

AN-795 APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/461-3113 • www.analog.com

AD9880 Color Space Converter User's Guide

by Del Jones

COLOR SPACE CONVERSION MATRIX

The color space conversion matrix (CSC) in the AD9880 is a 3×3 matrix with full programmability of all coefficients in the matrix. Each coefficient is 12 bits wide to ensure that signal integrity is maintained. The CSC is designed to run at speeds of up to 150 MHz supporting 1080 p @ 60 Hz rates. With the "any-to-any" color space support, formats such as RGB, YUV, YCrCb, and others are supported by the CSC.

The CSC contains three identical processing channels, one of which is shown in Figure 1. The main inputs, In_A, In_B, and In_C, come from 8-bit outputs of each ADC or DVI channel. Each input to the individual channels to the CSC is multiplied by a separate coefficient for each channel. In Figure 1 these coefficients are marked A1, A2, and A3. The variable in the figure labelled A4 is used as an offset control for Channel A in the CSC. The functional diagram for a single channel in the CSC is repeated for the other two remaining Channels B and C. The coefficients for these channels are called B1, B2, B3, B4, C1, C2, C3, and C4.

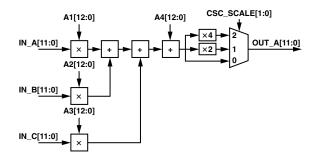


Figure 1. Single CSC Channel

The coefficients are detailed in Table I with their default $\ensuremath{\mathsf{I}}^2C$ power-on reset values.

Bit	AD9880 Register	Default Value	Description		
CSC_scale[1:0]	0x35 bits 6:5	1	Scaling for CSC formula		
A1[12:0]	0x35 – 0x36	3154	Coefficients for Channel A		
A2[12:0]	0x37 – 0x39	2048			
A3[12:0]	0x39 – 0x3A	0			
B1[12:0]	0x3D – 0x3E	-940	Coefficients for Channel B		
B2[12:0]	0x3F – 0x40	2048			
B3[12:0]	0x41 – 0x42	-375			
C1[12:0]	0x45 – 0x46	0	Coefficients for Channel C		
C2[12:0]	0x47 – 0x48	2048			
C3[12:0]	0x49 – 0x4A	3719			
A4[12:0]	0x3B – 0x3C	-1577	Offsets for the three channels		
B4[12:0]	0x43 – 0x44	658			
C4[12:0]	0x4B – 0x4C	-1859			

Table I. CSC Coefficients

PROGRAMMING THE CSC

The equations performed by the CSC are as follows:

CSC Channel A

$$Out_A = [In_A \times \frac{A1}{4096} + B\frac{A2}{4096} + In_C \times \frac{A3}{4096} + A4] \times 2^{CSC_scale}$$
(1)

CSC Channel B

$$Out_B = [In_A \times \frac{B1}{4096} + B\frac{B2}{4096} + In_C \times \frac{B3}{4096} + B4] \times 2^{CSC_scale}$$
(2)

CSC Channel C

$$Out_C = [In_A \times \frac{C1}{4096} + B\frac{C2}{4096} + In_C \times \frac{C3}{4096} + C4] \times 2^{CSC_scale}$$
(3)

As Equations 1, 2, and 3 show, the A1 – A3, B1 – B3, and C1 – C3 coefficients are used to scale the primary inputs. The values of A4, B4, and C4 are then added as offsets. The CSC_scale bits allow the user to implement conversion formulas in which the conversion coefficients are \geq 1. In other words, if an equation is being implemented whose coefficients are \geq 1, the CSC_scale bits can be used to ensure that the resulting output code does not exceed the 12-bit limit of 4095. Table II describes the conditions under which each CSC_scale setting should be used. Note that if any coefficient in any of the three CSC equations requires scaling (CSC_scale \neq 0), then all coefficients, including the offset values, are scaled as indicated by Equations 1, 2, and 3. The values of A1 – A4, B1 – B4, and C1 – C4 will equal the coefficients from the desired conversion formula multiplied by 4096/ 2^{CSC_scale}.

Table II. CSC_scale Settings

CSC_scale	Conversion Coefficient
0	N < 1
1	$1 \le N < 2$
2	$2 \leq N < 4$

Note that for the CSC to operate properly, the channel mapping shown in Table III must be followed.

Table III. C	SC Port	Map	ping
--------------	---------	-----	------

Channel	AD9980 Input (analog)	CSC Channel
Red/Pr	R _{AIN}	А
Green/Y	G _{AIN}	В
Blue/Pb	B _{AIN}	С

Output mapping depends on the output format. Refer to the AD9880 data sheet for details.

Programming Steps

To arrive at programming values from typical formulas, the following steps must be performed:

1. Check the value of each coefficient.

The coefficients can only be programmed in the range of [-0.999... +0.999]. To support larger coefficients, the CSC_scale function should be used (see Table II).

Determine the setting for CSC_scale and adjust coefficients (if necessary).

2. Program the coefficient values.

Convert the float point coefficients into 12-bit fixed decimal format by multiplying them by [4096/ 2^{CSC_scale}]. Convert into binary format, using twos complement for negative values.

Program A1 – A3, B1 – B3, and C1 – C3

3. Progam the offset values.

Depending on the type of color space, conversion offsets may have to be used.

Program A4, B4, and C4.

CSC EXAMPLE

The following sets of equations give an example of a conversion from an HDTV YCbCr to RGB (12 bits):

 $\begin{aligned} \mathsf{R} &= \mathsf{Y} + 1.540(\mathsf{Cr} - 2048) = \mathsf{Y} + 1.540 \times \mathsf{Cr} - 3154 \\ \mathsf{G} &= \mathsf{Y} - 0.459(\mathsf{Cr} - 2048) - 0.183(\mathsf{Cb} - 2048) = \\ \mathsf{Y} - 0.459 \times \mathsf{Cr} - 0.183 \times \mathsf{Cb} + 1315 \end{aligned}$

 $B = Y + 1.816(Cb - 2048) = Y + 1.816 \times Cb - 3719$

The original equations give offset values of 128 for the Pr and Pb components. The value of 128 equates to half the range on an 8-bit system. It must be noted that the CSC of the AD9880 operates on a 12-bit range. The offsets therefore must be changed from 128 to half the range of a 12-bit system, which is 2048.

Check the Value of Each Coefficient

The maximum value for each coefficient on its own can only be within the range of -4095/4096 to 4095/4096 which equals [-0.999755859375 .. 0.999755859375]. Values outside this range do not fit into the 12-bit fixed point format used to program the coefficients.

If the value of one or more coefficients exceeds the supported coefficient range, the CSC needs to be scaled using the CSC_scale bits.

With the CSC_scale set to "1," all coefficients must be scaled by half, which makes them fit into the given coefficient range. The overall outputs of the CSC are then increased by a fixed value of two, thus compensating for the scaled down coefficients. In the example, the biggest coefficient is 1.816, so the CSC_scale bits would be set to "01."

- To achieve a coefficient value of 1.0 for any given coefficient, the CSC_scale bits should be set to "1" and the coefficient should actually be programmed to a value of 0.5. Otherwise the largest value would be 4095/4096 = 0.9997, which is not exactly 1. While this value could be interpreted as a 1, it is recommended to use the value of 0.5 and the CSC_scale bit for maximum accuracy.
- 2. For very large coefficient values (e.g., 2.58), the CSC_scale must be set to "2" and all coefficients must be scaled by one-quarter, which makes them fit into the given coefficient range. The overall outputs of the CSC are then gained up by a fixed value of four, thus compensating for the scaled down coefficients.
- Program the coefficient values as follows:

$$R = 1.540 \times Cr + 0 \times Cb + 1 \times Y - 3154$$

$$G = -0459 \times Cr - 0.183 \times Cb + 1 \times Y + 1315$$

$$B = 0 \times Cr + 1.816 \times Cb + 1 \times Y - 3719$$

- The coefficient values are programmed with 12-bit accuracy in a fixed point format.
- To translate the float point coefficients, they must be multiplied by 2¹² (4096) and then rounded to 12 bits.
- Twos complement notation should be used for negative numbers.

In_A carries the Pr or R components, In_B contains the Y or G components, and In_C delivers the Pb or B components. Similarly, $Out_A = Pr$ or R, $Out_B + Y$ or G, and $Out_C = Pb$ or B.

Program the Offset Values

When programming the offset values (A4, B4, C4) the CSC_scale is set to 1 so the offset value from the original equation must be divided by 2.

	lable IV. Example Onset values							
Equation	Original Offset	Adjusted Offset*	Register	Hex Value (13-bit, twos complement)				
Red	-3154	-1577	A4[12:0]	0x19D7				
Green	1315	657	B4[12:0]	0x0291				
Blue	-3719	–1859	C4[12:0]	0x18BD				

Table IV. Example Offset Values

*Since the CSC_scale is set to 1, the calculated coefficient is divided by 2 (2^{CSC_scale}).

Equation	Equation Coefficients		Calculation*	Rounded Result (–4096 ≤ N < 4096)	Register	Hex Value (Twos complement)	
Red	Cr	1.54	1.54 × 4096/2	3154	A1[12:0]	0x0C52	
	Y	1	1 × 4096/2	2048	A2[12:0]	0x0800	
	Cb	0	0 × 4096/2	0	A3[12:0]	0x0000	
Green	Cr	-0.459	0.459 × 4096/2	-940	B1[12:0]	0x1C54	
	Y	1	1 × 4096/2	2048	B2[12:0]	0x0800	
	Cb	-0.183	0.183 × 4096/2	-375	B3[12:0]	0x3E89	
Blue	Cr	0	0 × 4096/2	0	C1[12:0]	0x000	
	Y	1	1 × 4096/2	2048	C2[12:0]	0x0800	
	Cb	1.816	1.816 × 4096/2	3719	C3[12:0]	0x0E87	

Table V. Example Coefficient Calculations

*Since the CSC_scale is set to 1, the calculated coefficient is divided by 2.

REGISTER SETTINGS FOR CSC EXAMPLE

For the CSC example, the I²C registers of the AD9880 must be programmed with the values shown in Table VI.

Register	Address Bit Description and Values									Hex Value
Red/Cr	0x35	unused	CSC_scale[1:0]	A1.12	A1.11	A1.10	A1.9	A1.8	0x0C
oeff. 1		*	0	1	0	1	1	0	0	
	0x36	A1.7	A1.6	A1.5	A1.4	A1.3	A1.2	A1.1	A1.0	0x52
		0	1	0	1	0	0	1	0	
ed/Cr	0x37	unused	unused	unused	A2.12	A2.11	A2.10	A2.9	A2.8	0x08
oeff. 2		*	¥	*	0	0	0	0	0	
	0x38	A2.7	A2.6	A2.5	A2.4	A2.3	A2.2	A2.1	A2.0	0x00
		0	0	0	0	0	0	0	0	
ed/Cr	0x39	unused	unused	unused	A3.12	A3.11	A3.10	A3.9	A3.8	0x00
oeff. 3		*	¥	*	0	0	0	0	0	
	0x3A	A3.7	A3.6	A3.5	A3.4	A3.3	A3.2	A3.1	A3.0	0x00
		*	*	*	0	0	0	0	0	
ed/Cr	0x3B	unused	unused	unused	A4.12	A4.11	A4.10	A4.9	A4.8	0x19
ffset		*	*	*	1	1	0	0	1	
	0x3C	A4.7	A4.6	A4.5	A4.4	A4.3	A4.2	A4.1	A4.0	0xD7
		1	1	0	1	0	1	1	1	
reen/Y	0x3D	unused	unused	unused	B1.12	B1.11	B1.10	B1.9	B1.8	0x1C
oeff. 1		*	*	*	1	1	1	0	0	
	0x3E	B1.7	B1.6	B1.5	B1.4	B1.3	B1.2	B1.1	B1.0	0x54
		0	1	0	1	0	1	0	0	
reen/Y	0x3F	unused	unused	unused	B2.12	B2.11	B2.10	B2.9	B2.8	0x08
Coeff. 2		*	*	*	0	1	0	0	0	
	0x40	B2.7	B2.6	B2.5	B2.4	B2.3	B2.2	B2.1	B2.0	0x00
		0	0	0	0	0	0	0	0	
reen/Y	0x41	unused	unused	unused	B3.12	B3.11	B3.10	B3.9	B3.8	0x3E
oeff. 3		*	*	*	1	1	1	1	0	
	0x42	B3.7	B3.6	B3.5	B3.4	B3.3	B3.2	B3.1	B3.0	0×89
		1	0	0	0	1	0	0	1	
reen/Y oeff. 4	0x43	unused	unused	unused	B4.12	B4.11	B4.10	B4.9	B4.8	0×02
0611. 4		*	*	*	0	0	0	1	0	_
	0x44	B4.7	B4.6	B4.5	B4.4	B4.3	B4.2	B4.1	B4.0	0x91
			0	0	1	0	0	0	1	_
lue/Cb oeff. 1	0x45	unused	unused	unused *	C1.12	C1.11	C1.10	C1.9	C1.8	0x00
0011. 1		^	^		0	0	0	0	0	
	0x46	C1.7	C1.6	C1.5	C1.4 0	C1.3 0	C1.2	C1.1 0	C1.0 0	0x00
				0			0			
lue/Cb oeff. 2	0x47	unused *	unused *	unused *	C2.12 0	C2.11	C2.10	C2.9 0	C2.8	0x08
	0.40	00.7								0.00
	0x48	C2.7	C2.6	C2.5	C2.4	C2.3	C2.2	C2.1	C2.0	0x00
	010									0.05
lue/Cb oeff. 3	0x49	unused *	unused *	unused *	C3.12 0	C3.11	C3.10	C3.9 1	C3.8	0x0E
	0×4.4	C2 7								0.07
	0x4A	C3.7	C3.6	C3.5 0	C3.4	C3.3	C3.2	C3.1 1	C3.0	0x87
lue/Ch	0.40									0.10
lue/Cb Iffset	0x4B	unused *	unused *	unused *	C4.12	C4.11 1	C4.10	C4.9 0	C4.8	0x18
	0:40	C4 7								0
	0x4C	C4.7	C4.6	C4.5	C4.4	C4.3	C4.2	C4.1	C4.0	0xBD

Table VI. Color Space Conversion and Decimation Filters

Legend: Bit name as per register table

er table Example bit value

Example register value

Value

APPENDIX

Register Settings for Standard Color Space Conversions

Register	Address	Value
Red/Cr Coeff. 1	0x35	0x0C
	0x36	0x52
Red/Cr Coeff. 2	0x37	0x08
	0x38	0x00
Red/Cr Coeff. 3	0x39	0x00
	0x3A	0x00
Red/Cr Coeff. Offset	0x3B	0x19
	0x3C	0xD7
Green/Y Coeff. 1	0x3D	0x1C
	0x3E	0x54
Green/Y Coeff. 2	0x3F	0x08
	0x40	0x00
Green/Y Coeff. 3	0x41	0x3E
	0x42	0x89
Green/Y Coeff. Offset	0x43	0x02
	0x44	0x91
Blue/Cb Coeff. 1	0x45	0x00
	0x46	0x00
Blue/Cb Coeff. 2	0x47	0x08
	0x48	0x00
Blue/Cb Coeff. 3	0x49	0x0E
	0x4A	0x87
Blue/Cb Coeff. Offset	0x4B	0x18
	0x4C	0xBD

•		
Red/Cr Coeff. 1	0x35	0x47
	0x36	0x2C
Red/Cr Coeff. 2	0x37	0x04
	0x38	0xA8
Red/Cr Coeff. 3	0x39	0x00
	0x3A	0x00
Red/Cr Coeff. Offset	0x3B	0x1C
	0x3C	0x1F
Green/Y Coeff. 1	0x3D	0x1D
	0x3E	0xDD
Green/Y Coeff. 2	0x3F	0x04
	0x40	0xA8
Green/Y Coeff. 3	0x41	0x1F
	0x42	0x26
Green/Y Coeff. Offset	0x43	0x01
	0x44	0x34
Blue/Cb Coeff. 1	0x45	0x00
	0x46	0x00
Blue/Cb Coeff. 2	0x47	0x04
	0x48	0xA8
Blue/Cb Coeff. 3	0x49	0x08
	0x4A	0x75
Blue/Cb Coeff. Offset	0x4B	0x1B
	0x4C	0x7D

Table VIII. HDTV YCrCb (16 - 235) to RGB (0 - 255)

Address

Register

*This is the same conversion as the example. The coeficients are the default settings for the AD9880.

Table IX. SDTV YCrCb (0 – 255) to RGB (0 – 255)				
Register Address Value				
Red/Cr Coeff. 1	0x35	0x2A		
	0x36	0xFA		
Red/Cr Coeff. 2	0x37	0x08		
	0x38	0x00		
Red/Cr Coeff. 3	0x39	0x00		
	0x3A	0x00		
Red/Cr Coeff. Offset	0x3B	0x1A		
	0x3C	0x84		
Green/Y Coeff. 1	0x3D	0x1A		
	0x3E	0x6A		
Green/Y Coeff. 2	0x3F	0x08		
	0x40	0x00		
Green/Y Coeff. 3	0x41	0x1D		
	0x42	0x50		
Green/Y Coeff. Offset	0x43	0x04		
	0x44	0x23		
Blue/Cb Coeff. 1	0x45	0x00		
	0x46	0x00		
Blue/Cb Coeff. 2	0x47	0x08		
	0x48	0x00		
Blue/Cb Coeff. 3	0x49	0x0D		
	0x4A	0xDB		
Blue/Cb Coeff. Offset	0x4B	0x19		
	0x4C	0x12		

Table X. SDTV YCrCb (16 – 235) to RGB (0	- 255)
--	--------

Register	Address	Value
Red/Cr Coeff. 1	0x35 0x36	0x46 0x63
Red/Cr Coeff. 2	0x37 0x38	0x04 0xA8
Red/Cr Coeff. 3	0x39 0x3A	0x00 0x00
Red/Cr Coeff. Offset	0x3B 0x3C	0x1C 0x84
Green/Y Coeff. 1	0x3D 0x3E	0x1C 0xC0
Green/Y Coeff. 2	0x3F 0x40	0x04 0xA8
Green/Y Coeff. 3	0x41 0x42	0x1E 0x6F
Green/Y Coeff. Offset	0x43 0x44	0x02 0x1E
Blue/Cb Coeff. 1	0x45 0x46	0x00 0x00
Blue/Cb Coeff. 2	0x47 0x48	0x04 0xA8
Blue/Cb Coeff. 3	0x49 0x4A	0x08 0x11
Blue/Cb Coeff. Offset	0x4B 0x4C	0x1B 0xAD

Register	Address	Value
Red/Cr Coeff. 1	0x35	0x08
	0x36	0x2D
Red/Cr Coeff. 2	0x37	0x18
	0x38	0x93
Red/Cr Coeff. 3	0x39	0x1F
	0x3A	0x3F
Red/Cr Coeff. Offset	0x3B	0x08
	0x3C	0x00
Green/Y Coeff. 1	0x3D	0x03
	0x3E	0x68
Green/Y Coeff. 2	0x3F	0x0B
	0x40	0x71
Green/Y Coeff. 3	0x41	0x01
	0x42	0x27
Green/Y Coeff. Offset	0x43	0x00
	0x44	0x00
Blue/Cb Coeff. 1	0x45	0x1E
	0x46	0x21
Blue/Cb Coeff. 2	0x47	0x19
	0x48	0xB2
Blue/Cb Coeff. 3	0x49	0x08
	0x4A	0x2D
Blue/Cb Coeff. Offset	0x4B	0x08
	0x4C	0x00

Table XI. RGB	(0 – 255) to	HDTV YCrCb (0 – 255)	
---------------	--------------	----------------------	--

Table XII. RGB (0 – 255) to HDTV YCrCb (16 – 235)

Register	Address	Value
Red/Cr Coeff. 1	0x35	0x07
	0x36	0x06
Red/Cr Coeff. 2	0x37	0x19
	0x38	0xA0
Red/Cr Coeff. 3	0x39	0x1F
	0x3A	0x5B
Red/Cr Coeff. Offset	0x3B	0x08
	0x3C	0x00
Green/Y Coeff. 1	0x3D	0x02
	0x3E	0xED
Green/Y Coeff. 2	0x3F	0x09
	0x40	0xD3
Green/Y Coeff. 3	0x41	0x00
	0x42	0xFD
Green/Y Coeff. Offset	0x43	0x01
	0x44	0x00
Blue/Cb Coeff. 1	0x45	0x1E
	0x46	0x64
Blue/Cb Coeff. 2	0x47	0x1A
	0x48	0x96
Blue/Cb Coeff. 3	0x49	0x07
	0x4A	0x06
Blue/Cb Coeff. Offset	0x4B	0x08
	0x4C	0x00

Register	Address	Value
Red/Cr Coeff. 1	0x35	0x08
	0x36	0x2D
Red/Cr Coeff. 2	0x37	0x19
	0x38	0x27
Red/Cr Coeff. 3	0x39	0x1E
	0x3A	0xAC
Red/Cr Coeff. Offset	0x3B	0x08
	0x3C	0x00
Green/Y Coeff. 1	0x3D	0x04
	0x3E	0xC9
Green/Y Coeff. 2	0x3F	0x09
	0x40	0x64
Green/Y Coeff. 3	0x41	0x01
	0x42	0xD3
Green/Y Coeff. Offset	0x43	0x00
	0x44	0x00
Blue/Cb Coeff. 1	0x45	0x1D
	0x46	0x3F
Blue/Cb Coeff. 2	0x47	0x1A
	0x48	0x93
Blue/Cb Coeff. 3	0x49	0x08
	0x4A	0x2D
lue/Cb Coeff. Offset	0x4B	0x08
	0x4C	0x00

Register	Address	Value
Red/Cr Coeff. 1	0x35 0x36	0x07 0x06
Red/Cr Coeff. 2	0x37 0x38	0x1A 0x1E
Red/Cr Coeff. 3	0x39 0x3A	0x1E 0xDC
Red/Cr Coeff. Offset	0x3B 0x3C	0x08 0x00
Green/Y Coeff. 1	0x3D 0x3E	0x04 0x1C
Green/Y Coeff. 2	0x3F 0x40	0x08 0x11
Green/Y Coeff. 3	0x41 0x42	0x01 0x91
Green/Y Coeff. Offset	0x43 0x44	0x01 0x00
Blue/Cb Coeff. 1	0x45 0x46	0x1D 0xA3
Blue/Cb Coeff. 2	0x47 0x48	0x1B 0x57
Blue/Cb Coeff. 3	0x49 0x4A	0x07 0x06
Blue/Cb Coeff. Offset	0x4B 0x4C	0x08 0x00

Table XIV. RGB (0 – 255) to HDTV YCrCb (16 – 235)

© 2005 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.