

Commercial Space Product

FEATURES

- RF 2 × 2 transceiver with integrated 12-bit DACs and ADCs
- ▶ Transmit band: 46.875 MHz to 6.0 GHz
- ▶ Receive band: 70 MHz to 6.0 GHz
- ▶ Dual receivers: 6 differential or 12 single-ended inputs
- Superior receiver sensitivity with a NF of 2 dB at 800 MHz LO
- Receive gain control
 - ▶ Real-time monitor and control signals for manual gain
 - ► Independent AGC
- ► Dual transmitters: 4 differential outputs
- Highly linear broadband transmitter
 - ▶ Transmit EVM: -40 dB (typical) at 800 MHz
 - ▶ Transmit noise: -157 dBm/Hz (typical)
 - Transmit monitor: 66 dB dynamic range (typical) with 1 dB accuracy
- Integrated fractional-N synthesizers
 - ► 2.4 Hz typical LO frequency step size
- Multichip synchronization
- CMOS/LVDS digital interface

COMMERCIAL SPACE FEATURES

- Supports aerospace applications
- Wafer diffusion lot traceability
- Burn-in, life test, and deltas analysis
- Radiation lot acceptance test (RLAT)
 - ▶ Total ionizing dose (TID)
- Radiation benchmark
- Single event latchup (SEL)
- Certificate of conformance

APPLICATIONS

- Low Earth orbit (LEO) satellites
- Avionics
- Point to point communication systems

GENERAL DESCRIPTION

The AD9361S-CSH is a high performance, highly integrated, RF agile transceiver designed for use in 3G and 4G applications. Its programmability and wideband capability make it ideal for a broad range of transceiver applications. The device combines an RF front end with a flexible mixed-signal baseband section and integrated frequency synthesizers, simplifying design-in by providing a configurable digital interface to a processor. The AD9361S-CSH receiver LO operates from 70 MHz to 6.0 GHz and the transmitter LO operates from 46.875 MHz to 6.0 GHz range, covering most licensed and unlicensed bands. Channel bandwidths from less than 200 kHz to 56 MHz are supported.

The two independent direct conversion receivers have state-of-theart noise figure and linearity. Each receive subsystem includes independent automatic gain control (AGC), dc offset correction, quadrature correction, and digital filtering, thereby eliminating the need for these functions in the digital baseband. The AD9361S-CSH also has flexible manual gain modes that can be externally controlled.

Two high dynamic range analog-to-digital converters (ADCs) per channel digitize the received inphase (I) and quadrature (Q) signals and pass them through configurable decimation filters and 128-tap finite impulse response (FIR) filters to produce a 12-bit output signal at the appropriate sample rate.

The transmitters use a direct conversion architecture that achieves high modulation accuracy with ultralow noise. This transmitter design produces a best-in-class transmit error vector magnitude (EVM) of \leq -40 dB, allowing significant system margin for the external power amplifier (PA) selection. The on-board transmit power monitor can be used as a power detector, enabling highly accurate transmit power measurements.

The fully integrated phase-locked loops (PLLs) provide low power fractional-N frequency synthesis for all receive and transmit channels. Channel isolation, demanded by frequency division duplex (FDD) systems, is integrated into the design. All voltage controlled oscillator (VCO) and loop filter components are integrated.

The AD9361S-CSH is packaged in a 10 mm × 10 mm, 144-ball chip scale package ball grid array (CSP_BGA).

Additional application and technical information can be found in the Commercial Space Products Program brochure and the AD9361 data sheet.

Rev. 0

DOCUMENT FEEDBACK

TECHNICAL SUPPORT

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

RF Agile Transceiver

Data Sheet

AD9361S

TABLE OF CONTENTS

Features	1
Commercial Space Features	1
Applications	1
General Description	1
Functional Block Diagram	3
Specifications	4
Current Consumption—VDD_INTERFACE	10
Current Consumption—VDDD1P3_DIG and	
VDDA1P3_x (Combination of All 1.3 V	
Supplies)	11
Life Test and Burn-In Delta Limits	
Specifications	15
Radiation Test and Limit Specifications	16

REVISION HISTORY

7/2022—Revision 0: Initial Version

Absolute Maximum Ratings	17
Reflow Profile	17
Thermal Resistance	17
Outgas Testing	17
ESD Caution	17
Pin Configuration and Function Descriptions	18
Typical Performance Characteristics	22
800 MHz Frequency Band	22
2.4 GHz Frequency Band	27
5.5 GHz Frequency Band	31
Outline Dimensions	34
Ordering Guide	34

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Electrical characteristics at VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, VDDD1P3_DIG = 1.3 V, and all other VDDA1P3_x pins = 1.3 V, T_A = 25°C, unless otherwise noted. TX is transmit, and RX is receive. VDDA1P3_x refers to VDDA1P3_TX_LO, VDDA1P3_TX_VCO_LDO, VDDA1P3_RX_RF, VDDA1P3_RX_TX, VDDA1P3_RX_LO, VDDA1P3_TX_LO_BUFFER, VDDA1P3_RX_VCO_LDO, VDDA1P3_RX_SYNTH, VDDA1P3_TX_SYNTH, and VDDA1P3_BB.

Parameter ¹	Symbol	Min	Тур	Max	Unit	Test Conditions/ Comments
RECEIVERS, GENERAL						
Center Frequency		70		6000	MHz	
Gain						
Minimum			0		dB	
Maximum			74.5		dB	At 800 MHz
			73.0		dB	At 2300 MHz
						(RX1A x, RX2A x)
			72.0		dB	At 2300 MHz
						(RX1B x, RX1C x,
						RX2B_x, RX2C_x)
			65.5		dB	At 5500 MHz
						(RX1A_x, RX2A_x)
Gain Step			1		dB	
Received Signal Strength Indicator	RSSI					
Range			100		dB	
Accuracy			±2		dB	
RECEIVERS, 800 MHz						
Noise Figure	NF		2		dB	Maximum RX gain
Third-Order Input Intermodulation Intercept	IIP3		-18		dBm	Maximum RX gain
Point						
Second-Order Input Intermodulation Intercept Point	IIP2		40		dBm	Maximum RX gain
Local Oscillator (LO) Leakage			-122		dBm	At RX front-end input
Quadrature						
Gain Error			0.2		%	
Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-42		dB	19.2 MHz reference
						clock
Input Return Loss	S ₁₁		-10		dB	
Receiver Channel 1 (RX1) to Receiver Channel 2 (RX2) Isolation						
RX1A_x to RX2A_x, RX1C_x to RX2C_x			70		dB	
RX1B_x to RX2B_x			55		dB	
RX2 to RX1 Isolation						
RX2A_x to RX1A_x, RX2C_x to RX1C_x			70		dB	
RX2B_x to RX1B_x			55		dB	
RECEIVERS, 2.4 GHz						
Noise Figure	NF		3		dB	Maximum RX gain
Third-Order Input Intermodulation Intercept Point	IIP3		-14		dBm	Maximum RX gain
Second-Order Input Intermodulation Intercept Point	IIP2		45		dBm	Maximum RX gain
LO Leakage			-110		dBm	At receiver front-end input

Parameter ¹	Symbol	Min	Tvp	Max	Unit	Test Conditions/ Comments
Quadrature						
Gain Error			0.2		%	
Phase Error			0.2		Degrees	
Modulation Accuracy (E\/M)			-42		dB	10 MHz reference
			-42		UD	clock
Input Return Loss	S ₁₁		-10		dB	
RX1 to RX2 Isolation						
RX1A_x to RX2A_x, RX1C_x to RX2C_x			65		dB	
RX1B_x to RX2B_x			50		dB	
RX2 to RX1 Isolation						
RX2A_x to RX1A_x, RX2C_x to RX1C_x			65		dB	
RX2B_x to RX1B_x			50		dB	
RECEIVERS, 5.5 GHz						
Noise Figure	NF		3.8		dB	Maximum RX gain
Third-Order Input Intermodulation Intercept Point	IIP3		-17		dBm	Maximum RX gain
Second-Order Input Intermodulation Intercept Point	IIP2		42		dBm	Maximum RX gain
LO Leakage			-95		dBm	At RX front-end input
Quadrature						
Gain Error			0.2		%	
Phase Error			0.2		Degrees	
Modulation Accuracy (EVM)			-37		dB	40 MHz reference
						clock (doubled internally for RF synthesizer)
Input Return Loss	S ₁₁		-10		dB	
RX1A to RX2A Isolation			52		dB	
RX2A to RX1A Isolation			52		dB	
TRANSMITTERS—GENERAL						
Center Frequency		46.875		6000	MHz	
Power Control Range			90		dB	
Power Control Resolution			0.25		dB	
TRANSMITTERS, 800 MHz						
Output Return Loss	S ₂₂		-10		dB	
Maximum Output Power			8		dBm	1 MHz tone into 50 Ω load
Modulation Accuracy (EVM)			-40		dB	19.2 MHz reference clock
Third-Order Output Intermodulation Intercept Point	OIP3		23		dBm	
Carrier Leakage			-50		dBc	0 dB attenuation
			-32		dBc	40 dB attenuation
Noise Floor			-157		dBm/Hz	90 MHz offset
Isolation						
Transmit Channel 1 (TX1) to Transmit			50		dB	
Channel 2 (TX2)						
TX2 to TX1			50		dB	
TRANSMITTERS, 2.4 GHz						
	1	1			1	1

AD9361S

SPECIFICATIONS

Parameter ¹	Symbol	Min	Тур	Max	Unit	Test Conditions/ Comments
Output Return Loss	S ₂₂		-10		dB	
Maximum Output Power			7.5		dBm	1 MHz tone into 50 Ω load
Modulation Accuracy (EVM)			-40		dB	40 MHz reference clock
Third-Order Output Intermodulation Intercept Point	OIP3		19		dBm	
Carrier Leakage			-50		dBc	0 dB attenuation
·			-32		dBc	40 dB attenuation
Noise Floor			-156		dBm/Hz	90 MHz offset
Isolation						
TX1 to TX2			50		dB	
TX2 to TX1			50		dB	
TRANSMITTERS, 5.5 GHz						
Output Return Loss	S ₂₂		-10		dB	
Maximum Output Power			6.5		dBm	7 MHz tone into 50 Ω load
Modulation Accuracy (EVM)			-36		dB	40 MHz reference clock (doubled internally for RF synthesizer)
Third-Order Output Intermodulation Intercept Point	OIP3		17		dBm	-,,
Carrier Leakage			-50		dBc	0 dB attenuation
u u u u u u u u u u u u u u u u u u u			-30		dBc	40 dB attenuation
Noise Floor			-151.5		dBm/Hz	90 MHz offset
Isolation						
TX1 to TX2			50		dB	
TX2 to TX1			50		dB	
TX MONITOR INPUTS (TX_MON1, TX_MON2)						
Maximum Input Level			4		dBm	
Dynamic Range			66		dB	
Accuracy			1		dB	
LO SYNTHESIZER						
LO Frequency Step			2.4		Hz	2.4 GHz, 40 MHz reference clock
Integrated Phase Noise						
800 MHz			0.13		° rms	100 Hz to 100 MHz, 30.72 MHz reference clock (doubled internally for RF synthesizer)
2.4 GHz			0.37		° rms	100 Hz to 100 MHz, 40 MHz reference clock
5.5 GHz			0.59		° rms	100 Hz to 100 MHz, 40 MHz reference clock (doubled internally for RF synthesizer)

Parameter ¹	Symbol	Min	Тур	Max	Unit	Test Conditions/ Comments
REFERENCE CLOCK						The reference clock is either the input to the XTALP/XTALN pins or a line directly to the XTALN pin
Input						
Frequency Range		19		50	MHz	Crystal input
Signal Level		10	1.3	80	MHz V p-p	External oscillator AC-coupled external oscillator
AUXILIARY CONVERTERS ADC						
Resolution			12		Bits	
Input Voltage						
Minimum			0.05		V	
Maximum			VDDA1P3_BB - 0.05		V	
DAC						
Resolution			10		Bits	
Output Voltage						
Minimum			0.5		V	
Maximum			VDD_GPO - 0.3		V	
Output Current			10		mA	
DIGITAL SPECIFICATIONS (CMOS)						
Logic Inputs						
Input Voltage						
High		VDD_INTERFACE × 0.8		VDD_INTERFACE	V	
Low		0		VDD_INTERFACE × 0.2	V	
Input Current						
High		-10		+10	μA	
Low		-10		+10	μA	
Logic Outputs						
Output Voltage						
Hign		0.8			V	
Low				VDD_INTERFACE × 0.2	V	
DIGITAL SPECIFICATIONS (LOW VOLTAGE DIFFERENTIAL SIGNALING (LVDS)						
Logic Inputs						
Input Voltage Range		825		1575	mV	Each differential input in the pair
Input Differential Voltage Threshold		-100		+100	mV	
Receiver Differential Input Impedance			100		Ω	
Logic Outputs						
Output Voltage						
High				1375	mV	
Low		1025			mV	

Parameter ¹	Symbol	Min	Tvn	Мах	Unit	Test Conditions/ Comments
		150	.16		mV	Programmable in 75
Ouput Differential Voltage		100			IIIV	mV steps
Output Offset Voltage			1200		mV	
GENERAL-PURPOSE OUTPUTS						
Output Voltage						
High		VDD_GPO × 0.8			V	
Low				VDD_GPO × 0.2	V	
Output Current			10		mA	
SERIAL PERIPHERAL INTERFACE (SPI) TIMING						VDD_INTERFACE = 1.8 V
SPI_CLK						
Period	t _{CP}	20			ns	
Pulse Width	t _{MP}	9			ns	
SPI_ENB Setup to First SPI_CLK Rising Edge	t _{SC}	1			ns	
Last SPI_CLK Falling Edge to SPI_ENB Hold SPI_DI	t _{HC}	0			ns	
Data Input Setup to SPI CLK	te	2			ns	
Data Input Hold to SPI CLK	tu	1			ns	
SPI CLK Rising Edge to Output Data Delay						
4-Wire Mode	tco	3		8	ns	
3-Wire Mode	teo	3		8	ns	
Bus Turnaround Time, Read	tuzw	tu		tco (max)	ns	After baseband
	"TZIVI			-00 (IIIax)		processor (BBP) drives the last address bit
Bus Turnaround Time, Read	t _{HZS}	0		$t_{\rm CO~(max)}$	ns	After the AD9361S- CSH drives the last data bit
DIGITAL DATA TIMING (CMOS), VDD_INTERFACE = 1.8 V						
DATA_CLK_x Clock Period	t _{CP}	16.276			ns	61.44 MHz
DATA_CLK_x and FB_CLK_x Pulse Width TX Data	t _{MP}	45% of t _{CP}		55% of t _{CP}	ns	TX_FRAME_x, P0 Dx, and P1 Dx
Setup to FB CLK x	t _{STX}	1			ns	
Hold to FB CLK x	t _{HTX}	0			ns	
DATA CLK x to Data Bus Output Delay	tonex	0		1.5	ns	
DATA CLK x to RX FRAME x Delay	tunny	0		1.0	ns	
Pulse Width	bbbv					
ENABLE	tendw	top			ns	
TXNRX		ten			ns	FDD independent
	TANKAFW					enable state machine (ESM) mode
TXNRX Setup to ENABLE	t _{TXNRXSU}	0			ns	Time division duplex (TDD) ESM mode
Bus Turnaround Time						
Before RX	t _{RPRE}	2 × t _{CP}			ns	TDD mode
After RX	t _{RPST}	2 × t _{CP}			ns	TDD mode
Capacitive Load			3		pF	

Parameter ¹	Symbol	Min	Тур	Мах	Unit	Test Conditions/ Comments
Capacitive Input			3		pF	
DIGITAL DATA TIMING (CMOS),						
VDD_INTERFACE = 2.5 V						
DATA CLK x Clock Period	t _{CP}	16.276			ns	61.44 MHz
DATA_CLK_x and FB_CLK_x Pulse Width	t _{MP}	45% of t _{CP}		55% of t _{CP}	ns	
TX Data				Ċ.		TX_FRAME_x, P0_Dx, and P1_Dx
Setup to FB_CLK_x	t _{STX}	1			ns	
Hold to FB_CLK_x	t _{HTX}	0			ns	
DATA_CLK_x to Data Bus Output Delay	t _{DDRX}	0		1.2	ns	
DATA_CLK_x to RX_FRAME_x Delay	t _{DDDV}	0		1.0	ns	
Pulse Width						
ENABLE	t _{ENPW}	t _{CP}			ns	
TXNRX	t _{TXNRXPW}	t _{CP}			ns	FDD independent ESM mode
TXNRX Setup to ENABLE	t _{TXNRXSU}	0			ns	TDD ESM mode
Bus Turnaround Time						
Before RX	t _{RPRE}	2 × t _{CP}			ns	TDD mode
After RX	t _{RPST}	2 × t _{CP}			ns	TDD mode
Capacitive Load			3		pF	
Capacitive Input			3		pF	
DIGITAL DATA TIMING (LVDS)						
DATA_CLK_x Clock Period	t _{CP}	4.069			ns	245.76 MHz
DATA_CLK_x and FB_CLK_x Pulse Width	t _{MP}	45% of t _{CP}		55% of t _{CP}	ns	
TX Data						TX_FRAME_x and TX_Dx_x
Setup to FB_CLK_x	t _{STX}	1			ns	
Hold to FB_CLK_x	t _{HTX}	0			ns	
DATA_CLK_x to Data Bus Output Delay	t _{DDRX}	0.25		1.25	ns	
DATA_CLK_x to RX_FRAME_x Delay	t _{DDDV}	0.25		1.25	ns	
Pulse Width						
ENABLE	t _{ENPW}	t _{CP}			ns	
TXNRX	t _{TXNRXPW}	t _{CP}			ns	FDD independent ESM mode
TXNRX Setup to ENABLE Bus Turnaround Time	t _{TXNRXSU}	0			ns	TDD ESM mode
Before RX	tepe	2 × t _{CP}			ns	
After RX	tppst	2 × t _{CP}			ns	
Capacitive Load	11-01	Cr	3		pF	
Capacitive Input			3		pF	
SUPPLY CHARACTERISTICS					F.	
1.3 V Main Supply Voltage		1 267	13	1.33	V	
		1.201	1.0	1.00		
Nominal Settings						
CMOS		1 14		2 625	V	
		1 71		2.025	V V	
		-5		+5	v %	Tolerance is
						applicable to any voltage setting

Table 1.

Parameter ¹	Symbol	Min	Тур	Max	Unit	Test Conditions/ Comments
VDD_GPO Supply Nominal		1.3		3.3	V	When unused, must be set to 1.3 V
Setting						
VDD_GPO Tolerance		-5		+5	%	Tolerance is applicable to any voltage setting
Current Consumption						
VDDA1P3_x, Sleep Mode			180		μA	Sum of all input currents
VDD_GPO			50		μA	No load

¹ When referencing a single function of a multifunction pin in the parameters, only the portion of the pin name that is relevant to the specification is listed. For full pin names of multifunction pins, refer to the Pin Configuration and Function Descriptions section.

CURRENT CONSUMPTION—VDD_INTERFACE

TX is transmit, and RX is receive.

Table 2. VDD_INTERFACE = 1.2 V

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
SLEEP MODE		45		μA	Power applied, device disabled
ONE RX CHANNEL, ONE TX CHANNEL, DOUBLE DATA RATE (DDR)					
Long-Term Evolution (LTE 10 MHz)					
Single Port		2.9		mA	30.72 MHz data clock, CMOS
Dual Port		2.7		mA	15.36 MHz data clock, CMOS
LTE 20 MHz					
Dual Port		5.2		mA	30.72 MHz data clock, CMOS
TWO RX CHANNELS, TWO TX CHANNELS, DDR					
LTE 3 MHz					
Dual Port		1.3		mA	7.68 MHz data clock, CMOS
LTE 10 MHz					
Single Port		4.6		mA	61.44 MHz data clock, CMOS
Dual Port		5.0		mA	30.72 MHz data clock, CMOS
LTE 20 MHz					
Dual Port		8.2		mA	61.44 MHz data clock, CMOS
Global System for Mobile Communications (GSM)					
Dual Port		0.2		mA	1.08 MHz data clock, CMOS

Table 3. VDD_INTERFACE = 1.8 V

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
SLEEP MODE		84		μA	Power applied, device disabled
ONE RX CHANNEL, ONE TX CHANNEL, DDR					
LTE 10 MHz					
Single Port		4.5		mA	30.72 MHz data clock, CMOS
Dual Port		4.1		mA	15.36 MHz data clock, CMOS
LTE 20 MHz					
Dual Port		8.0		mA	30.72 MHz data clock, CMOS
TWO RX CHANNELS, TWO TX CHANNELS, DDR					

Table 3. VDD_INTERFACE = 1.8 V

Parameter	Min	Тур	Мах	Unit	Test Conditions/Comments
LTE 3 MHz					
Dual Port		2.0		mA	7.68 MHz data clock, CMOS
LTE 10 MHz					
Single Port		8.0		mA	61.44 MHz data clock, CMOS
Dual Port		7.5		mA	30.72 MHz data clock, CMOS
LTE 20 MHz					
Dual Port		14.0		mA	61.44 MHz data clock, CMOS
GSM					
Dual Port		0.3		mA	1.08 MHz data clock, CMOS

Table 4. VDD_INTERFACE = 2.5 V

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
SLEEP MODE		150		μA	Power applied, device disabled
ONE RX CHANNEL, ONE TX CHANNEL, DDR					
LTE 10 MHz					
Single Port		6.5		mA	30.72 MHz data clock, CMOS
Dual Port		6.0		mA	15.36 MHz data clock, CMOS
LTE 20 MHz					
Dual Port		11.5		mA	30.72 MHz data clock, CMOS
TWO RX CHANNELS, TWO TX CHANNELS, DDR					
LTE 3 MHz					
Dual Port		3.0		mA	7.68 MHz data clock, CMOS
LTE 10 MHz					
Single Port		11.5		mA	61.44 MHz data clock, CMOS
Dual Port		10.0		mA	30.72 MHz data clock, CMOS
LTE 20 MHz					
Dual Port		20.0		mA	61.44 MHz data clock, CMOS
GSM					
Dual Port		0.5		mA	1.08 MHz data clock, CMOS

CURRENT CONSUMPTION—VDDD1P3_DIG AND VDDA1P3_X (COMBINATION OF ALL 1.3 V SUPPLIES)

TX is transmit, and RX is receive.

Table 5. 800 MHz, TDD Mode

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
ONE RX CHANNEL					
5 MHz Bandwidth		180		mA	Continuous RX
10 MHz Bandwidth		210		mA	Continuous RX
20 MHz Bandwidth		260		mA	Continuous RX
TWO RX CHANNELS					
5 MHz Bandwidth		265		mA	Continuous RX
10 MHz Bandwidth		315		mA	Continuous RX
20 MHz Bandwidth		405		mA	Continuous RX
ONE TX CHANNEL					
5 MHz Bandwidth					
7 dBm		340		mA	Continuous TX
−27 dBm		190		mA	Continuous TX

Table 5. 800 MHz, TDD Mode

Parameter	Min Typ	Max	Unit	Test Conditions/Comments
10 MHz Bandwidth				
7 dBm	360		mA	Continuous TX
-27 dBm	220		mA	Continuous TX
20 MHz Bandwidth				
7 dBm	400		mA	Continuous TX
−27 dBm	250		mA	Continuous TX
TWO TX CHANNELS				
5 MHz Bandwidth				
7 dBm	550		mA	Continuous TX
-27 dBm	260		mA	Continuous TX
10 MHz Bandwidth				
7 dBm	600		mA	Continuous TX
−27 dBm	310		mA	Continuous TX
20 MHz Bandwidth				
7 dBm	660		mA	Continuous TX
-27 dBm	370		mA	Continuous TX

Table 6. TDD Mode, 2.4 GHz

Parameter	Min Typ	Max	Unit	Test Conditions/Comments
ONE RX CHANNEL				
5 MHz Bandwidth	175		mA	Continuous receive
10 MHz Bandwidth	200		mA	Continuous RX
20 MHz Bandwidth	240		mA	Continuous RX
TWO RX CHANNELS				
5 MHz Bandwidth	260		mA	Continuous RX
10 MHz Bandwidth	305		mA	Continuous RX
20 MHz Bandwidth	390		mA	Continuous RX
ONE TX CHANNEL				
5 MHz Bandwidth				
7 dBm	350		mA	Continuous TX
−27 dBm	160		mA	Continuous TX
10 MHz Bandwidth				
7 dBm	380		mA	Continuous TX
−27 dBm	220		mA	Continuous TX
20 MHz Bandwidth				
7 dBm	410		mA	Continuous TX
−27 dBm	260		mA	Continuous TX
TWO TX CHANNELS				
5 MHz Bandwidth				
7 dBm	580		mA	Continuous TX
−27 dBm	280		mA	Continuous TX
10 MHz Bandwidth				
7 dBm	635		mA	Continuous TX
−27 dBm	330		mA	Continuous TX
20 MHz Bandwidth				
7 dBm	690		mA	Continuous TX
−27 dBm	390		mA	Continuous TX

Table 7. TDD Mode, 5.5 GHz

Parameter	Min Typ	Мах	Unit	Test Conditions/Comments
ONE RX CHANNEL				
5 MHz Bandwidth	175		mA	Continuous RX
40 MHz Bandwidth	275		mA	Continuous RX
TWO RX CHANNELS				
5 MHz Bandwidth	270		mA	Continuous RX
40 MHz Bandwidth	445		mA	Continuous RX
ONE TX CHANNEL				
5 MHz Bandwidth				
7 dBm	400		mA	Continuous TX
−27 dBm	240		mA	Continuous TX
40 MHz Bandwidth				
7 dBm	490		mA	Continuous TX
−27 dBm	385		mA	Continuous TX
TWO TX CHANNELS				
5 MHz Bandwidth				
7 dBm	650		mA	Continuous TX
−27 dBm	335		mA	Continuous TX
40 MHz Bandwidth				
7 dBm	820		mA	Continuous TX
−27 dBm	500		mA	Continuous TX

Table 8. FDD Mode, 800 MHz

Parameter	Min Typ	Max	Unit
ONE RX CHANNEL, ONE TX CHANNEL			
5 MHz Bandwidth			
7 dBm	490		mA
-27 dBm	345		mA
10 MHz Bandwidth			
7 dBm	540		mA
-27 dBm	395		mA
20 MHz Bandwidth			
7 dBm	615		mA
-27 dBm	470		mA
TWO RX CHANNELS, ONE TX CHANNEL			
5 MHz Bandwidth			
7 dBm	555		mA
-27 dBm	410		mA
10 MHz Bandwidth			
7 dBm	625		mA
-27 dBm	480		mA
20 MHz Bandwidth			
7 dBm	740		mA
-27 dBm	600		mA
ONE RX CHANNEL, TWO TX CHANNELS			
5 MHz Bandwidth			
7 dBm	685		mA
-27 dBm	395		mA
10 MHz Bandwidth			

Table 8. FDD Mode, 800 MHz

Parameter	Min Typ	Max	Unit
7 dBm	755		mA
-27 dBm	465		mA
20 MHz Bandwidth			
7 dBm	850		mA
-27 dBm	570		mA
TWO RX CHANNELS, TWO TX CHANNELS			
5 MHz Bandwidth			
7 dBm	790		mA
-27 dBm	495		mA
10 MHz Bandwidth			
7 dBm	885		mA
-27 dBm	590		mA
20 MHz Bandwidth			
7 dBm	1020)	mA
-27 dBm	730		mA

Table 9. FDD Mode, 2.4 GHz

Parameter	Mi	in Typ	Max	Unit
ONE RX CHANNEL, ONE TX CHANNEL				
5 MHz Bandwidth				
7 dBm		500		mA
−27 dBm		350		mA
10 MHz Bandwidth				
7 dBm		540		mA
−27 dBm		390		mA
20 MHz Bandwidth				
7 dBm		620		mA
−27 dBm		475		mA
TWO RX CHANNELS, ONE TX CHANNEL				
5 MHz Bandwidth				
7 dBm		590		mA
−27 dBm		435		mA
10 MHz Bandwidth				
7 dBm		660		
-27 dBm		510		mA
20 MHz Bandwidth				
7 dBm		770		mA
-27 dBm		620		mA
ONE RX CHANNEL, TWO TX CHANNELS				mA
5 MHz Bandwidth				
7 dBm		730		mA
−27 dBm		425		mA
10 MHz Bandwidth				
7 dBm		800		mA
-27dBm		500		mA
20 MHz Bandwidth				
7 dBm		900		mA
−27 dBm		600		mA

Table 9. FDD Mode, 2.4 GHz

Parameter	Min	Тур	Max	Unit
TWO RX CHANNELS, TWO TX CHANNELS				mA
5 MHz Bandwidth				
7 dBm		820		
-27 dBm		515		mA
10 MHz Bandwidth				
7 dBm		900		mA
-27 dBm		595		mA
20 MHz Bandwidth				
7 dBm		1050		mA
-27 dBm		740		mA

Table 10. FDD Mode, 5.5 GHz

Parameter	Min Ty	p Max	Unit
ONE RX CHANNEL, ONE TX CHANNEL			
5 MHz Bandwidth			
7 dBm	55	0	mA
-27 dBm	38	5	mA
TWO RX CHANNELS, ONE TX CHANNEL			
5 MHz Bandwidth			
7 dBm	64	5	mA
-27 dBm	48	0	mA
ONE RX CHANNELS, TWO TX CHANNELS			
5 MHz Bandwidth			
7 dBm	80	5	mA
-27 dBm	48	0	mA
TWO RX CHANNELS, TWO TX CHANNELS			
5 MHz Bandwidth			
7 dBm	89	5	mA
-27 dBm	57	5	mA

LIFE TEST AND BURN-IN DELTA LIMITS SPECIFICATIONS

Electrical characteristics at VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, VDDD1P3_DIG = 1.3 V, and all other VDDA1P3_x pins = 1.3 V. Deltas are performed at $T_A = 25^{\circ}$ C. Burn-in oven temperature at $T_A = 110^{\circ}$ C, unless otherwise noted.

Table 11.				
Parameter	Min	Тур	Max	Unit
SUPPLY CHARACTERISTICS				
Total Sleep Mode Current	-3		+3	mA
DIGITAL INPUT CURRENTS				
Low	-60		+60	nA
High	-60		+60	nA
TRANSMITTERS, 2.3 GHz				
Fundamental Output Power	-1.5		+1.5	dBm

RADIATION TEST AND LIMIT SPECIFICATIONS

Electrical characteristics at VDD_GPO = 3.3 V, VDD_INTERFACE = 1.8 V, VDDD1P3_DIG = 1.3 V, and all other VDDA1P3_x pins = 1.3 V, T_A = 25° C, unless otherwise noted. Total ionizing dose (TID) testing characterized to 150 krads (100 krads + 50% overstress) with biased annealing at 100°C for 168 hours. Once characterized, TID testing is performed to 100 krads only.

Table 12.					
Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
SUPPLY CHARACTERISTICS					
Total Sleep Mode Current			2	14	mA
Total Active Mode Current			120	150	mA
DIGITAL INPUT CURRENTS					
Low		-0.1		+0.1	μA
High		-0.1		+0.1	μA
XTALN INPUT CURRENT	Reference clock input directly to the XTALN pin				
Low		-0.1		+0.1	μA
High		-200		+200	μA
RECEIVERS, 2.3 GHz					
LO Leakage	At receiver front-end input		-110	-75	dBm
RX1 to RX2 Isolation					
RX1A_x to RX2A_x, RX1C_x to RX2C_x		28	65		dB
RX1B_x to RX2B_x		28	50		dB
RX2 to RX1 Isolation					
RX2A_x to RX1A_x, RX2C_x to RX1C_x		28	65		dB
RX2B_x to RX1B_x		28	50		dB
TRANSMITTERS, 2.3 GHz					
Carrier Leakage	0 dB attenuation		-50	-42	dBc
	41.75 dB attenuation		-34	-25	dBc
Fundamental Output Power	0 dB attenuation	3.0	5.0		dBm

ABSOLUTE MAXIMUM RATINGS

Table 13.

Parameter	Rating
VDDD1P3_DIG, VDDA1P3_x ¹ to VSSx	-0.3 V to +1.4 V
VDD_INTERFACE to VSSx	-0.3 V to +3.0 V
VDD_GPO to VSSx	-0.3 V to +3.9 V
Logic Inputs and Outputs to VSSx	-0.3 V to VDD_INTERFACE + 0.3 V
Input Current to Any Pin Except Supplies	±10 mA
RF Inputs (Peak Power)	2.5 dBm
TX Monitor Input Power (Peak Power)	9 dBm
Package Power Dissipation	$(T_{JMAX} - T_A)/\theta_{JA}$
Maximum Junction	110°C
Temperature (T _{JMAX})	
Peak Reflow	260°C
Operating Temperature Range	−40°C to +85°C
Storage Temperature Range	-65°C to +150°C

¹ VDDA1P3_x refers to VDDA1P3_TX_LO, VDDA1P3_TX_VCO_LDO, VDDA1P3_RX_RF, VDDA1P3_RX_TX, VDDA1P3_RX_LO, VDDA1P3_TX_LO_BUFFER, VDDA1P3_RX_VCO_LDO, VDDA1P3_RX_SYNTH, VDDA1P3_TX_SYNTH, and VDDA1P3_BB.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

REFLOW PROFILE

The AD9361S-CSH reflow profile is in accordance with the JEDEC JESD20 criteria for Pb-free devices. The maximum reflow temperature is 260°C.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

 θ_{JCT} is the junction to case top thermal resistance.

Table 14. Thermal Resistance

Package Type	Airflow Velocity (m/sec)	θ _{JA} ^{1, 2}	θ _{JCT} ^{1, 3}	Unit
BC-144-7	0	32.3	9.6	°C/W
	1.0	29.6		°C/W
	2.5	27.8		°C/W

¹ Per JEDEC JESD51-7, plus JEDEC JESD51-5 2S2P test board.

² Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).

³ Per MIL-STD 883, Method 1012.1.

OUTGAS TESTING

The criteria used for the acceptance and rejection of materials must be determined by the user and based upon specific component and system requirements. Historically, a total mass loss (TML) of 1.00% and collected volatile condensable material (CVCM) of 0.10% have been used as screening levels for rejection of spacecraft materials.

Table 15. Outgas Testing

Specification (Tested per ASTM E595-15)	Value	Unit
Total Mass Lost	0.18	%
Collected Volatile Condensable Material	<0.01	%
Water Vapor Recovered	0.05	%

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

002

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	1	2	3	4	5	6	7	8	9	10	11	12
A	RX2A_N	RX2A_P	DNC	VSSA	TX_MON2	VSSA	TX2A_N	TX2A_P	TX2B_N	TX2B_P	VDDA1P1_ TX_VCO	TX_EXT_ LO_IN
в	VSSA	VSSA	AUXDAC1	GPO_3	GPO_2	GPO_1	GPO_0	VDD_GPO	VDDA1P3_ TX_LO	VDDA1P3_ TX_VCO_ LDO	TX_VCO_ LDO_OUT	VSSA
с	RX2C_P	VSSA	AUXDAC2	TEST/ ENABLE	CTRL_IN0	CTRL_IN1	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
D	RX2C_N	VDDA1P3_ RX_RF	VDDA1P3_ RX_TX	CTRL_OUT0	CTRL_IN3	CTRL_IN2	P0_D9/ TX_D4_P	P0_D7/ TX_D3_P	P0_D5/ TX_D2_P	P0_D3/ TX_D1_P	P0_D1/ TX_D0_P	VSSD
Е	RX2B_P	VDDA1P3_ RX_LO	VDDA1P3_ TX_LO_ BUFFER	CTRL_OUT1	CTRL_OUT2	CTRL_OUT3	P0_D11/ TX_D5_P	P0_D8/ TX_D4_N	P0_D6/ TX_D3_N	P0_D4/ TX_D2_N	P0_D2/ TX_D1_N	P0_D0/ TX_D0_N
F	RX2B_N	VDDA1P3_ RX_VCO_ LDO	VSSA	CTRL_OUT6	CTRL_OUT5	CTRL_OUT4	VSSD	P0_D10/ TX_D5_N	VSSD	FB_CLK_P	VSSD	VDDD1P3_ DIG
G	RX_EXT_ LO_IN	RX_VCO_ LDO_OUT	VDDA1P1_ RX_VCO	CTRL_OUT7	EN_AGC	ENABLE	RX_ FRAME_N	RX_ FRAME_P	TX_ FRAME_P	FB_CLK_N	DATA_ CLK_P	VSSD
н	RX1B_P	VSSA	VSSA	TXNRX	SYNC_IN	VSSA	VSSD	P1_D11/ RX_D5_P	TX_ FRAME_N	VSSD	DATA_ CLK_N	VDD_ INTERFACE
J	RX1B_N	VSSA	VDDA1P3_ RX_SYNTH	SPI_DI	SPI_CLK	CLK_OUT	P1_D10/ RX_D5_N	P1_D9/ RX_D4_P	P1_D7/ RX_D3_P	P1_D5/ RX_D2_P	P1_D3/ RX_D1_P	P1_D1/ RX_D0_P
к	RX1C_P	VSSA	VDDA1P3_ TX_SYNTH	VDDA1P3_ BB	RESETB	SPI_ENB	P1_D8/ RX_D4_N	P1_D6/ RX_D3_N	P1_D4/ RX_D2_N	P1_D2/ RX_D1_N	P1_D0/ RX_D0_N	VSSD
L	RX1C_N	VSSA	VSSA	RBIAS	AUXADC	SPI_DO	VSSA	VSSA	VSSA	VSSA	VSSA	VSSA
м	RX1A_P	RX1A_N	DNC	VSSA	TX_MON1	VSSA	TX1A_P	TX1A_N	TX1B_P	TX1B_N	XTALP	XTALN
, i												

DIGITAL I/O GROUND

Figure 2. Pin Configuration, Top View

Table 16. Pin Function Descriptions

Pin No.	Type ¹	Mnemonic	Description
A1, A2	I	RX2A_N, RX2A_P	Receive Channel 2 Differential Input A. Each pin can be used as a single-ended input or combined to make a differential pair. Tie unused pins to ground.
A3, M3	DNC	DNC	Do Not Connect. Do not connect to these pins.
A4, A6, B1, B2, B12, C2, C7 to C12, F3, H2, H3, H6, J2, K2, L2, L3, L7 to L12, M4, M6	1	VSSA	Analog Ground. Tie these pins directly to the VSSD digital ground on the PCB (one ground plane).
A5	1	TX_MON2	Transmit Channel 2 Power Monitor Input. If this pin is unused, tie it to ground.
A7, A8	0	TX2A_N, TX2A_P	Transmit Channel 2 Differential Output A. Tie unused pins to 1.3 V.
A9, A10	0	TX2B_N, TX2B_P	Transmit Channel 2 Differential Output B. Tie unused pins to 1.3 V.
A11	1	VDDA1P1_TX_VCO	Transmit VCO Supply Input. Connect to B11.
A12	1	TX_EXT_LO_IN	External Transmit LO Input. If this pin is unused, tie it to ground.
B3	0	AUXDAC1	Auxiliary DAC 1 Output.
B4 to B7	0	GPO_3 to GPO_0	3.3 V Capable General-Purpose Outputs.
B8	I	VDD_GPO	2.5 V to 3.3 V Supply for the AUXDACx and General-Purpose Output Pins. When the VDD_GPO supply is not used, this supply must be set to 1.3 V.
В9	1	VDDA1P3_TX_LO	Transmit LO 1.3 V Supply Input. Connect to B10.
B10	1	VDDA1P3_TX_VCO_LDO	Transmit VCO LDO 1.3 V Supply Input. Connect to B9.
B11	0	TX_VCO_LDO_OUT	Transmit VCO LDO Output. Connect to A11 and a 1 μF bypass capacitor in series with a 1 Ω resistor to ground.
C1, D1	1	RX2C_P, RX2C_N	Receive Channel 2 Differential Input C. Each pin can be used as a single-ended input or combined to make a differential pair. These inputs experience degraded performance above 3 GHz. Tie unused pins to ground.
C3	0	AUXDAC2	Auxiliary DAC 2 Output.
C4	1	TEST/ENABLE	Test Input. Ground this pin for normal operation.
C5, C6, D6, D5	1	CTRL_IN0 to CTRL_IN3	Control Inputs. Use these pins for manual RX gain and TX attenuation control.
D2	1	VDDA1P3_RX_RF	Receiver 1.3 V Supply Input. Connect to D3.
D3	1	VDDA1P3_RX_TX	1.3 V Supply Input. Connect to D2.
D4, E4 to E6, F4 to F6, G4	0	CTRL_OUT0, CTRL_OUT1 to CTRL_OUT3, CTRL_OUT6 to CTRL_OUT4, CTRL_OUT7	Control Outputs. These pins are multipurpose outputs that have programmable functionality.
D7	I/O	P0_D9/TX_D4_P	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D9, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 16. Pin Function Descriptions

Pin No.	Type ¹	Mnemonic	Description
			Alternatively, as TX_D4_P, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
D8	1/0	P0_D7/TX_D3_P	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D3_P, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
D9	I/O	P0_D5/TX_D2_P	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D5, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D2_P, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
D10	I/O	P0_D3/TX_D1_P	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D3, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D1_P, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
D11	I/O	P0_D1/TX_D0_P	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D0_P, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
D12, F7, F9, F11, G12, H7, H10, K12	I	VSSD	Digital Ground. Tie these pins directly to the VSSA analog ground on the PCB (one ground plane).
E1, F1	1	RX2B_P, RX2B_N	Receive Channel 2 Differential Input B. Each pin can be used as a single-ended input or combined to make a differential pair. These inputs experience degraded performance above 3 GHz. Tie unused pins to ground.
E2	1	VDDA1P3_RX_LO	Receive LO 1.3 V Supply Input. Connect to F2.
E3	1	VDDA1P3_TX_LO_BUFFER	Transmit LO Buffer. 1.3 V Supply Input.
E7	I/O	P0_D11/TX_D5_P	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D11, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D5_P, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
E8	I/O	P0_D8/TX_D4_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D8, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D4_N, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
E9	I/O	P0_D6/TX_D3_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D6, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D3_N, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
E10	I/O	P0_D4/TX_D2_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D4, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D2_N, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
E11	I/O	P0_D2/TX_D1_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D2, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D1_N, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
E12	I/O	P0_D0/TX_D0_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D0, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D0_N, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.
F2	1	VDDA1P3_RX_VCO_LDO	Receive VCO LDO 1.3 V Supply Input. Connect to E2.
F8	I/O	P0_D10/TX_D5_N	Digital Data Port P0/Transmit Differential Input Bus. This is a dual function pin. As P0_D10, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 0. Alternatively, as TX_D5_N, this pin can function as part of the LVDS 6-bit TX differential input bus with internal LVDS termination.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 16. Pin Function Descriptions

Pin No.	Type ¹	Mnemonic	Description
F10, G10	I	FB_CLK_P, FB_CLK_N	Feedback Clock. These pins receive the FB_CLK_x signal that clocks in TX data. In CMOS mode, use FB_CLK_P as the input and tie FB_CLK_N to ground.
F12	1	VDDD1P3_DIG	1.3 V Digital Supply Input.
G1	1	RX_EXT_LO_IN	External Receive LO Input. If this pin is unused, tie it to ground.
G2	0	RX_VCO_LDO_OUT	Receive VCO LDO Output. Connect this pin directly to G3 and a 1 μF bypass capacitor in series with a 1 Ω resistor to ground.
G3	1	VDDA1P1_RX_VCO	Receive VCO Supply Input. Connect this pin directly to G2 only.
G5	1	EN_AGC	Manual Control Input for AGC.
G6	1	ENABLE	Control Input. This pin moves the device through various operational states.
G7, G8	0	RX_FRAME_N, RX_FRAME_P	Receive Digital Data Framing Output Signal. These pins transmit the RX_FRAME_x signal that indicates whether the RX output data is valid. In CMOS mode, use RX_FRAME_P as the output and leave RX_FRAME_N unconnected.
G9, H9	1	TX_FRAME_P, TX_FRAME_N	Transmit Digital Data Framing Input Signal. These pins receive the TX_FRAME_x signal that indicates when TX data is valid. In CMOS mode, use TX_FRAME_P as the input and tie TX_FRAME_N to ground.
G11, H11	0	DATA_CLK_P, DATA_CLK_N	Receive Data Clock Output. These pins transmit the DATA_CLK_x signal that is used by the BBP to clock RX data. In CMOS mode, use DATA_CLK_P as the output and leave DATA_CLK_N unconnected.
H1, J1	1	RX1B_P, RX1B_N	Receive Channel 1 Differential Input B. Alternatively, each pin can be used as a single-ended input. These inputs experience degraded performance above 3 GHz. Tie unused pins to ground.
H4	1	TXNRX	Enable State Machine Control Signal. This pin controls the data port bus direction. A logic low selects the RX direction, and a logic high selects the TX direction.
H5	I	SYNC_IN	Input to Synchronize Digital Clocks Between Multiple AD9361S-CSH Devices. If this pin is unused, tie it to ground.
H8	I/O	P1_D11/RX_D5_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D11, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D5_P, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
H12	1	VDD_INTERFACE	1.2 V to 2.5 V Supply for Digital I/O Pins (1.8 V to 2.5 V in LVDS Mode).
J3	1	VDDA1P3_RX_SYNTH	1.3 V Supply Input.
J4	1	SPI_DI	SPI Serial Data Input.
J5	1	SPI_CLK	SPI Clock Input.
J6	0	CLK_OUT	Output Clock. This pin can be configured to output either a buffered version of the external input clock, the digitally controlled crystal oscillator (DCXO), or a divided down version of the internal ADC clock.
J7	I/O	P1_D10/RX_D5_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D10, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D5_N, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
J8	I/O	P1_D9/RX_D4_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D9, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D4_P, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
J9	I/O	P1_D7/RX_D3_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D7, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D3_P, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
J10	I/O	P1_D5/RX_D2_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D5, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D2_P, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 16. Pin Function Descriptions

Pin No.	Type ¹	Mnemonic	Description
J11	I/O	P1_D3/RX_D1_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D3, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D1_P, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
J12	I/O	P1_D1/RX_D0_P	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D1, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D0_P, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
K1, L1	I	RX1C_P, RX1C_N	Receive Channel 1 Differential Input C. Alternatively, each pin can be used as a single-ended input. These inputs experience degraded performance above 3 GHz. Tie unused pins to ground.
K3	1	VDDA1P3_TX_SYNTH	1.3 V Supply Input.
K4	1	VDDA1P3_BB	1.3 V Supply Input.
K5	1	RESETB	Asynchronous Reset. Logic low resets the device.
K6	1	SPI_ENB	SPI Enable Input. Set this pin to logic low to enable the SPI bus.
K7	I/O	P1_D8/RX_D4_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D8, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D4_N, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
К8	I/O	P1_D6/RX_D3_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D6, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D3_N, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
К9	I/O	P1_D4/RX_D2_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D4, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D2_N, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
K10	I/O	P1_D2/RX_D1_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D2, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D1_N, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
K11	I/O	P1_D0/RX_D0_N	Digital Data Port P1/Receive Differential Output Bus. This is a dual function pin. As P1_D0, it functions as part of the 12-bit bidirectional parallel CMOS level Data Port 1. Alternatively, as RX_D0_N, this pin can function as part of the LVDS 6-bit RX differential output bus with internal LVDS termination.
L4	1	RBIAS	Bias Input Reference. Connect this pin through a 14.3 $k\Omega$ (1% tolerance) resistor to ground.
L5	1	AUXADC	Auxiliary ADC Input. If this pin is unused, tie it to ground.
L6	0	SPI_DO	SPI Serial Data Output in 4-Wire Mode, or High-Z in 3-Wire Mode.
M1, M2	1	RX1A_P, RX1A_N	Receive Channel 1 Differential Input A. Alternatively, each pin can be used as a single-ended input. Tie unused pins to ground.
M5	1	TX_MON1	Transmit Channel 1 Power Monitor Input. When this pin is unused, tie it to ground.
M7, M8	0	TX1A_P, TX1A_N	Transmit Channel 1 Differential Output A. Tie unused pins to 1.3 V.
M9, M10	0	TX1B_P, TX1B_N	Transmit Channel 1 Differential Output B. Tie unused pins to 1.3 V.
M11, M12	1	XTALP, XTALN	Reference Frequency Crystal Connections. When a crystal is used, connect it between these two pins. When an external clock source is used, connect it to XTALN and leave XTALP unconnected.

¹ I is input, O is output, I/O is input/output, and DNC is do not connect.

800 MHZ FREQUENCY BAND

Figure 3. RX Noise Figure vs. RF Frequency

Figure 4. RSSI Error vs. RX Input Power, LTE 10 MHz Modulation (Referenced to -50 dBm Input Power at 800 MHz)

Figure 5. RSSI Error vs. RX Input Power, Edge Modulation (Referenced to -50 dBm Input Power at 800 MHz)

Figure 6. RX EVM vs. RX Input Power, 64 Quadrature Amplitude Modulation (QAM) LTE 10 MHz Mode, 19.2 MHz Reference Clock

Figure 7. RX EVM vs. RX Input Power, GSM Mode, 30.72 MHz Reference Clock (Doubled Internally for RF Synthesizer)

Figure 8. RX EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with Input Power (P_{IN}) = −82 dBm, 5 MHz Orthogonal Frequency Division Multiplexing (OFDM) Blocker at 7.5 MHz Offset

Figure 9. RX EVM vs. Interferer Power Level, LTE 10 MHz Signal of Interest with P_{IN} = -90 dBm, 5 MHz OFDM Blocker at 17.5 MHz Offset

Figure 10. RX Noise Figure vs. Interferer Power Level, Edge Signal of Interest with P_{IN} = -90 dBm, Continuous Wave Blocker at 3 MHz Offset, Gain Index = 64

Figure 11. RX Gain vs. RX LO Frequency, Gain Index = 76 (Maximum Setting)

Figure 12. IIP3 vs. RX Gain Index, f1 = 1.45 MHz, f2 = 2.89 MHz, GSM Mode

Figure 13. IIP2 vs. RX Gain Index, f1 = 2.00 MHz, f2 = 2.01 MHz, GSM Mode

Figure 14. RX LO Leakage vs. RX LO Frequency

Figure 15. Power at LNA Input vs. Frequency, DC to 12 GHz, Receive LO Frequency (f_{LO_RX}) = 800 MHz, LTE 10 MHz, Transmit LO Frequency (f_{LO_TX}) = 860 MHz

Figure 16. TX Output Power vs. TX LO Frequency, Attenuation Setting = 0 dB, Single-Tone Output

Figure 17. TX Power Control Linearity Error vs. Attenuation Setting

Figure 18. TX Output Power vs. Frequency Offset from Carrier Frequency, f_{LO_TX} = 800 MHz, LTE 10 MHz Downlink (Digital Attenuation Variations Shown)

Figure 19. TX Output Power vs. Frequency Offset from Carrier Frequency, f_{LO_TX} = 800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 3 MHz Range

Figure 20. TX Output Power vs. Frequency Offset from Carrier Frequency, f_{LO_TX} = 800 MHz, GSM Downlink (Digital Attenuation Variations Shown), 12 MHz Range

Figure 21. TX EVM vs. TX Attenuation Setting, f_{LO_TX} = 800 MHz, LTE 10 MHz, 64 QAM Modulation, 19.2 MHz Reference Clock

Figure 22. TX EVM vs. TX Attenuation Setting, f_{LO_TX} = 800 MHz, GSM Modulation, 30.72 MHz Reference Clock (Doubled Internally for RF Synthesizer)

Figure 23. Integrated TX LO Phase Noise vs. Frequency, 19.2 MHz Reference Clock

Figure 24. Integrated TX LO Phase Noise vs. Frequency, 30.72 MHz Reference Clock (Doubled Internally for RF Synthesizer)

Figure 25. TX Carrier Rejection vs. Frequency

Figure 26. TX Second-Order Harmonic Distortion vs. Frequency

Figure 27. TX Third-Order Harmonic Distortion vs. Frequency

Figure 28. TX OIP3 vs. TX Attenuation Setting

Figure 29. TX SNR vs. TX Attenuation Setting, LTE 10 MHz Signal of Interest with Noise Measured at 90 MHz Offset

Figure 30. TX SNR vs. TX Attenuation Setting, GSM Signal of Interest with Noise Measured at 20 MHz Offset

Figure 31. TX Single Sideband Rejection vs. Frequency, 1.5375 MHz Offset

2.4 GHZ FREQUENCY BAND

Figure 32. RX Noise Figure vs. RF Frequency

Figure 33. RSSI Error vs. RX Input Power, Referenced to -50 dBm Input Power at 2.4 GHz

Figure 34. RX EVM vs. Input Power, 64 QAM LTE 20 MHz Mode, 40 MHz Reference Clock

Figure 35. RX EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest with P_{IN} = -75 dBm, LTE 20 MHz Blocker at 20 MHz Offset

Figure 36. RX EVM vs. Interferer Power Level, LTE 20 MHz Signal of Interest with P_{IN} = -75 dBm, LTE 20 MHz Blocker at 40 MHz Offset

Figure 37. RX Gain vs. RX LO Frequency, Gain Index = 76 (Maximum Setting)

Figure 38. IIP3 vs. RX Gain Index, f1 = 30 MHz, f2 = 61 MHz

Figure 39. IIP2 vs. RX Gain Index, f1 = 60 MHz, f2 = 61 MHz

Figure 40. RX LO Leakage vs. RX LO Frequency

Figure 41. Power at LNA Input vs. Frequency, DC to 12 GHz, $f_{LO_{RX}}$ = 2.4 GHz, LTE 20 MHz, $f_{LO_{TX}}$ = 2.46 GHz

Figure 42. TX Output Power vs. TX LO Frequency, Attenuation Setting = 0 dB, Single-Tone Output

Figure 43. TX Power Control Linearity Error vs. Attenuation Setting

Figure 44. TX Output Power vs. Frequency Offset from Carrier Frequency, $f_{LO_{TX}} = 2.3$ GHz, LTE 20 MHz Downlink (Digital Attenuation Variations Shown)

Figure 45. TX EVM vs. TX Attenuation Setting, 40 MHz Reference Clock, LTE 20 MHz, 64 QAM Modulation

Figure 46. Integrated TX LO Phase Noise vs. Frequency, 40 MHz Reference Clock

Figure 47. TX Carrier Rejection vs. Frequency

Figure 48. TX Second-Order Harmonic Distortion vs. Frequency

Figure 49. TX Third-Order Harmonic Distortion vs. Frequency

Figure 50. TX OIP3 vs. TX Attenuation Setting

Figure 51. TX SNR vs. TX Attenuation Setting, LTE 20 MHz Signal of Interest with Noise Measured at 90 MHz Offset

Figure 52. TX Single Sideband Rejection vs. Frequency, 3.075 MHz Offset

5.5 GHZ FREQUENCY BAND

TYPICAL PERFORMANCE CHARACTERISTICS

6 5 RX NOISE FIGURE (dB) 4 3 2 1 0 └─ 5.0 5.1 5.2 5.4 5.5 5.6 5.9 5.3 5.7 5.8 6.0 **RF FREQUENCY (GHz)** 053

Figure 53. RX Noise Figure vs. RF Frequency

Figure 54. RSSI Error vs. RX Input Power, Referenced to -50 dBm Input Power at 5.8 GHz

Figure 55. RX Gain vs. Frequency, Gain Index = 76 (Maximum Setting)

Figure 56. IIP3 vs. RX Gain Index, f1 = 50 MHz, f2 = 101 MHz

Figure 57. IIP2 vs. RX Gain Index, f1 = 70 MHz, f2 = 71 MHz

Figure 58. RX LO Leakage vs. Frequency

Figure 59. TX Output Power vs. Frequency, Attenuation Setting = 0 dB, Single Tone

Figure 60. TX Power Control Linearity Error vs. Attenuation Setting

Figure 61. Integrated TX LO Phase Noise vs. Frequency, 40 MHz Reference Clock (Doubled Internally for RF Synthesizer)

Figure 62. TX Carrier Rejection vs. Frequency

Figure 63. TX Second-Order Harmonic Distortion vs. Frequency

Figure 64. TX Third-Order Harmonic Distortion vs. Frequency

Figure 65. TX OIP3 vs. TX Attenuation Setting, f_{LO_TX} = 5.8 GHz

Figure 66. TX Single Sideband Rejection vs. Frequency, 7 MHz Offset

OUTLINE DIMENSIONS

Dimensions shown in millimeters

Updated: July 15, 2022

1-18-2011-A

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD9361BBC-CSH	-40°C to +85°C	144-Ball CSPBGA (10mm x 10mm x 1.7mm)	BC-144-7

