AD9880 Color Space Converter User's Guide

by Del Jones

COLOR SPACE CONVERSION MATRIX

The color space conversion matrix (CSC) in the AD9880 is a 3×3 matrix with full programmability of all coefficients in the matrix. Each coefficient is 12 bits wide to ensure that signal integrity is maintained. The CSC is designed to run at speeds of up to 150 MHz supporting 1080 p @ 60 Hz rates. With the "any-to-any" color space support, formats such as RGB, YUV, YCrCb, and others are supported by the CSC.

The CSC contains three identical processing channels, one of which is shown in Figure 1. The main inputs, In_A, In_B, and In_C, come from 8-bit outputs of each ADC or DVI channel. Each input to the individual channels to the CSC is multiplied by a separate coefficient for each channel. In Figure 1 these coefficients are marked A1, A2, and A3. The variable in the figure labelled A4 is used as an offset control for Channel A in the CSC. The functional
diagram for a single channel in the CSC is repeated for the other two remaining Channels B and C . The coefficients for these channels are called B1, B2, B3, B4, C1, C2, C3, and C4.

Figure 1. Single CSC Channel
The coefficients are detailed in Table I with their default $I^{2} C$ power-on reset values.

Table I. CSC Coefficients

Bit	AD9880 Register	Default Value	Description
CSC_scale[1:0]	0×35 bits 6:5	1	Scaling for CSC formula
A1[12:0]	$0 \times 35-0 \times 36$	3154	Coefficients for Channel A
A2[12:0]	$0 \times 37-0 \times 39$	2048	
A3[12:0]	$0 \times 39-0 \times 3 A$	0	
B1[12:0]	$0 \times 3 D-0 \times 3 E$	-940	
B2[12:0]	$0 \times 3 F-0 \times 40$	2048	
B3[12:0]	$0 \times 41-0 \times 42$	-375	
C1[12:0]	$0 \times 45-0 \times 46$	0	
C2[12:0]	$0 \times 47-0 \times 48$	2048	
C3[12:0]	$0 \times 49-0 \times 4 A$	3719	
A4[12:0]	$0 \times 3 B-0 \times 3 C$	-1577	
B4[12:0]	$0 \times 43-0 \times 44$	658	
C4[12:0]	$0 \times 4 B-0 \times 4 C$	-1859	

PROGRAMMING THE CSC

The equations performed by the CSC are as follows:
CSC Channel A

$$
\begin{equation*}
\text { Out_A }=\left[\operatorname{In} _A \times \frac{A 1}{4096}+B \frac{A 2}{4096}+\operatorname{In} _C \times \frac{A 3}{4096}+A 4\right] \times 2^{\text {CsC_scale }} \tag{1}
\end{equation*}
$$

CSC Channel B

$$
\begin{equation*}
\text { Out_B }=\left[\operatorname{In} _A \times \frac{B 1}{4096}+B \frac{B 2}{4096}+\operatorname{In} _C \times \frac{B 3}{4096}+B 4\right] \times 2^{C S C _s c a l \epsilon} \tag{2}
\end{equation*}
$$

CSC Channel C

$$
\begin{equation*}
\text { Out_C }=\left[I n_{-} A \times \frac{C 1}{4096}+B \frac{C 2}{4096}+\operatorname{In} C \times \frac{C 3}{4096}+C 4\right] \times 2^{C s C_{-} s c a l e} \tag{3}
\end{equation*}
$$

As Equations 1, 2, and 3 show, the A1-A3, B1-B3, and C1-C3 coefficients are used to scale the primary inputs. The values of A4, B4, and C4 are then added as offsets. The CSC_scale bits allow the user to implement conversion formulas in which the conversion coefficients are ≥ 1. In other words, if an equation is being implemented whose coefficients are ≥ 1, the CSC_scale bits can be used to ensure that the resulting output code does not exceed the 12 -bit limit of 4095 . Table II describes the conditions under which each CSC_scale setting should be used. Note that if any coefficient in any of the three CSC equations requires scaling (CSC_scale $\neq 0$), then all coefficients, including the offset values, are scaled as indicated by Equations 1, 2, and 3. The values of A1-A4, B1 - B4 , and C1-C4 will equal the coefficients from the desired conversion formula multiplied by 4096/ $2^{\text {CSC_scale }}$.

Table II. CSC_scale Settings

CSC_scale	Conversion Coefficient
0	$\mathrm{~N}<1$
1	$1 \leq \mathrm{N}<2$
2	$2 \leq \mathrm{N}<4$

Note that for the CSC to operate properly, the channel mapping shown in Table III must be followed.

Table III. CSC Port Mapping

Channel	AD9980 Input (analog)	CSC Channel
Red $/ \mathrm{Pr}$	$\mathrm{R}_{\text {AIN }}$	A
Green $/ \mathrm{Y}$	$\mathrm{G}_{\text {AIN }}$	B
Blue $/ \mathrm{Pb}$	$\mathrm{B}_{\text {AIN }}$	C

Output mapping depends on the output format. Refer to the AD9880 data sheet for details.

Programming Steps

To arrive at programming values from typical formulas, the following steps must be performed:

1. Check the value of each coefficient.

The coefficients can only be programmed in the range of [-0.999... +0.999]. To support larger coefficients, the CSC_scale function should be used (see Table II).

Determine the setting for CSC_scale and adjust coefficients (if necessary).
2. Program the coefficient values.

Convert the float point coefficients into 12-bit fixed decimal format by multiplying them by [4096/ $2^{\text {CsC_scale }}$]. Convert into binary format, using twos complement for negative values.

Program A1-A3, B1 - B3, and C1-C3
3. Progam the offset values.

Depending on the type of color space, conversion offsets may have to be used.

Program A4, B4, and C4.

CSC EXAMPLE

The following sets of equations give an example of a conversion from an HDTV YCbCr to RGB (12 bits):

$$
\begin{aligned}
& \mathrm{R}=\mathrm{Y}+1.540(\mathrm{Cr}-2048)=\mathrm{Y}+1.540 \times \mathrm{Cr}-3154 \\
& \mathrm{G}=\mathrm{Y}-0.459(\mathrm{Cr}-2048)-0.183(\mathrm{Cb}-2048)= \\
& \quad \mathrm{Y}-0.459 \times \mathrm{Cr}-0.183 \times \mathrm{Cb}+1315 \\
& \mathrm{~B}=\mathrm{Y}+1.816(\mathrm{Cb}-2048)=\mathrm{Y}+1.816 \times \mathrm{Cb}-3719
\end{aligned}
$$

The original equations give offset values of 128 for the Pr and Pb components. The value of 128 equates to half the range on an 8-bit system. It must be noted that the CSC of the AD9880 operates on a 12-bit range. The offsets therefore must be changed from 128 to half the range of a 12-bit system, which is 2048.

Check the Value of Each Coefficient

The maximum value for each coefficient on its own can only be within the range of $-4095 / 4096$ to $4095 / 4096$ which equals [-0.999755859375 .. 0.999755859375]. Values outside this range do not fit into the 12-bit fixed point format used to program the coefficients.
If the value of one or more coefficients exceeds the supported coefficient range, the CSC needs to be scaled using the CSC_scale bits.
With the CSC_scale set to "1," all coefficients must be scaled by half, which makes them fit into the given coefficient range. The overall outputs of the CSC are then increased by a fixed value of two, thus compensating for the scaled down coefficients.

In the example, the biggest coefficient is 1.816 , so the CSC_scale bits would be set to "01."

1. To achieve a coefficient value of 1.0 for any given coefficient, the CSC_scale bits should be set to " 1 " and the coefficient should actually be programmed to a value of 0.5 . Otherwise the largest value would be $4095 / 4096=0.9997$, which is not exactly 1 . While this value could be interpreted as a 1 , it is recommended to use the value of 0.5 and the CSC_scale bit for maximum accuracy.
2. For very large coefficient values (e.g., 2.58), the CSC_scale must be set to " 2 " and all coefficients must be scaled by one-quarter, which makes them fit into the given coefficient range. The overall outputs of the CSC are then gained up by a fixed value of four, thus compensating for the scaled down coefficients.
Program the coefficient values as follows:

$$
\begin{aligned}
& \mathrm{R}=1.540 \times \mathrm{Cr}+0 \times \mathrm{Cb}+1 \times \mathrm{Y}-3154 \\
& \mathrm{G}=-0459 \times \mathrm{Cr}-0.183 \times \mathrm{Cb}+1 \times \mathrm{Y}+1315 \\
& \mathrm{~B}=0 \times \mathrm{Cr}+1.816 \times \mathrm{Cb}+1 \times \mathrm{Y}-3719
\end{aligned}
$$

- The coefficient values are programmed with 12 -bit accuracy in a fixed point format.
- To translate the float point coefficients, they must be multiplied by 2^{12} (4096) and then rounded to 12 bits.
- Twos complement notation should be used for negative numbers.
In_A carries the Pr or R components, In_B contains the Y or G components, and In _C delivers the Pb or B components. Similarly, Out_A = Pr or R, Out_B + Y or G, and Out_C = Pb or B.

Program the Offset Values

When programming the offset values (A4, B4, C4) the CSC_scale is set to 1 so the offset value from the original equation must be divided by 2 .

Table IV. Example Offset Values

Equation	Original Offset	Adjusted Offset*	Register	Hex Value (13-bit, twos complement)
Red	-3154	-1577	A4[12:0]	$0 \times 19 D 7$
Green	1315	657	B4[12:0]	0×0291
Blue	-3719	-1859	C4[12:0]	$0 \times 18 B D$

*Since the CSC_scale is set to 1, the calculated coefficient is divided by 2 ($2^{\text {CSC_scale }}$).

Table V. Example Coefficient Calculations

Equation	Equation Coefficients		Calculation*	Rounded Result $(-4096 \leq N<4096)$	Register	Hex Value (Twos complement)
Red	Cr	1.54	$1.54 \times 4096 / 2$	3154	A1[12:0]	0x0C52
	Y	1	$1 \times 4096 / 2$	2048	A2[12:0]	0x0800
	Cb	0	$0 \times 4096 / 2$	0	A3[12:0]	0x0000
Green	Cr	-0.459	$0.459 \times 4096 / 2$	-940	B1[12:0]	0x1C54
	Y	1	$1 \times 4096 / 2$	2048	B2[12:0]	0x0800
	Cb	-0.183	$0.183 \times 4096 / 2$	-375	B3[12:0]	0x3E89
Blue	Cr	0	$0 \times 4096 / 2$	0	C1[12:0]	0x000
	Y	1	$1 \times 4096 / 2$	2048	C2[12:0]	0x0800
	Cb	1.816	$1.816 \times 4096 / 2$	3719	C3[12:0]	0x0E87

*Since the CSC_scale is set to 1 , the calculated coefficient is divided by 2.

REGISTER SETTINGS FOR CSC EXAMPLE
For the CSC example, the $I^{2} \mathrm{C}$ registers of the AD9880 must be programmed with the values shown in Table VI.
Table VI. Color Space Conversion and Decimation Filters

Register	Address	Bit Description and Values								Hex Value
Red/ Cr	0x35	unused	CSC_sca		A1.12	A1.11	A1.10	A1.9	A1.8	0x0C
Coeff. 1		*	0	1	0	1	1	0	0	
	0x36	A1.7	A1.6	A1.5	A1.4	A1.3	A1.2	A1.1	A1.0	0x52
		0	1	0	1	0	0	1	0	
$\mathrm{Red} / \mathrm{Cr}$	0x37	unused	unused	unused	A2.12	A2.11	A2.10	A2.9	A2.8	0x08
Coeff. 2		*	*	*	0	0	0	0	0	
	0x38	A2.7	A2.6	A2.5	A2.4	A2.3	A2.2	A2.1	A2.0	0x00
		0	0	0	0	0	0	0	0	
Red/Cr	0x39	unused	unused	unused	A3.12	A3.11	A3.10	A3.9	A3.8	0x00
Coeff. 3		*	*	*	0	0	0	0	0	
	0x3A	A3.7	A3. 6	A3.5	A3.4	A3.3	A3.2	A3. 1	A3.0	0x00
		*	*	*	0	0	0	0	0	
$\overline{\mathrm{Red} / \mathrm{Cr}}$	0x3B	unused	unused	unused	A4.12	A4.11	A4.10	A4.9	A4.8	0x19
Offset		*	*	*	1	1	0	0	1	
	0x3C	A4.7	A4. 6	A4.5	A4.4	A4.3	A4.2	A4.1	A4.0	0xD7
		1	1	0	1	0	1	1	1	
Green/Y	0x3D	unused	unused	unused	B1.12	B1.11	B1.10	B1.9	B1.8	0x1C
Coeff. 1		*	*	*	1	1	1	0	0	
	0x3E	B1.7	B1.6	B1.5	B1.4	B1.3	B1.2	B1.1	B1.0	0x54
		0	1	0	1	0	1	0	0	
Green/Y	0x3F	unused	unused	unused	B2. 12	B2.11	B2.10	B2.9	B2.8	0x08
Coeff. 2		*	*	*	0	1	0	0	0	
	0x40	B2.7	B2.6	B2.5	B2.4	B2.3	B2.2	B2.1	B2.0	0x00
		0	0	0	0	0	0	0	0	
Green/Y	0x41	unused	unused	unused	B3.12	B3.11	B3. 10	B3.9	B3.8	0x3E
Coeff. 3		*	*	*	1	1	1	1	0	
	0x42	B3.7	B3.6	B3.5	B3.4	B3.3	B3.2	B3.1	B3.0	0x89
		1	0	0	0	1	0	0	1	
Green/Y	0x43	unused	unused	unused	B4.12	B4.11	B4.10	B4.9	B4.8	0x02
Coeff. 4		*	*	*	0	0	0	1	0	
	0x44	B4.7	B4.6	B4.5	B4.4	B4.3	B4.2	B4.1	B4.0	0x91
		1	0	0	1	0	0	0	1	
Blue/Cb	0x45	unused	unused	unused	C1.12	C1.11	C1.10	C1.9	C1.8	0x00
Coeff. 1		*	*	*	0	0	0	0	0	
	0x46	C1.7	C1.6	C1.5	C1.4	C1.3	C1.2	C1.1	C1.0	0×00
		0	0	0	0	0	0	0	0	
Blue/Cb	0x47	unused	unused	unused	C2.12	C2.11	C2.10	C2.9	C2.8	0x08
Coeff. 2		*	*	*	0	1	0	0	0	
	0x48	C2.7	C2.6	C2.5	C2.4	C2.3	C2.2	C2.1	C2.0	0x00
		0	0	0	0	0	0	0	0	
Blue/Cb	0x49	unused	unused	unused	C3.12	C3.11	C3.10	C3.9	C3.8	0x0E
Coeff. 3		*	*	*	0	1	1	1	0	
	0x4A	C3.7	C3.6	C3.5	C3.4	C3.3	C3.2	C3.1	C3.0	0x87
		1	0	0	0	0	1	1	1	
Blue/Cb	0x4B	unused	unused	unused	C4.12	C4. 11	C4.10	C4.9	C4.8	0x18
Offset		*	*	*	1	1	0	0	0	
	0x4C	C4.7	C4.6	C4.5	C4.4	C4.3	C4.2	C4.1	C4.0	$0 \times B \mathrm{~B}$
		1	0	1	1	1	1	0	1	

Legend: \square Bit name as per register table \square Example bit value \quad Example register value

APPENDIX

Register Settings for Standard Color Space Conversions
Table VII. HDTV YCrCb (0-255) to RGB (0-255)*

Register	Address	Value
Red/Cr Coeff. 1	0×35	$0 \times 0 \mathrm{C}$
	0×36	0×52
Red/Cr Coeff. 2	0×37	0×08
	0×38	0×00
Red/Cr Coeff. 3	0×39	0×00
	$0 \times 3 \mathrm{~A}$	0×00
Red/Cr Coeff. Offset	$0 \times 3 \mathrm{~B}$	0×19
	$0 \times 3 \mathrm{C}$	$0 \times D 7$
Green/Y Coeff. 1	$0 \times 3 \mathrm{D}$	$0 \times 1 \mathrm{C}$
	$0 \times 3 \mathrm{E}$	0×54
Green/Y Coeff. 2	$0 \times 3 F$	0×08
	0×40	0×00
Green/Y Coeff. 3	0×41	$0 \times 3 \mathrm{E}$
	0×42	0×89
Green/Y Coeff. Offset	0×43	0×02
	0×44	0×91
Blue/Cb Coeff. 1	0×45	0×00
	0×46	0×00
Blue/Cb Coeff. 2	0×47	0×08
	0×48	0×00
Blue/Cb Coeff. 3	0×49	$0 \times 0 \mathrm{E}$
Blue/Cb Coeff. Offset	$0 \times 4 \mathrm{~B}$	0×87

*This is the same conversion as the example. The coeficients are the default settings for the AD9880.

Table VIII. HDTV YCrCb (16-235) to RGB (0-255)

Register	Address	Value
Red/Cr Coeff. 1	0×35	0×47
	0×36	$0 \times 2 \mathrm{C}$
Red/Cr Coeff. 2	0×37	0×04
	0×38	$0 \times A 8$
Red/Cr Coeff. 3	0×39	0×00
	$0 \times 3 \mathrm{~A}$	0×00
Red/Cr Coeff. Offset	$0 \times 3 \mathrm{~B}$	$0 \times 1 \mathrm{C}$
	$0 \times 3 \mathrm{C}$	$0 \times 1 \mathrm{~F}$
Green/Y Coeff. 1	$0 \times 3 \mathrm{D}$	$0 \times 1 \mathrm{D}$
	$0 \times 3 \mathrm{E}$	$0 \times D \mathrm{D}$
Green/Y Coeff. 2	$0 \times 3 \mathrm{~F}$	0×04
	0×40	$0 \times \mathrm{A8}$
Green/Y Coeff. 3	0×41	$0 \times 1 \mathrm{~F}$
	0×42	0×26
Green/Y Coeff. Offset	0×43	0×01
	0×44	0×34
Blue/Cb Coeff. 1	0×45	0×00
	0×46	0×00
Blue/Cb Coeff. 2	0×47	0×04
Blue/Cb Coeff. 3	0×48	0×48
Blue/Cb Coeff. Offset	$0 \times 4 \mathrm{~B}$	0×08
	$0 \times 4 \mathrm{C}$	$0 \times 1 \mathrm{~B}$
		$0 \times 7 \mathrm{D}$

Table IX. SDTV YCrCb (0-255) to RGB (0-255)

Register	Address	Value
Red/Cr Coeff. 1	0×35	$0 \times 2 \mathrm{~A}$
	0×36	$0 \times F A$
Red/Cr Coeff. 2	0×37	0×08
	0×38	0×00
Red/Cr Coeff. 3	0×39	0×00
	$0 \times 3 \mathrm{~A}$	0×00
Red/Cr Coeff. Offset	$0 \times 3 \mathrm{~B}$	$0 \times 1 \mathrm{~A}$
	$0 \times 3 \mathrm{C}$	0×84
Green/Y Coeff. 1	$0 \times 3 \mathrm{D}$	$0 \times 1 \mathrm{~A}$
	$0 \times 3 \mathrm{E}$	$0 \times 6 \mathrm{~A}$
Green/Y Coeff. 2	$0 \times 3 \mathrm{~F}$	0×08
	0×40	0×00
Green/Y Coeff. 3	0×41	$0 \times 1 \mathrm{D}$
	0×42	0×50
Green/Y Coeff. Offset	0×43	0×04
	0×44	0×23
Blue/Cb Coeff. 1	0×45	0×00
	0×46	0×00
Blue/Cb Coeff. 2	0×47	0×08
	0×48	0×00
Blue/Cb Coeff. 3	0×49	$0 \times 0 \mathrm{D}$
	$0 \times 4 \mathrm{~A}$	$0 \times D B$
Blue/Cb Coeff. Offset	$0 \times 4 B$	0×19
	$0 \times 4 \mathrm{C}$	0×12

Table X. SDTV YCrCb (16-235) to RGB (0-255)

Register	Address	Value
Red/Cr Coeff. 1	0×35	0×46
	0×36	0×63
Red/Cr Coeff. 2	0×37	0×04
	0×38	$0 \times A 8$
Red/Cr Coeff. 3	0×39	0×00
	$0 \times 3 A$	0×00
Red/Cr Coeff. Offset	$0 \times 3 B$	$0 \times 1 \mathrm{C}$
	$0 \times 3 C$	0×84
Green/Y Coeff. 1	$0 \times 3 \mathrm{D}$	$0 \times 1 \mathrm{C}$
	$0 \times 3 \mathrm{E}$	$0 \times \mathrm{C0}$
Green/Y Coeff. 2	$0 \times 3 F$	0×04
	0×40	$0 \times \mathrm{A8}$
Green/Y Coeff. 3	0×41	$0 \times 1 \mathrm{E}$
	0×42	$0 \times 6 \mathrm{~F}$
Green/Y Coeff. Offset	0×43	0×02
	0×44	$0 \times 1 \mathrm{E}$
Blue/Cb Coeff. 1	0×45	0×00
	0×46	0×00
Blue/Cb Coeff. 2	0×47	0×04
	0×48	$0 \times A 8$
Blue/Cb Coeff. 3	0×49	0×08
	$0 \times 4 \mathrm{~A}$	0×11
Blue/Cb Coeff. Offset	$0 \times 4 \mathrm{~B}$	$0 \times 1 \mathrm{~B}$
	$0 \times 4 \mathrm{C}$	$0 \times \mathrm{AD}$

Table XI. RGB (0-255) to HDTV YCrCb (0-255)

Register	Address	Value
Red/Cr Coeff. 1	0×35	0×08
	0×36	$0 \times 2 \mathrm{D}$
Red/Cr Coeff. 2	0×37	0×18
	0×38	0×93
Red/Cr Coeff. 3	0×39	$0 \times 1 \mathrm{~F}$
	$0 \times 3 \mathrm{~A}$	$0 \times 3 \mathrm{~F}$
Red/Cr Coeff. Offset	$0 \times 3 \mathrm{~B}$	0×08
	$0 \times 3 \mathrm{C}$	0×00
Green/Y Coeff. 1	$0 \times 3 \mathrm{D}$	0×03
	$0 \times 3 \mathrm{E}$	0×68
Green/Y Coeff. 2	$0 \times 3 \mathrm{~F}$	$0 \times 0 \mathrm{~B}$
	0×40	0×71
Green/Y Coeff. 3	0×41	0×01
	0×42	0×27
Green/Y Coeff. Offset	0×43	0×00
	0×44	0×00
Blue/Cb Coeff. 1	0×45	$0 \times 1 \mathrm{E}$
	0×46	0×21
Blue/Cb Coeff. 2	0×47	0×19
Blue/Cb Coeff. 3	0×48	$0 \times B 2$
Blue/Cb Coeff. Offset	$0 \times 4 \mathrm{~B}$	0×49

Table XII. RGB (0-255) to HDTV YCrCb (16-235)

Register	Address	Value
Red/Cr Coeff. 1	0×35	0×07
	0×36	0×06
Red/Cr Coeff. 2	0×37	0×19
	0×38	$0 \times A 0$
Red/Cr Coeff. 3	0×39	$0 \times 1 \mathrm{~F}$
	$0 \times 3 \mathrm{~A}$	$0 \times 5 \mathrm{~B}$
Red/Cr Coeff. Offset	$0 \times 3 \mathrm{~B}$	0×08
Green/Y Coeff. 1	$0 \times 3 \mathrm{C}$	0×00
Green/Y Coeff. 2	$0 \times 3 \mathrm{D}$	0×02
	0×40	$0 \times \mathrm{ED}$
Green/Y Coeff. 3	0×41	0×09
	0×42	$0 \times \mathrm{D} 3$
Green/Y Coeff. Offset	0×43	0×00
	0×44	$0 \times F D$
Blue/Cb Coeff. 1	0×45	0×01
Blue/Cb Coeff. 2	0×46	0×00
Blue/Cb Coeff. 3	0×47	$0 \times 1 \mathrm{E}$
Blue/Cb Coeff. Offset	$0 \times 4 \mathrm{~B}$	0×64
	$0 \times 4 \mathrm{C}$	$0 \times 1 \mathrm{~A}$

Table XIII. RGB (0-255) to HDTV YCrCb (0-255)

Register	Address	Value
Red/Cr Coeff. 1	0×35	0×08
	0×36	$0 \times 2 \mathrm{D}$
Red/Cr Coeff. 2	0×37	0×19
	0×38	0×27
Red/Cr Coeff. 3	0×39	$0 \times 1 \mathrm{E}$
	$0 \times 3 \mathrm{~A}$	$0 \times \mathrm{AC}$
Red/Cr Coeff. Offset	$0 \times 3 \mathrm{~B}$	0×08
	$0 \times 3 \mathrm{C}$	0×00
Green/Y Coeff. 1	$0 \times 3 \mathrm{D}$	0×04
	$0 \times 3 \mathrm{E}$	$0 \times \mathrm{C9}$
Green/Y Coeff. 2	$0 \times 3 \mathrm{~F}$	0×09
	0×40	0×64
Green/Y Coeff. 3	0×41	0×01
	0×42	$0 \times \mathrm{D} 3$
Green/Y Coeff. Offset	0×43	0×00
	0×44	0×00
Blue/Cb Coeff. 1	0×45	$0 \times 1 \mathrm{D}$
	0×46	$0 \times 3 \mathrm{~F}$
Blue/Cb Coeff. 2	0×47	$0 \times 1 \mathrm{~A}$
	0×48	0×93
Blue/Cb Coeff. 3	0×49	0×08
	$0 \times 4 \mathrm{~A}$	$0 \times 2 \mathrm{D}$
Blue/Cb Coeff. Offset	$0 \times 4 \mathrm{~B}$	0×08
	$0 \times 4 \mathrm{C}$	0×00

