock edges. The AD9122 allows
the user to choose either the rising or falling edge of the DAC
clock to sample the sync clock, which makes it easier to meet
the timing requirements.

There is a second setup and hold time requirement in the data
rate mode if the FIFO is reset periodically. In this mode, the
relationship between the DCI and DAC clock becomes critical.
This timing constraint happens at the data rate, that is, the setup
and hold timing window sits around the rising edge of the DCI.
The rising or falling edge of the DAC clock, depending on
which edge the user chooses to sample the sync clock, must be
placed according to this timing requirement.

To achieve the targeted synchronization accuracy and meet the
timing requirements, some decisions have to be made at the
system level.

• Is a sync clock available at one eighth of the data rate?
• Is the sync clock generated by a clock chip or an

FPGA/ASIC?
• Are the involved clocks (DAC clock, sync clock, and DCI)

phase-locked in the system?
• How well are the clock traces matched?

The answer to the first question determines which synchroniza-
tion mode to use. If such a clock is available, it is recommended
that FIFO rate mode be used. The FIFO rate mode does not
have a timing constraint on the DCI and DAC clock. This helps
to simplify system design.

It is also recommended that the sync clock be generated by a
clock chip, preferably the same clock chip that distributes the

DAC clock. The clock chip provides a low jitter sync clock that
is phase-locked to the DAC clock, which makes it easy to meet
the sync clock and DAC clock timing requirements. If due to
the restrictions in the system, the sync clock must be generated
from a FPGA or ASIC, its jitter must be minimized. Large jitter
can cause the sync logic to be unstable and thus corrupt the
DAC output.

If the FPGA/ASIC is in a different clock domain than the DAC
clock, to meet the sync and DAC clock timing, the FPGA/ASIC
and the DAC clock must be locked to the same reference clock
in the system. In the data rate mode, a similar phase locking
requirement also applies to the DCI and DAC clock. Typically,
the DCI is generated by an FPGA/ASIC. This requires the
FPGA/ASIC to be locked to the DAC clock domain.

The trace mismatch has an impact on the synchronization
accuracy and ability to meet the clock timing requirements. It is
recommended that all the DAC clock traces be well matched to
each other. The same requirements apply to matching the sync
clock traces and DCI (frame clock) traces. There is no matching
requirement across these clock domains. For example, if there
are four AD9122 devices in the system, the DAC clock trace
length, sync clock trace length, and DCI trace length are
determined to be 6 cm (2.4 in.), 8 cm (3.1 in.), and 10 cm (3.8
in.), respectively. Notating these three traces of the first AD9122
as L1DAC, L1SYNC, and L1DCI, the trace matching between the
devices should be

L1DAC = L2DAC = L3DAC = L4DAC = 6 cm

L1SYNC = L2SYNC = L3SYNC = L4SYNC = 8 cm

L1DCI = L2DCI = L3DCI = L4DCI = 10 cm

Any skew between sync clocks directly translates to a skew
between DAC outputs. The skew between DAC clocks has the
same impact on DAC outputs. Poorly matched traces make it
hard to meet the timing over multiple DAC parts. This is because
the equivalent setup and hold window over multiple parts is the
union of the individual window on each part. The mismatch
causes the individual window to shift from one another. The
matching becomes more critical at high DAC rates where the
available sampling window is smaller. It is recommended that
the traces be matched within ±0.5 mm (±20 mil).

Table 3. AD9122 Synchronization System Requirements
Sync Mode Timing Requirements Sync Clock Rate Frame Clock Rate
FIFO Rate Mode Sync clock—DAC clock setup and hold times fDATA/8 or slower fDATA/8 or slower
Data Rate Mode Sync clock—DAC clock setup and hold times

DCI—DAC clock setup and hold times
fDATA or slower fDATA/2 or slower

http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122

Application Note AN-1093

Rev. 0 | Page 9 of 12

AN EXAMPLE OF SYNCHRONIZATION DESIGN
The following sections provide examples of latency variation
calculation, hardware design, and software design given two
AD9122 devices in the system, fDATA = 200 MSPS, 4× interpola-
tion, in word interface mode.

Calculation of Latency Variation

The maximum skew between the DAC outputs of the two
AD9122 devices is

TMAXSKEW =

ns8.75ns5
4
12112 =×⎟
⎠
⎞

⎜
⎝
⎛ −=×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

DATAfRateionInterpolat

If the maximum skew between DAC outputs is within the
system requirement, there is no need to synchronize the two
parts, or to generate a sync clock and a frame clock. In this case,
refer to the flowchart in Figure 2 to initialize the FIFO. If the
system requires a smaller skew, the synchronization state
machine needs to be turned on and the system must be
designed so that it meets the timing requirements.

Hardware Design

In this example, use the AD9516 clock chip from Analog
Devices, Inc. It has six LVPECL outputs and four LVDS/CMOS
outputs. The LVPECL outputs have a programmable divider
with the divide ratio up to 32. The LVDS/CMOS outputs have
two such dividers, which provide a larger divider ratio. The
LVDS/CMOS outputs also have a fine delay line that can be
used to adjust the skew of a particular output with respect to the
rest of the outputs. For detailed product information, refer to
the AD9516 data sheet.

Assign two of the LVPECL outputs as the DAC clocks for the
two AD9122 devices in this example. The DAC requires a very
high quality and low jitter clock to achieve the specified perfor-
mance. The synchronization requires very low skew between
the DAC clocks. The excellent jitter and skew performance of
the LVPECL signal serves this requirement well. Use an LVDS
output as the sync clock for both AD9122 devices. The sync
clock also requires a low jitter clock source for optimal
synchronization accuracy. LVDS signal has very good jitter
performance. More importantly, the fine delay line on the LVDS
output in the AD9516 can be used to adjust the timing between
the sync clock and DAC clock to make it easy to meet the setup
and hold times. Use the FIFO rate synchronization mode and
sync clock frequency of fDATA/8 = 25 MHz. Another LVDS
output is assigned to generate a reference clock for the

FPGA/ASIC. This ensures that the data and DCI clock from the
FPGA/ASIC is phase-locked to the DAC clock.

The frame clock is generated by the same FPGA that generates
the DCI and data. The frame clock is used to reset the FIFO in
both devices. In this example, the rate of the frame signal is
chosen to be 1/8 × fDATA. The rising edge of the frame should be
aligned with the DCI as stated in the AD9122 data sheet. The
data, DCI, and frame trace lengths of both AD9122 devices should
be matched, as are the DAC clock traces and sync clock traces.

Software Design

The synchronization state machine is turned on through SPI
commands in the AD9122. Before enabling the sync function, it
is required that all of the involved clocks be in operation and
stable. The flowchart in Figure 4 is the sequence to enable the
sync engine and confirm the FIFO alignment in each AD9122.
By successfully completing this sequence, the DAC outputs of
the two AD9122 devices are aligned.

ONE-TIME SYNCHRONIZATION IMPLEMENTATION
For the users who cannot implement the continuous synchroniza-
tion scheme described in the System Design Considerations for
Synchronization section, there is an alternative scheme that
allows the user to perform a one-time synchronization on
power-on or on a necessary basis. In one-time synchronization
implementation, the sync engine is turned off after the DAC
reaches synchronization status. Thus, the DAC does not track
skew drifts in the system and does not report sync lock/unlock
status to the user.

This may ease the timing requirements between the sync clock
and the DAC clock with a slight loss in the synchronization
accuracy, ±1 DAC cycle accuracy instead of within 1 DAC cycle.
Steps must be followed in the flowchart shown in Figure 5 for
implementing one-time synchronization.

CONCLUSION
The AD9122 features a multichip synchronization function that
is capable of synchronizing DAC outputs from multiple AD9122
devices within one DAC clock cycle. There are two synchroniza-
tion modes, the data rate mode and the FIFO rate mode. These
two modes achieve the same synchronization accuracy but have
different system design requirements. The one-time synchroniza-
tion option allows the user to turn off the synchronization engine
after synchronization is achieved. Compared to the continuous
sync mode, it has less accurate sync alignment and looser timing
requirements in the system design.

http://www.analog.com/ad9122
http://www.analog.com/ad9516
http://www.analog.com/ad9516
http://www.analog.com/ad9122
http://www.analog.com/ad9122
http://www.analog.com/ad9122

AN-1093 Application Note

Rev. 0 | Page 10 of 12

09
33

4-
00

5

1. DAC HARDWARE RESET.
PULL THE DAC RESET PIN FROM HIGH TO LOW THEN
BACK TO HIGH.

2. SLEEP DACs.
WRITE REG 0x41[7] = 0b1, WRITE REG 0x45[7] = 0b1.

3. SET UP DAC INTERPOLATION MODE.
PROGRAM REG 0x1C TO 0x1E.

4. RUN CLOCKS (DAC CLOCK, SYNC CLOCK, DCI, AND
FRAME CLOCK).

5. SET UP SYNC MODE. IN THIS CASE, IT IS FIFO RATE.
WRITE REG 0x10[6] = 0b0.

WRITE REG 0x17 = OFFSET
OFFSET IS DETERMINED BY THE STEP IN THE DOTTED BOX BELOW.
OFFSET = 0 WHEN THE DOTTED BOX IS IN THE FLOW.
OFFSET = (SAVED VALUE) WHEN THE DOTTED BOX IS NOT IN THE FLOW.

WRITE REG 0x10 = 0x88, IF RISING EDGE SYNC.
OR = 0x80, IF FALLING EDGE SYNC.

READ REG 0x06[5:4] ([SYNC SIGNAL LOST; SYNC SIGNAL LOCKED]).

IF THE SYNC-DAC SETUP/HOLD TIMES ARE NOT MET, THE SYNC MAY
NOT LOCK. CHANGE THE SYNC EDGE WHEN REENABLINGTHE SYNC
NEXT ROUND.

WRITE REG 0x04[5] = 0b1.

1. WRITE REG 0x10[7] = 0b0.
2. WRITE REG 0x04[1:0] = 0b11.

READ REG 0x19 FIVE TIMES.
ALL FIVE READBACKS SHOULD BE THE SAME.
THE VALUE CAN BE ANY LEGAL THERMOMETER VALUE.

READ REG 0x06. IF NO SYNC AND FIFO FLAGS COME ON, THE SYSTEM
IS SYNCHRONIZED AND OPERATING NORMALLY.

TURN OFF THE EXTERNAL SYNC CLOCK (OPTIONAL).

THIS OPERATION IS A CALIBRATION STEP. IT ONLY NEEDS TO BE
DONE ONCE IN THE SYSTEM DEVELOPMENT ON ANY OF THE DACs
THAT NEED TO BE SYNCHRONIZED IN THE SYSTEM. IT SHOULD BE
BYPASSED IN THE FLOW LATER ON. THE VALUE IS SAVED IN THE
MEMORY FOR STEP 2 (SET FIFO OFFSET).

READ REG 0x19 AND CALCULATE ITS OFFSET FROM THE OPTIMAL
VALUE ACCORDING TO THE EQUATIONS BELOW.
IF REG 0x19 READBACK (CONVERTED TO DECIMAL NUMBER) ≤ 4,
OFFSET = 4 – (REG 0x19 READBACK);
IF REG 0x19 READBACK > 4,
OFFSET = 12 – (REG 0x19 READBACK);

1. WAKE UP DACs.
WRITE REG 0x41[7] = 0b0, WRITE REG 0x45[7] = 0b0.

2. RUN THE DATA.

DISABLE SYNC ENGINE;
ENABLE FIFO WARNING INTERRUPT

FIFO THERMOMETER1
READBACK STABLE?

SYNC LOST/FIFO WARNING
FLAG BITS?

SYSTEM SETUP;
PROGRAM DAC INTERPOLATION MODES;

WAKE UP DACs AND RUN

REG 0x06[5] ≠ 0B0 OR
[1] ≠ 0b0 OR [0] ≠ 0b0

REG 0x06[5] = 0b0
AND [1] = 0b0
AND [0] = 0b0

REG 0x06[5:4] = 0b01

NO

YES

READ FIFO THERMOMETER;
CALCULATE AND RECORD

OPTIMAL FIFO OFFSET;

ENABLE SYNC ENGINE

ENABLE SYNC LOST INTERRUPT

SYNC LOST/LOCK
FLAG BITS?

REG 0x06[5:4] = 0b00

REG 0x06[5] = 0b1

DISABLE SYNC;
DISABLE SYNC LOST

INTERRUPT;
CLEAR SYNC LOST FLAG

SET FIFO OFFSET

1. WRITE REG 0x10[7] = 0b0.
2. WRITE REG 0x04[5] = 0b0.
3. WRITE REG 0x06[5] = 0b1.

DISABLE FIFO WARNINGS
AND CLEAR FLAGS

1. WRITE REG 0x04[1:0] = 0b00.
2. WRITE REG 0x06[1:0] = 0b11.

1THERMOMETER CODE IS BASE ONE CODE.
FOR EXAMPLE, THERMOMETER CODE
00001111 IS 3 IN DECIMAL CODE.

TURN OFF SYNC CLOCK (OPTIONAL)

Figure 5. SPI Command Flow Chart, FIFO Rate Mode, One-Time Synchronization

Application Note AN-1093

Rev. 0 | Page 11 of 12

NOTES

AN-1093 Application Note

Rev. 0 | Page 12 of 12

NOTES

©2010 Analog Devices, Inc. All rights reserved. Trademarks and
 registered trademarks are the property of their respective owners.
 AN09334-0-9/10(0)

	INTRODUCTION
	SOURCES OF VARIATION
	TABLE OF CONTENTS
	REVISION HISTORY
	THEORY OF FIFO OPERATION
	DATA RATE MODE vs. FIFO RATE MODE
	FIFO RESETTING METHODS
	RECOMMENDED OPERATION MODE FOR APPLICATIONS WITH SYNCHRONIZATION OFF
	SYNCHRONIZATION SCHEME
	DATA RATE MODE AND FIFO RATE MODE WITH SYNCHRONIZATION ON
	SYSTEM DESIGN CONSIDERATIONS FOR SYNCHRONIZATION
	AN EXAMPLE OF SYNCHRONIZATION DESIGN
	Calculation of Latency Variation
	Hardware Design
	Software Design

	ONE-TIME SYNCHRONIZATION IMPLEMENTATION
	CONCLUSION

