

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Register Map Reference Manual for the AD9545

INTRODUCTION

This document contains the complete register map and details for the AD9545, used in conjunction with the AD9545 data sheet.

The AD9545 has five differential outputs, and the user can reconfigure each differential output as two single-ended outputs.

The pin names for each differential output follows the naming convention OUTxyP/OUTxyN where x is 0 for DPLL Channel 0 and 1 for DPLL Channel 1. In this naming convention, y refers to the output number and can be 0, 1, or 2 for DPLL Channel 0, and either 0 or 1 for DPLL Channel 1.

Each output has a distribution divider that follows the naming convention Qxy for positive outputs and Qxyy for negative (or complimentary) outputs. Distribution Divider Qxy connects to Output Driver OUTxyP, and Distribution Divider Qxyy connects to OUTxyN. For example, Distribution Divider Q0AA connects to the output driver connected to the OUT0AN pin, and Distribution Divider Q1B connects to the output driver connected to the OUT1BP pin.

TABLE OF CONTENTS

Introduction 1
Revision History
Registers
Serial Port Registers—Register 0x0000 to Register 0x0023 5
Mx Pin Status Control Registers—Register 0x0100 to Register 0x010B7
Mx Pin Status and Control Function Registers—Register 0x0102 to Register 0x010812
IRQ Map Common Mask Registers—Register 0x010C to Register 0x011016
IRQ Map DPLL0 Mask Registers—Register 0x0111 to Register 0x011518
IRQ Map DPLL1 Mask Registers—Register 0x0116 to Register 0x011A20
System Clock (SYSCLK) Registers—Register 0x0200 to Register 0x020922
SYSCLK Compensation Registers—Register 0x0280 to Register 0x029C23
Reference General A Registers—Register 0x0300 to Register 0x0303
Reference General B Registers—Register 0x0304 to Register 0x030732
Reference Input A (REFA) Registers—Register 0x0400 to Register 0x041434
Reference Input AA (REFAA) Registers—Register 0x0420 to Register 0x0434
Reference Input B (REFB) Registers—Register 0x0440 to Register 0x0454
Reference Input BB (REFBB) Registers—Register 0x0460 to Register 0x047441
Source Profile 0 A Registers—Register 0x0800 to Register 0x081144
Loop Filter Coefficients 0 Registers—Register 0x0C00 to Register 0x0C0B
Loop Filter Coefficients 1 Registers—Register 0x0C0C to Register 0x0C17
DPLL Channel 0 Registers—Register 0x1000 to Register 0x102A
APLL Channel 0 Registers—Register 0x1080 to Register 0x108354
Distribution General 0 Registers—Register 0x10C0 to Register 0x10DC
Distribution Divider Q0A Registers—Register 0x1100 to Register 0x1108

DPLL Translation Profile 0.0 Registers—Register 0x1200 to Register 0x1217
DPLL Channel 1 Registers—Register 0x1400 to Register 0x142A70
APLL Channel 1 Registers—Register 0x1480 to Register 0x1483
Distribution General 1 Registers—Register 0x14C0 to Register 0x14DC
Distribution Divider 1 A Registers—Register 0x1500 to Register 0x1508
DPLL Translation Profile 1.0 Registers—Register 0x1600 to Register 0x1617
Operational Controls General Registers—Register 0x2000 to Register 0x2005
IRQ Map Common Clear Registers—Register 0x2006 to Register 0x200A
IRQ Map DPLL0 Clear Registers—Register 0x200B to Register 0x200F
Operational Control Channel 0 Registers—Register 0x2100 to Register 0x2107
Operational Control Channel 1 Registers—Register 0x2200 to Register 0x2207
Auxiliary NCO 0 Registers—Register 0x2800 to Register 0x281E
Auxiliary NCO 1 Registers—Register 0x2840 to Register 0x285E
Temperature Sensor Registers—Register 0x2900 to Register 0x2906119
TDC Auxiliary Registers—Register 0x2A00 to Register 0x2A16
EEPROM Registers—Register 0x2E00 to Register 0x2E1E 126
Status Readback Registers—Register 0x3000 to Register 0x300A128
IRQ Map Common Status Registers—Register 0x300B to Register 0x300F
IRQ Map DPLL0 Status Registers—Register 0x3010 to Register 0x3014134
IRQ Map DPLL1 Status Registers—Register 0x3015 to Register 0x3019136
Status Readback PLL0 Registers—Register 0x3100 to Register 0x310E
Status Readback PLL1 Registers—Register 0x3200 to Register 0x320E
Auxiliary TDC Read Registers—Register 0x3A00 to Register 0x3A3B

REVISION HISTORY

11/2018—Rev. A to Rev. B

Changes to Table 6	13
Changes to Table 7	16
Changes to Table 17	27
Changes to Table 80	
Changes to Table 89	
Changes to Table 91	

1/2018—Rev. 0 to Rev. A

Changed Serial Port Registers—Register 0x00 to Register 0x23
Section Heading to Serial Port Registers—Register 0x0000 to
Register 0x0023 Section Heading5
Changes to Table 1 and Table 25
Changed Mx Pin Status Control Registers-Register 0x100 to
Register 0x10B Section Heading to Mx Pin Status Control
Registers-Register 0x0100 to Register 0x010B Section Heading 7
Changes to Table 3 and Table 47
Changed Mx Pin Status Control Function Registers-Register
0x102 to Register 0x108 Section Heading to Mx Pin Status Control
Function Registers-Register 0x0102 to Register 0x0108 Section
Heading12
Changes to Table 5 and Table 612
Changes to Table 7
Changed IRQ Map Common Mask Registers—Register 0x10C
to Register 0x110 Section Heading to IRQ Map Common Mask
Registers—Register 0x010C to Register 0x0110 Section
Heading16
Changes to Table 8
Changes to Table 917
Changed IRQ Map DPLL0 Map Mask Registers—Register 0x111
to Register 0x115 Section Heading to IRQ Map DPLL0 Map
Mask Registers—Register 0x0111 to Register 0x0115 Section
Heading
Changes to Table 10
Changes to Table 1119
Changed IRQ Map DPLL1 Mask Registers—Register 0x116 to
Register 0x11A Section Heading to IRQ Map DPLL1 Mask
Registers-Register 0x0116 to Register 0x011A Section
Heading
Changes to Table 12 and Table 1320
Changed System Clock (SYSCLK) Registers-Register 0x200 to
0x209 Section Heading to System Clock (SYSCLK) Registers-
Register 0x0200 to 0x0209 Section Heading22
Changes to Table 14 and Table 15
Changed SYSCLK Compensation Registers-Register 0x280 to
Register 0x29C Section Heading to SYSCLK Compensation
Registers—Register 0x0280 to Register 0x029C Section
Heading
Changes to Table 16
Changes to Table 1725
Changed Reference General A Registers—Register 0x300 to
Register 0x303 Section Heading to Reference General A

Registers—Register 0x0300 to Register 0x0303 Section	•
Heading	
Changes to Table 18 and Table 19	.30
Changed Reference General B Registers—Register 0x304 to	
Register 0x307 Section Heading to Reference General B Register	
Register 0x0304 to Register 0x0307 Section Heading	
Changes to Table 20 and Table 21	
Changed Reference Input A (REFA) Registers-Register 0x40	
to Register 0x414 Section Heading to Reference Input A (REF	·A)
Registers—Register 0x0400 to Register 0x0414 Section	
Heading	
Changes to Table 22	
Changes to Table 23	
Changed Reference Input AA (REFAA) Registers-Register 0x42	
to Register 0x434 Section Heading to Reference Input AA (REFA	(A)
Registers—Register 0x0420 to Register 0x0434 Section	
Heading	
Changes to Table 24 and Table 25	
Changed Reference Input B (REFB)-Register 0x440 to Regis	
0x454 Section Heading to Reference Input B (REFB)— Regist	
0x0440 to Register 0x0454 Section Heading	
Changes to Table 26 and Table 27	.39
Changed Reference Input BB (REFBB)—Register 0x460 to	
Register 0x474 Section Heading to Reference Input BB (REFBB)	
Register 0x0460 to Register 0x0474 Section Heading	
Changes to Table 28	
Changes to Table 29	.42
Changed Source Profile 0 A Registers—Register 0x800 to	
Register 0x811 Section Heading to Source Profile 0 A Registers-	
Register 0x0800 to Register 0x0811 Section Heading	
Changes to Table 30, Table 31, Table 32, Table 33, Table 34, an	
Table 35	
Changes to Table 36, Table 37, and Table 38	
Changed Loop Filter Coefficients 0 Register—Register 0xC00	
Register 0xC0B Section Heading to Loop Filter Coefficients 0	1
Register—Register 0x0C00 to Register 0x0C0B	
Section Heading	
Changes to Table 39	
Changed Loop Filter Coefficients 1 Register—Register 0xC0C	
to Register 0xC17 Section Heading to Loop Filter Coefficients	s 1
Register—Register 0x0C0C to Register 0x0C17 Section	
Heading	
Changes to Table 40, Table 41, and Table 42	
Change to Table 43	
Moved APLL Channel 0 Registers-Register 0x1080 to Regist	
0x1083 Section	
Change to Table 63	
Change to Table 64	.72
Moved APLL Channel 1 Registers—Register 0x1480 to	-
Register 0x1483 Section	
Changes to Table 85 and Table 87	
Changes to Table 88	
Changes to Table 89	.98

Changed IRQ Map Common Read Registers-Register 0x300B	
to Register 0x300F Section Heading to IRQ Map Common	
Status Registers-Register 0x300B to Register 0x300F	3
Changes to Table 104 and Table 105133	3
Changed IRQ Map DPLL0 Read Registers—Register 0x3010	
Section Heading to Register 0x3014 to IRQ Map DPLL0 Status	
Registers—Register 0x3010 to Register 0x3014134	4
Change to Table 106 134	4

Change to Table 107 135
Changed IRQ Map DPLL1 Read Registers—Register 0x3015 to
Register 0x3019 Section Heading to IRQ Map DPLL1 Status
Registers-Register 0x3015 to Register 0x3019 136
Changes to Table 108 and Table 109136

6/2017—Revision 0: Initial Version

REGISTERS

SERIAL PORT REGISTERS—REGISTER 0x0000 TO REGISTER 0x0023

Table 1. Serial Port Registers Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0000	Configuration 0	Soft reset	LSB first (SPI only)	Address ascension (SPI only)	ision (SPI only)		Address ascension (SPI only)	LSB first (SPI only) Soft reset		0x00	0x00
0x0001	Configuration 1	Res	served	Read buffer Reserved register		Reset sans registers	Reserved		0x00	R/W	
0x000B	SPI version		SPI version								
0x000C	Vendor ID 0		Vendor ID [7:0]								R
0x000D	Vendor ID 1		Vendor ID [15:8]								R
0x000F	IO_UPDATE		Reserved Address loop IO_UPDATE IO_UPDATE								R/W
0x0010	Loop length					Addre	ss loop length			0x00	R/W
0x0020	Scratch Pad 0		User scratchpad [7:0]								R/W
0x0021	Scratch Pad 1		User scratchpad [15:8]								R/W
0x0022	Scratch Pad 2		User scratchpad [23:16]								R/W
0x0023	Scratch Pad 3					User scr	atchpad [31:24]			0x00	R/W

Table 2. Serial Port Registers Details

Addr Name		Bits	Bit Name	Settings	Description	Reset	Access
0x0000	Configuration 0	7	Soft reset		Soft reset. This bit must be set identically to the other soft reset bit in this register.	0x0	R/W
	6	LSB first (SPI only)		Serial peripheral interface (SPI) least significant bit (LSB) first. This bit must be set identically to the other LSB first (SPI only) bit in this register.	0x0	R/W	
				0	Most significant bit (MSB) first.		
				1	LSB first.		
		5	Address ascension (SPI		SPI address ascension. This bit must be set identically to the other address ascension bit in this register.	0x0	R/W
			only)	0	Address descension mode.		
				1	Address ascension mode.		
		4	SDO active (SPI only)		Enable SPI 4-wire mode. This bit must be set identically to the other serial data output (SDO) active bit in this register.	0x0	R/W
	0 3-wire SPI mode. 1 4-wire SPI mode (SDO pin active).	3-wire SPI mode.					
		4-wire SPI mode (SDO pin active).					
		3	SDO active (SPI only)		Enable SPI 4-wire mode. Enables SPI port SDO pin. This bit has no effect in I ² C mode.	0x0	R/W
				0	3-wire SPI mode.		
				1	4-wire SPI mode (SDO pin active).		
		2	Address ascension (SPI only)		SPI address ascension. This bit controls whether the register address is automatically incremented during a multibyte transfer. This bit has no effect in I ² C mode.	0x0	R/W
				0	Address descension mode. The address pointer is automatically decremented. For multibyte bit fields, the most significant byte is read first.		
				1	Address ascension mode. The address pointer is automatically incremented. For multibyte bit fields, the least significant byte is read first.		

Addr	Name	Bits	Bit Name	Settings	Description	Reset	Access
		1	LSB first (SPI only)		SPI LSB first. Bit order for SPI port. Setting this bit to 1 selects SPI LSB first mode, and setting it to 0 selects MSB first mode. This bit has no effect in I ² C mode.	0x0	R/W
				0	MSB first.		
				1	LSB First.		
		0	Soft reset		Soft reset. Invokes an electronically erasable programmable read- only memory (EEPROM) download or pin program ROM download if EEPROM is enabled.	0x0	R/W
0x0001	Configuration 1	[7:6]	Reserved		Reserved.	0x0	R
		5	Read buffer register		Read buffer register. For buffered registers, this bit controls whether the value read from the serial port is from the actual active registers or the buffered copy.	0x0	R/W
				0	Reads the register values that are currently active (default).		
				1	Reads buffered values that take effect on next the input/output update.		
		[4:3]	Reserved		Reserved.	0x0	R
		2	Reset sans registers		Reset sans registers. This autoclearing bit resets the device while maintaining the current settings.	0x0	R/W
		[1:0]	Reserved		Reserved.	0x0	R
0x000B	SPI version	[7:0]	SPI version		Version of Analog Devices, Inc., unified SPI protocol.	0x0	R
0x000C	Vendor ID 0	[7:0]	Vendor ID [7:0]		Analog Devices unified SPI vendor ID.	0x56	R
				0x0456	Analog Devices.		
				0x0000	Other vendor.		
0x000D	Vendor ID 1	[7:0]	Vendor ID [15:8]		Analog Devices unified SPI vendor ID.	0x4	R
				0x0456	Analog Devices.		
				0x0000	Other vendor.		
0x000F	IO_UPDATE	[7:2]	Reserved		Reserved.	0x0	R
		1	Address loop IO_UPDATE		Address loop input/output update. An input/output update is automatically issued each time the address field loops. This is useful when polling a range of registers and an input/output update must be issued after each cycle.	0x0	R/W
		0	IO_UPDATE		Input/output update. Setting this autoclearing bit to Logic 1 transfers values from the buffered to the active register space.	0x0	WC
					Unless a register is identified as a live register, an input/output update is required for the value written to that register to take effect.		
0x0010	Loop length	[7:0]	Address loop length		Address loop length. The number of consecutive addresses that are written or read in each cycle in an address loop.	0x0	R/W
0x0020	Scratch Pad 0	[7:0]	User scratchpad [7:0]		User scratchpad. This register has no effect on device operation. It is available for device debugging or register setting revision control.	0x0	R/W
0x0021	Scratch Pad 1	[7:0]	User scratchpad [15:8]		User scratchpad. This register has no effect on device operation. It is available for device debugging or register setting revision control.	0x0	R/W
0x0022	Scratch Pad 2	[7:0]	User scratchpad [23:16]		User scratchpad. This register has no effect on device operation. It is available for device debugging or register setting revision control.	0x0	R/W
0x0023	Scratch Pad 3	[7:0]	User scratchpad [31:24]		User scratchpad. This register has no effect on device operation. It is available for device debugging or register setting revision control.	0x0	R/W

Mx PIN STATUS CONTROL REGISTERS—REGISTER 0x0100 TO REGISTER 0x010B

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x0100	Mx pin mode	M3 drive	r/receiver	M2 driver/receiver		M1 driver/receiver		M0 driver/receiver		0x00	R/W	
0x0101	Mx pin mode	Rese	erved	M6 driver/receiver M5 d			r/receiver	eiver M4 driver/receiver		0x00	R/W	
0x0102	MO	M0 output enable		M0 control/status function								
0x0103	M1	M1 output enable		M1 control/status function 0								
0x0104	M2	M2 output enable		M2 control/status function 0								
0x0105	M3	M3 output enable		M3 control/status function								
0x0106	M4	M4 output enable		M4 control/status function								
0x0107	M5	M5 output enable		M5 control/status function								
0x0108	M6	M6 output enable		M6 control/status function								
0x0109	Pin drive strength	SPI config- uration	M6 config- uration	M5 config- uration	M4 config- uration	M3 config- uration	M2 config- uration	M1 config- uration	M0 config- uration	0x00	R/W	
0x010A	Watchdog timer		Watchdog timer (ms) [7:0]									
0x010B	Watchdog timer		Watchdog timer (ms) [15:8]								R/W	

Table 3. Mx Pin Status Control Register Summary

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0100	Mx pin mode	[7:6]	M3 driver		M3 driver mode. These settings allow the user to control the polarity of a status signal, as well as allow logical AND and OR functions by combining multiple Mx pins. The default mode is active high complementary metal-oxide semiconductor (CMOS).	0x0	R/W
				00	CMOS true (active high).		
		01 CMOS inverted (active low).	CMOS inverted (active low).				
			Open-drain Positive metal-oxide semiconductor (PMOS) (requires an external pull-down resistor).				
				11	Open-drain Negative metal-oxide semiconductor (NMOS) (requires an external pull-up resistor).		
		[7:6]	M3 receiver		M3 receiver mode. These settings allow the user to have an input function be the logical combination of the Mx pin inputs. The default mode is AND true.	0x0	R/W
				00	AND true mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be high for the assigned input function to be considered true.		
				01	AND inverted mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be low for the assigned input function to be considered true.		
				10	OR true mode. This mode allows two or more Mx pins to be combined so at least one must be high for the assigned control input to be considered true.		
				11	OR inverted mode. This mode allows two or more Mx pins to be combined so at least one must be low for the assigned control input to be considered true.		

Addr.	ldr. Name	Bits	Bit Name	Settings	Description	Reset	Access
		[5:4]	M2 driver		M2 driver mode. These settings allow the user to control the polarity of a status signal, as well as allow logical AND and OR functions by combining multiple Mx pins. The default mode is active high CMOS.	0x0	R/W
				00	CMOS true (active high).		
				01			
				10			
				10			
		[5:4]	M2 receiver		M2 receiver mode. These settings allow the user to have an	0x0	R/W
		[3.4]	M2 receiver		input function be the logical combination of the Mx pin inputs. The default mode is AND true.	0.00	
				00	AND true mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be high for the assigned input function to be considered true.		
				01	AND inverted mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be low for the assigned input function to be considered true.		
				10	OR true mode. This mode allows two or more Mx pins to be combined so at least one must be high for the assigned control input to be considered true.		
				11	OR inverted mode. This mode allows two or more Mx pins to be combined so at least one must be low for the assigned control input to be considered true.		
		[3:2]	M1 driver		M1 driver mode. These settings allow the user to control the polarity of a status signal, as well as allow logical AND and OR functions by combining multiple Mx pins. The default mode is active high CMOS.	0x0	R/W
				00	CMOS true (active high).		
				01	CMOS inverted (active low).		
				10	Open-drain PMOS (requires an external pull-down resistor).		
				11	Open-drain NMOS (requires an external pull-up resistor).		
		[3:2]	M1 receiver		M1 receiver mode. These settings allow the user to have an input function be the logical combination of the Mx pin inputs. The default mode is AND true.	0x0	R/W
				00	AND true mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be high for the assigned input function to be considered true.		
				01	AND inverted mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be low for the assigned input function to be considered true.		
				10	OR true mode. This mode allows two or more Mx pins to be combined so at least one must be high for the assigned control input to be considered true.		
				11	OR inverted mode. This mode allows two or more Mx pins to be combined so at least one must be low for the assigned control input to be considered true.		
		[1:0]	M0 driver		M0 driver mode. These settings allow the user to control the polarity of a status signal, as well as allow logical AND and OR functions by combining multiple Mx pins. The default mode is active high CMOS.	0x0	R/W
				00	CMOS true (active high).		
				01	CMOS inverted (active low).		
				10	Open-drain PMOS (requires an external pull-down resistor).		
				11	Open-drain NMOS (requires an external pull-up resistor).		

Bits

Addr.

Name

Bit Name

Settings

Description

[1:0] M0 receiver mode. These settings allow the user to have an 0x0 R/W M0 receiver input function be the logical combination of the Mx pin inputs. The default mode is AND true. 00 AND true mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be high for the assigned input function to be considered true. AND inverted mode. This mode allows two or more Mx pins to 01 be combined so all pins assigned a given function must be low for the assigned input function to be considered true. OR true mode. This mode allows two or more Mx pins to be 10 combined so at least one must be high for the assigned control input to be considered true. 11 OR inverted mode. This mode allows two or more Mx pins to be combined so t at least one must be low for the assigned control input to be considered true. 0x0101 Mx pin [7:6] Reserved Reserved. 0x0 R mode [5:4] M6 driver M6 driver mode. These settings allow the user to control the 0x0 R/W polarity of a status signal, as well as allow logical AND and OR functions by combining multiple Mx pins. The default mode is active high CMOS. CMOS true (active high). 00 01 CMOS inverted (active low). 10 Open-drain PMOS (requires an external pull-down resistor). 11 Open-drain NMOS (requires an external pull-up resistor). M6 receiver mode. These settings allow the user to have an R/W [5:4] M6 receiver 0x0 input function be the logical combination of the Mx pin inputs. The default mode is AND true. AND true mode. This mode allows two or more Mx pins to be 00 combined so all pins assigned a given function must be high for the assigned input function to be considered true. 01 AND inverted mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be low for the assigned input function to be considered true. 10 OR true mode. This mode allows two or more Mx pins to be combined so at least one must be high for the assigned control input to be considered true. OR inverted mode. This mode allows two or more Mx pins to 11 be combined so at least one must be low for the assigned control input to be considered true. [3:2] M5 driver M5 driver mode. These settings allow the user to control the 0x0 R/W polarity of a status signal, as well as allow logical AND and OR functions by combining multiple Mx pins. The default mode is active high CMOS. 00 CMOS true (active high). 01 CMOS inverted (active low). 10 Open-drain PMOS (requires an external pull-down resistor). Open-drain NMOS (requires an external pull-up resistor). 11 [3:2] M5 receiver M5 receiver mode. These settings allow the user to have an 0x0 R/W input function be the logical combination of the Mx pin inputs. The default mode is AND true. 00 AND true mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be high for the assigned input function to be considered true. 01 AND inverted mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be low for the assigned input function to be considered true. 10 OR true mode. This mode allows two or more Mx pins to be combined so at least one must be high for the assigned control input to be considered true.

UG-1146

Access

Reset

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
				11	OR inverted mode. This mode allows two or more Mx pins to be combined so at least one must be low for the assigned control input to be considered true.		
		[1:0]	M4 driver		M4 driver mode. These settings allow the user to control the polarity of a status signal, as well as allow logical AND and OR functions by combining multiple Mx pins. The default mode is active high CMOS.	0x0	R/W
				00	CMOS true (active high).		
				01	CMOS inverted (active low).		
				10	Open-drain PMOS (requires an external pull-down resistor).		
				11	Open-drain NMOS (requires an external pull-up resistor).		
		[1:0]	M4 receiver		M4 receiver mode. These settings allow the user to have an input function be the logical combination of the Mx pin inputs. The default mode is AND true.	0x0	R/W
					AND true mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be high for the assigned input function to be considered true.		
					AND inverted mode. This mode allows two or more Mx pins to be combined so all pins assigned a given function must be low for the assigned input function to be considered true.		
				10	OR true mode. This mode allows two or more Mx pins to be combined so at least one must be high for the assigned control input to be considered true.		
				11	OR inverted mode. This mode allows two or more Mx pins to be combined so at least one must be low for the assigned control input to be considered true.		
0x0102	MO	7	M0 output enable		M0 output/input enable. The M0 pin is a status signal (output) if this bit is set to Logic 1, and is a control (input) if set to Logic 0.	0x0	R/W
		[6:0]	M0 control function		M0 pin function input. These bits determine the control function of the M0 pin. See Table 6 for details about the available control inputs. Default is 0x00 = high impedance control pin, no function assigned.	0x0	R/W
)x0103	M1	7	M1 output enable		M1 output/input enable. The M1 pin is a status signal (output) if this bit is set to Logic 1, and is a control (input) if set to Logic 0.	0x0	R/W
		[6:0]	M1 control function		M1 pin function input. These bits determine the control function of the M1 pin. See Table 6 for details about the available control inputs. Default is 0x00 = high impedance control pin, no function assigned.	0x0	R/W
0x0104	M2	7	M2 output enable		M2 output/input enable. The M2 pin is a status signal (output) if this bit is set to Logic 1, and is a control (input) if set to Logic 0.	0x0	R/W
		[6:0]	M2 control function		M2 pin function input. These bits determine the control function of the M2 pin. See Table 6 for details about the available control inputs. Default is 0x00 = high impedance control pin, no function assigned.	0x0	R/W
)x0105	M3	7	M3 output enable		M3 output/input enable. The M3 pin is a status signal (output) if this bit is set to Logic 1, and is a control (input) if set to Logic 0.	0x0	R/W
		[6:0]	M3 control function		M3 pin function input. These bits determine the control function of the M3 pin. See Table 6 for details about the available control inputs. Default is 0x00 = high impedance control pin, no function assigned.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0106	M4	7	M4 output enable		M4 output/input enable. The M4 pin is a status signal (output) if this bit is set to Logic 1, and is a control (input) if	0x0	R/W
		[6:0]	M4 control function		set to Logic 0. M4 pin function input. These bits determine the control function of the M4 pin. See Table 6 for details about the available control inputs. Default is 0x00 = high impedance control pin, no function assigned.	0x0	R/W
0x0107	M5	7	M5 output enable		M5 output/input enable. The M5 pin is a status signal (output) if this bit is set to Logic 1, and is a control (input) if set to Logic 0.	0x0	R/W
		[6:0]	M5 control function		M5 pin function input. These bits determine the control function of the M5 pin. See Table 6 for details about the available control inputs. Default is 0x00 = high impedance control pin, no function assigned.	0x0	R/W
0x0108	M6	7	M6 output enable		M6 output/input enable. The M6 pin is a status signal (output) if this bit is set to Logic 1, and is a control (input) if set to Logic 0.	0x0	R/W
		[6:0]	M6 control function		M6 pin function input. These bits determine the control function of the M6 pin. See Table 6 for details about the available control inputs. Default is 0x00 = high impedance control pin, no function assigned.	0x0	R/W
0x0109	Pin drive strength	7	SPI configuration	0	SPI drive strength.	0x0	R/W
		6	M6 configuration	0	M6 drive.	0x0	R/W
		5	M5 configuration	0	M5 drive.	0x0	R/W
		4	M4 configuration		M4 drive.	0x0	R/W
		3	M3 configuration	0	M3 drive.	0x0	R/W
		2	M2 configuration	0	M2 drive. High drive strength; 6 mA (nominal) drive strength. Low drive strength; 3 mA (nominal) drive strength.	0x0	R/W
		1	M1 configuration	0	M1 drive. High drive strength; 6 mA (nominal) drive strength. Low drive strength; 3 mA (nominal) drive strength.	0x0	R/W
		0	M0 configuration	0	M0 drive. High drive strength; 6 mA (nominal) drive strength. Low drive strength; 3 mA (nominal) drive strength.	0x0	R/W
0x010A	Watchdog timer	[7:0]	Watchdog timer (ms) [7:0]		Watchdog timer. The watchdog timer stops when this register is written and restarts on the next input/output update. Writing all zeros to this register disables the		R/W
0x010B	Watchdog timer	function. The units are in milliseconds. atchdog [7:0] Watchdog Watchdog timer. The watchdog timer stops when this				0x0	R/W

Mx PIN STATUS AND CONTROL FUNCTION REGISTERS—REGISTER 0x0102 TO REGISTER 0x0108

Table 5. N	Ix Pin Con	trol Fun	ction Regi	ster Sumn	nary							
Register	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0102 to 0x0108	Mx	[7:0]	Mx output enable			Mx sta	atus/control	function			0x00	R/W

Table 6. Mx Pin Control Function Register Details

Address	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0102 to	Mx	7	Mx output		Mx output/input. The M0 pin is a status signal (output) if this bit	0x0	R/W
0x0108			enable		is set to Logic 1, and is a control (input) if set to Logic 0.		
		[6:0]	Mx control function		Mx pin function input. These bits determine the control function of the Mx pin. Default is 0x00 = high impedance control pin, no	0x0	R/W
					function assigned.		
					No function. No destination proxy.		
					Input/output update. Destination proxy is Register 0x000F, Bit 0.		
					Full power-down. Destination proxy is Register 0x2000, Bit 0.		
					Clear watchdog timer. Destination proxy is Register 0x2005, Bit 7.		
					Sync all distribution dividers. Destination proxy is Register 0x2000, Bit 3.		
				0x10	Clear all interrupt requests (IRQs). Destination proxy is Register 0x2005, Bit 0.		
				0x11	Clear common IRQs. Destination proxy is Register 0x2005, Bit 1.		
				0x12	Clear PLL0 IRQs. Destination proxy is Register 0x2005, Bit 2.		
				0x13	Clear PLL1 IRQs. Destination proxy is Register 0x2005, Bit 3.		
					Force REFA invalid. Destination proxy is Register 0x2003, Bit 0.		
				0x21	Force REFAA invalid. Destination proxy is Register 0x2003, Bit 1.		
				0x22	Force REFB invalid. Destination proxy is Register 0x2003, Bit 2.		
				0x23	Force REFBB invalid. Destination proxy is Register 0x2003, Bit 3.		
				0x28	Force REFA validation timeout (bypass validation timer). Destination proxy is Register 0x2002, Bit 0.		
				0x29	Force REFAA validation timeout (bypass validation timer). Destination proxy is Register 0x2002, Bit 1.		
				0x2A	Force REFB validation timeout (bypass validation timer). Destination proxy is Register 0x2002, Bit 2.		
				0x2B	Force REFBB validation timeout (bypass validation timer). Destination proxy is Register 0x2002, Bit 3.		
				0x30	The Mx pin signal is routed to Auxiliary TDC 0. No destination proxy.		
				0x31	The Mx pin signal is routed to Auxiliary TDC 1. No destination proxy.		
				0x32	Each rising edge of the Mx pin signal is alternately routed to Auxiliary TDC 0 and Auxiliary TDC 1. No destination proxy.		
				0x40	Power-down Channel 0. Destination proxy is Register 0x2100, Bit 0.		
				0x41	DPLL0 force freerun mode. Destination proxy is Register 0x2105, Bit 0.		
				0x42	DPLL0 force holdover mode. Destination proxy is Register 0x2105, Bit 1.		
				0x43	DPLL0 clear tuning word history. Destination proxy is Register 0x2107, Bit 1.		
				0x44	DPLL0 synchronize dividers. Destination proxy is Register 0x2101, Bit 3.		
				0x45	DPLL0 translation profile select, Bit 0. Destination proxy is Register 0x2105, Bit 4.		
					DPLL0 translation profile select, Bit 1. Destination proxy is Register 0x2105, Bit 5.		
					DPLL0 translation profile select, Bit 2. Destination proxy is Register 0x2105, Bit 6.		
				0x50	Mute OUT0A. Destination proxy is Register 0x2102, Bit 2.		

Address	Name	Bits	Bit Name	Settings	Description	Reset	Access
				0x51	Mute OUT0AA. Destination proxy is Register 0x2102, Bit 3.		
				0x52	Reset OUT0A/OUT0AA. Destination proxy is Register 0x2102, Bit 5.		
				0x53	Mute OUT0B. Destination proxy is Register 0x2103, Bit 2.		
				0x54	Mute OUT0BB. Destination proxy is Register 0x2103, Bit 3.		
				0x55	Reset OUT0B/OUT0BB. Destination proxy is Register 0x2103, Bit 5.		
				0x56	Mute OUT0C. Destination proxy is Register 0x2104, Bit 2.		
				0x57	Mute OUT0CC. Destination proxy is Register 0x2104, Bit 3.		
				0x58	Reset OUT0C/OUT0CC. Destination proxy is Register 0x2104, Bit 5.		
				0x59	Mute all Channel 0 drivers. Destination proxy is Register 0x2101, Bit 1.		
				0x5A	Reset all Channel 0 drivers. Destination proxy is Register 0x2101, Bit 2.		
				0x5B	Channel 0 JESD204B N-shot request. Destination proxy is Register 0x2101, Bit 0.		
				0x60	Power-down Channel 1. Destination proxy is Register 0x2200, Bit 0.		
				0x61	DPLL1 force freerun mode. Destination proxy is Register 0x2205, Bit 0.		
				0x62	DPLL1 force holdover mode. Destination proxy is Register 0x2205, Bit 1.		
				0x63	DPLL1 clear tuning word history. Destination proxy is Register 0x2207, Bit 1.		
				0x64	DPLL1 synchronize dividers. Destination proxy is Register 0x2201, Bit 3.		
				0x65	DPLL1 translation profile select, Bit 0. Destination proxy is Register 0x2205, Bit 4.		
				0x66	DPLL1 translation profile select, Bit 1. Destination proxy is Register 0x2205, Bit 5.		
				0x67	DPLL1 translation profile select, Bit 2. Destination proxy is Register 0x2205, Bit 6.		
				0x70	Mute OUT1A. Destination proxy is Register 0x2202, Bit 2.		
				0x71	Mute OUT1AA. Destination proxy is Register 0x2202, Bit 3.		
				0x72	Reset OUT1A/OUT1AA. Destination proxy is Register 0x2202, Bit 5.		
					Mute OUT1B. Destination proxy is Register 0x2203, Bit 2.		
					Mute OUT1BB. Destination proxy is Register 0x2203, Bit 3.		
				0x75	Reset OUT1B/OUT1BB. Destination proxy is Register 0x2203, Bit 5.		
				0x76	Mute all Channel 1 drivers. Destination proxy is Register 0x2201, Bit 1.		
				0x77	Reset all Channel 1 drivers. Destination proxy is Register 0x2201, Bit 2.		
				0x78	Channel 1 JESD204B N-shot request. Destination proxy is Register 0x2201, Bit 0.		

Table 7. Mx Pin Status Register Details

Address	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0102 to 0x0108	Mx	7	Mx output enable		Mx output. The Mx pin is a status signal (output) if this bit is set to Logic 1, and is a control (input) if set to Logic 0.	0x0	R/W
		[6:0]	Mx status function		Mx pin status output. These bits determine the status function of the Mx pins. Default is 0x00 = high impedance control pin, no function assigned.	0x0	R/W
				0x0	Static Logic 0. No destination proxy.		
				0x1	Static Logic 1. No destination proxy.		
				0x2	System clock divided by 32. No destination proxy.		
				0x3	Watchdog timer output. The duration of this strobe equals		
					(32/(one system clock period)) when timer expires. No		
					destination proxy.		

Address	Name	Bits	Bit Name	Settings	•	Reset	Acces
				0x4	System clock phase-locked loop (PLL) calibration in progress. Destination proxy is Register 0x3001, Bit 2.		
				0x5	System clock PLL lock detect. Destination proxy is Register 0x3001, Bit 0.		
				0x6	System clock PLL stable. Destination proxy is Register 0x3001, Bit 1.		
				0x7	All PLLs locked. Destination proxy is logical AND of Register 0x3001, Bits [5 is4] and Bit 1.		
				0x8	Channel 0 PLLs locked. Destination proxy is Register 0x3001, Bit 4.		
				0x9	Channel 1 PLLs locked. Destination proxy is Register 0x3001, Bit 5.		
				0xA	EEPROM upload (write to EEPROM) in progress. Destination proxy is Register 0x3000, Bit 0.		
				0xB	EEPROM download (read from EEPROM) in progress. Destination proxy is Register 0x3000, Bit 1.		
				0xC	EEPROM general fault detected. Destination proxy is Register 0x3000, Bit 2.		
					Temperature sensor limit alarm. Destination proxy is Register 0x3002, Bit 0.		
				0x10	All IRQs. (IRQ common) OR (IRQ PLL0) OR (IRQ PLL1). No destination proxy.		
				0x11	Common IRQ. This activates general IRQs not related to one channel or the other (for example, EEPROM fault or temperature sensor alarm). No destination proxy.		
				0x12	Channel 0 IRQ. No destination proxy.		
				0x13	Channel 1 IRQ. No destination proxy.		
				0x14	REFA embedded clock to selected Mx pin. No destination proxy.		
				0x16	REFAA embedded clock to selected Mx pin. No destination		
					proxy.		
					REFB embedded clock to selected Mx pin. No destination proxy. REFBB embedded clock to selected Mx pin. No destination		
				0x1C	proxy. REFA R divider resynchronized. Destination proxy is		
				0x1D	Register 0x3000D, Bit 3 (as IRQ). REFAA R divider resynchronized. Destination proxy is Register 0x3000D, Bit 7 (as IRQ).		
				0x1E	REFB R divider resynchronized. Destination proxy is Register 0x3000E, Bit 3 (as IRQ).		
				0x1F	REFBB R divider resynchronized. Destination proxy is Register 0x3000E, Bit 7 (as IRQ).		
				0x20	REFA faulted. Destination proxy is Register 0x3005, Bit 3.		
				0x21	REFAA faulted. Destination proxy is Register 0x3006, Bit 3.		
				0x22	REFB faulted. Destination proxy is Register 0x3007, Bit 3.		
				0x23	REFBB faulted. Destination proxy is Register 0x3008, Bit 3.		
				0x24	REFA valid. Destination proxy is Register 0x3005, Bit 4.		
				0x25	REFAA valid. Destination proxy is Register 0x3006, Bit 4.		
				0x26	REFB valid. Destination proxy is Register 0x3007, Bit 4.		
				0x27	REFBB valid. Destination proxy is Register 0x3008, Bit 4.		
				0x28	REFA active. No destination proxy.		
					REFAA active. No destination proxy.		
					REFB active. No destination proxy.		
					REFBB active. No destination proxy.		
				0x2C			
				0x2D			
				0x2E			

Address	Name	Bits	Bit Name	Settings	Description	Reset	Access
				0x2F	Auxiliary TDC 1 active. No destination proxy.		
				0x30	DPLL0 phase locked. Destination proxy is Register 0x3100, Bit 1.		
				0x31	DPLL0 frequency locked. Destination proxy is Register 0x3100, Bit 2.		
				0x32	APLL0 locked. Destination proxy is Register 0x3100, Bit 3.		
				0x33	APLL0 calibration in progress. Destination proxy is Register 0x3100, Bit 4.		
				0x34	-		
				0x35			
				0x36	DPLL0 in holdover mode. Destination proxy is Register 0x3101, Bit 1.		
				0x37	DPLL0 switching reference inputs. Destination proxy is Register 0x3101, Bit 2.		
				0x38	DPLL0 holdover history available. Destination proxy is Register 0x3102, Bit 0.		
				0x39	DPLL0 holdover history updated. Destination proxy is Register 0x3011, Bit 2.		
				0x3A	DPLL0 frequency clamp is active. Destination proxy is Register 0x3102, Bit 1.		
				0x3B	DPLL0 phase slew limiter is active. Destination proxy is Register 0x3102, Bit 2.		
					Channel 0 output distribution sync event. Destination proxy is Register 0x3014, Bit 4 (as IRQ).		
				0x3E	DPLL0 phase step detected. Destination proxy is Register 0x3011, Bit 0 (as IRQ).		
				0x3F	DPLL0 fast acquisition active. Destination proxy is Register 0x3102, Bit 4.		
					DPLL0 fast acquisition complete. Destination proxy is Register 0x3102, Bit 5.		
				0x41	DPLL0 N-divider resynchronized. Destination proxy is Register 0x3012, Bit 4 (as IRQ).		
				0x42	Channel 0 distribution phase slew enabled. Destination proxy is Register 0x3012, Bit 4 (as IRQ).		
				0x43	Channel 0 distribution configuration error. Destination proxy is Register 0x3012, Bit 4 (as IRQ).		
				0x50	DPLL1 phase locked. Destination proxy is Register 0x3200, Bit 1.		
				0x51	DPLL1 frequency locked. Destination proxy is Register 0x3200, Bit 2.		
				0x52	APLL1 locked. Destination proxy is Register 0x3200, Bit 3.		
				0x53	APLL1 calibration in progress. Destination proxy is Register 0x3200, Bit 4.		
				0x54	DPLL1 actively tracking a reference input. No destination proxy.		
				0x55	DPLL1 in freerun mode. Destination proxy is Register 0x3201, Bit 0.		
				0x56	DPLL1 in holdover mode. Destination proxy is Register 0x3201, Bit 1.		
				0x57	DPLL1 switching reference inputs. Destination proxy is Register 0x3201, Bit 2.		
				0x58	DPLL1 holdover history available. Destination proxy is Register 0x3202, Bit 0.		
				0x59	DPLL1 holdover history updated. Destination proxy is Register 0x3016, Bit 2.		
				0x5A	DPLL1 frequency clamp is active. Destination proxy is Register 0x3202, Bit 1.		
				0x5B	DPLL1 phase slew limiter is active. Destination proxy is Register 0x3202, Bit 2.		

UG-1146

AD9545 Register Map Reference Manual

Address	Name	Bits	Bit Name	Settings	Description	Reset	Access
				0x5C	Channel 1 output distribution sync event. Destination proxy is Register 0x3019, Bit 4 (as IRQ).		
				0x5E	DPLL1 phase step detected. Destination proxy is Register 0x3016, Bit 0 (as IRQ).		
				0x5F	DPLL1 fast acquisition active. Destination proxy is Register 0x3202, Bit 4.		
				0x60	DPLL1 fast acquisition complete. Destination proxy is Register 0x3202, Bit 5.		
				0x61	DPLL1 N-divider resynchronized. Destination proxy is Register 0x3017, Bit 4 (as IRQ).		
				0x62	Channel 1 distribution phase slew enabled. Destination proxy is Register 0x3012, Bit 4 (as IRQ).		
				0x63	Channel 1 distribution configuration error. Destination proxy is Register 0x3012, Bit 4 (as IRQ).		
				0x70	Auxiliary NCO 0 output to Mx pin (fundamental mode). No destination proxy.		
				0x71	Auxiliary NCO 0 output to Mx pin (tagged mode). No destination proxy.		
				0x72	Auxiliary NCO 1 output to Mx pin (fundamental mode). No destination proxy.		
				0x73	Auxiliary NCO 1 output to Mx pin (tagged mode). No destination proxy.		
				0x74			
				0x75	Auxiliary DPLL reference fault. Destination proxy is Register 0x300C, Bit 2 (as IRQ).		
				0x78	Timestamp 0 time code available. Destination proxy is Register 0x300F, Bit 2 (as IRQ).		
				0x79	Timestamp 1 time code available. Destination proxy is Register 0x300F, Bit 3 (as IRQ).		
				0x7A	-		

IRQ MAP COMMON MASK REGISTERS—REGISTER 0x010C TO REGISTER 0x0110

Table 8. IRQ Map Common Mask Registers Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x010C	System clock (SYSCLK)	SYSCLK unlocked	SYSCLK stabilized	SYSCLK locked	SYSCLK calibration deactivated	SYSCLK calibration activated	Watchdog timeout occurred	EEPROM faulted	EEPROM completed	0x00	R/W
0x010D	Auxiliary DPLL	Rese	erved	Skew limit exceeded	Temperature warning occurred	Auxiliary DPLL unfaulted	Auxiliary DPLL faulted	Auxiliary DPLL unlocked	Auxiliary DPLL locked	0x00	R/W
0x010E	REFA	REFAA R divider resynced	REFAA validated	REFAA unfaulted	REFAA faulted	REFA R divider resynced	REFA validated	REFA unfaulted	REFA faulted	0x00	R/W
0x010F	REFB	REFBB R divider resynced	REFBB validated	REFBB unfaulted	REFBB faulted	REFB R divider resynced	REFB validated	REFB unfaulted	REFB faulted	0x00	R/W
0x0110	Timestamp		Reserved		Skew update	Timestamp 1 event	Timestamp 0 event	Auxiliary NCO 1 event	Auxiliary NCO 0 event	0x00	R/W

Address	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x010C	SYSCLK	7	SYSCLK unlocked		System clock unlocked. Set this bit to Logic 1 to enable the SYSCLK unlocked IRQ. This IRQ alerts the user when a system clock PLL unlock event occurs.	0x0	R/W
		6	SYSCLK stabilized		System clock stabilized. Set this bit to Logic 1 to enable the SYSCLK stable IRQ. This IRQ alerts the user that the system clock PLL is stable.	0x0	R/W
		5	SYSCLK locked		System clock locked. Set this bit to Logic 1 to enable the SYSCLK locked IRQ. This IRQ alerts the user when a system clock PLL unlock event occurs.	0x0	R/W
		4	SYSCLK calibration inactivated		System clock calibration inactivated. Set this bit to Logic 1 to enable the SYSCLK calibration inactive IRQ. This IRQ alerts the user when the system clock calibration is either not running or completes.	0x0	R/W
		3	SYSCLK calibration activated		System clock calibration activated. Set this bit to Logic 1 to enable the SYSCLK calibration started IRQ. This IRQ alerts the user that the system clock calibration is in progress.	0x0	R/W
		2	Watchdog timeout occurred		Watchdog timeout occurred. Set this bit to Logic 1 to enable the watchdog timer timeout IRQ.	0x0	R/W
		1 EEPROM faulted EEPROM fault. Set this bit to Logic 1 to enable the EEPROM fault IRQ. 0					R/W
		0	EEPROM completed		EEPROM operation complete. Set this bit to Logic 1 to enable the EEPROM operation complete IRQ.	0x0	R/W
0x010D	Auxiliary	[7:6]	Reserved		Reserved.	0x0	R
	DPLL	5	Skew limit exceeded		Skew limit exceeded. Set this bit to Logic 1 to enable the reference input skew measurement limit exceeded IRQ.	0x0	R/W
		4	Temperature warning occurred		Temperature range warning occurred. Set to Logic 1 to enable the temperature warning IRQ. This IRQ alerts the user when the temperature sensor is out of range. This IRQ activates if enabled and the temperature limits are configured before the system clock locks.	0x0	R/W
		3	Auxiliary DPLL unfaulted		Closed-loop SYSCLK compensation DPLL unfaulted. Set this bit to Logic 1 to enable the auxiliary DPLL unfault IRQ.	0x0	R/W
		2	Auxiliary DPLL faulted		Closed-loop SYSCLK compensation DPLL faulted. Set this bit to Logic 1 to enable the auxiliary DPLL fault IRQ.	0x0	R/W
		1	Auxiliary DPLL unlocked		Closed-loop SYSCLK compensation DPLL unlocked. Set this bit to Logic 1 to enable the auxiliary DPLL unlock IRQ.	0x0	R/W
		0	Auxiliary DPLL locked		Closed-loop SYSCLK compensation DPLL locked. Set this bit to Logic 1 to enable the auxiliary DPLL lock IRQ.	0x0	R/W
0x010E	REFA	7	REFAA R divider resynced		REFAA R divider resynchronized. Set this bit to Logic 1 to enable the REFAA R divider resynced IRQ. This IRQ alerts the user of a resynchronization between a reference input demodulated edge and a DPLL feedback edge.	0x0	R/W
		6	REFAA validated		REFAA validated. Set this bit to Logic 1 to enable the REFAA valid IRQ.	0x0	R/W
		5	REFAA unfaulted		REFAA unfaulted. Set this bit to Logic 1 to enable the REFAA unfaulted IRQ.	0x0	R/W
		4	REFAA faulted		REFAA faulted. Set this bit to Logic 1 to enable the REFAA faulted IRQ.	0x0	R/W
		3	REFA R divider resynced		REFA R divider resynchronized. Set this bit to Logic 1 to enable the REFA R divider resynced IRQ. This IRQ alerts the user of a resynchronization between a reference input demodulated edge and a DPLL feedback edge.	0x0	R/W
		2	REFA validated		REFA validated. Set this bit to Logic 1 to enable the REFA valid IRQ.	0x0	R/W
		1	REFA unfaulted		REFA unfaulted. Set this bit to Logic 1 to enable the REFA unfaulted IRQ.	0x0	R/W
		0	REFA faulted		REFA faulted. Set to Logic 1 to enable the REFA faulted IRQ	0x0	R/W

Table 9. IRQ Map Common Mask Registers Details

AD9545 Register Map Reference Manual

Address	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x010F	REFB	7	REFBB R divider resynced		REFBB R divider resynchronized. Set this bit to Logic 1 to enable the REFBB R divider resynced IRQ. This IRQ alerts the user of a resynchronization between a reference input demodulated edge and a DPLL feedback edge.	0x0	R/W
		6	REFBB validated		REFBB validated. Set this bit to Logic 1 to enable the REFBB valid IRQ.	0x0	R/W
		5	REFBB unfaulted		REFBB unfaulted. Set this bit to Logic 1 to enable the REFBB unfaulted IRQ.	0x0	R/W
		4	REFBB faulted		REFBB faulted. Set this bit to Logic 1 to enable the REFBB faulted IRQ.	0x0	R/W
		3	REFB R divider resynced		REFB R divider resynchronized. Set this bit to Logic 1 to enable the REFB R divider resynced IRQ. This IRQ alerts the user of a resynchronization between a reference input demodulated edge and a DPLL feedback edge.	0x0	R/W
		2	REFB validated		REFB validated. Set this bit to Logic 1 to enable the REFB valid IRQ.	0x0	R/W
		1	REFB unfaulted		REFB unfaulted. Set this bit to Logic 1 to enable the REFB unfaulted IRQ.	0x0	R/W
		0	REFB faulted		REFB faulted. Set this bit to Logic 1 to enable the REFB faulted IRQ.	0x0	R/W
0x0110	Timestamp	[7:5]	Reserved		Reserved.	0x0	R
		4	Skew updated		Skew measurement updated. Set this bit to Logic 1 to enable the reference input skew measurement updated IRQ.	0x0	R/W
		3	Timestamp 1 event		Timestamp 1 time code available. Set this bit to Logic 1 to enable the Timestamp 1 event IRQ. This IRQ can be configured to activate only when tagged NCO 1 events are generated.	0x0	R/W
		2	Timestamp 0 event		Timestamp 0 time code available. Set this bit to Logic 1 to enable the Timestamp 0 event IRQ. This IRQ can be configured to activate only when tagged NCO 0 events are generated.	0x0	R/W
		1	Auxiliary NCO 1 event		Auxiliary NCO 1 event. Set this bit to Logic 1 to enable the auxiliary NCO 1 event IRQ. This IRQ activates at the interval set by the auxiliary NCO 1 frequency, regardless of the tag ratio.	0x0	R/W
		0	Auxiliary NCO 0 event		Auxiliary NCO 0 event. Set this bit to Logic 1 to enable the auxiliary NCO 0 event IRQ. This IRQ activates at the interval set by the auxiliary NCO 0 frequency regardless, of the tag ratio.	0x0	R/W

IRQ MAP DPLL0 MASK REGISTERS—REGISTER 0x0111 TO REGISTER 0x0115

Table 10. IRQ Map DPLL0 Mask Registers Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0111	Lock	DPLL0 frequency clamp deactivated	DPLL0 frequency clamp activated	DPLL0 phase slew limiter deactivated	DPLL0 phase slew limiter activated	DPLL0 frequency unlocked	DPLL0 frequency locked	DPLL0 phase unlocked	DPLL0 phase locked	0x00	R/W
0x0112	State	DPLL0 reference switched	DPLL0 freerun entered	DPLL0 holdover entered	DPLL0 hitless entered	DPLL0 hitless exited	DPLL0 history updated	Reserved	DPLL0 phase step detected	0x00	R/W
0x0113	Fast acquisition		Reserved		DPLL0 N- divider resynced	DPLL0 fast acquisition completed	DPLL0 fast acquisition started	Rese	rved	0x00	R/W
0x0114	Active profile	Reserved		DPLL0 Profile 5 activated	DPLL0 Profile 4 activated	DPLL0 Profile 3 activated	DPLL0 Profile 2 activated	DPLL0 Profile 1 activated	DPLL0 Profile 0 activated	0x00	R/W
0x0115	APLL		Reserved		DPLL0 distribution synced	APLL0 unlocked	APLL0 locked	APLL0 calibration completed	APLL0 calibration started	0x00	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0111	Lock	7	DPLL0 frequency clamp deactivated		Frequency clamp deactivated. Set this bit to Logic 1 to enable IRQ for DPLL0 frequency clamp inactive.	0x0	R/W
	111 Lock	6	DPLL0 frequency clamp activated		Frequency clamp activated. Set this bit to Logic 1 to enable IRQ for DPLL0 frequency clamp active.	0x0	R/W
		5	DPLL0 phase slew limiter deactivated		Phase slew limiter deactivated. Set this bit to Logic 1 to enable IRQ for DPLL0 phase slew limiter deactivated.	0x0	R/W
		4	DPLL0 phase slew limiter activated		Phase slew limiter activated. Set this bit to Logic 1 to enable IRQ for DPLL0 phase slew limiter activated.	0x0	R/W
		3	DPLL0 frequency unlocked		Frequency unlocked. Set this bit to Logic 1 to enable IRQ for DPLL0 frequency unlock detect (lock to unlock transition).	0x0	R/W
		2	DPLL0 frequency locked		Frequency locked. Set this bit to Logic 1 to enable IRQ for DPLL0 frequency lock detect (unlock to lock transition).	0x0	R/W
		1	DPLL0 phase unlocked		Phase unlocked. Set this bit to Logic 1 to enable IRQ for DPLL0 phase unlock detect (lock to unlock transition).	0x0	R/W
		0	DPLL0 phase locked		Phase locked. Set this bit to Logic 1 to enable IRQ for DPLL0 phase lock detect (unlock to lock transition).	0x0	R/W
0x0112	State	7	DPLL0 reference switched		Reference switched. Set this bit to Logic 1 to enable IRQ for DPLL0 reference input switching.	0x0	R/W
		6	DPLL0 freerun entered		Freerun mode entered. Set this bit to Logic 1 to enable IRQ for DPLL0 freerun mode entered.	0x0	R/W
		5	DPLL0 holdover entered		Holdover mode entered. Set this bit to Logic 1 to enable IRQ for DPLL0 holdover mode entered.	0x0	R/W
		4	DPLL0 hitless entered		Hitless mode entered. Set this bit to Logic 1 to enable IRQ for DPLL0 hitless mode entered.	0x0	R/W
		3	DPLL0 hitless exited		Hitless mode exited. Set this bit to Logic 1 to enable IRQ for DPLL0 hitless mode exited.	0x0	R/W
		2	DPLL0 history updated		Holdover history updated. Set this bit to Logic 1 to enable IRQ for DPLL0 tuning word holdover history updated.	0x0	R/W
		1	Reserved		Reserved.	0x0	R
		0	DPLL0 phase step detected		Phase step detected. Set this bit to Logic 1 to enable IRQ for DPLL0 reference input phase step detected.	0x0	R/W
0x0113	Fast	[7:5]	Reserved		Reserved.	0x0	R
	acquisition	4	DPLL0 N-divider resynced		N-divider resynchronized. Set this bit to Logic 1 to enable IRQ for DPLL0 N-divider resynced.	0x0	R/W
		3	DPLL0 fast acquisition completed		Fast acquisition completed. Set this bit to Logic 1 to enable IRQ for DPLL0 fast acquisition complete.	0x0	R/W
		2	DPLL0 fast acquisition started		Fast acquisition started. Set this bit to Logic 1 to enable IRQ for DPLL0 fast acquisition started.	0x0	R/W
		[1:0]	Reserved		Reserved.	0x0	R/W
0x0114	Active	[7:6]	Reserved		Reserved.	0x0	R
	profile	5	DPLL0 Profile 5 activated		Profile 5 activated. Set this bit to Logic 1 to enable IRQ for DPLL0 Profile 5 activated.	0x0	R/W
		4	DPLL0 Profile 4 activated		Profile 4 activated. Set this bit to Logic 1 to enable IRQ for DPLL0 Profile 4 activated.	0x0	R/W
		3	DPLL0 Profile 3 activated		Profile 3 activated. Set this bit to Logic 1 to enable IRQ for DPLL0 Profile 3 activated.	0x0	R/W
		2	DPLL0 Profile 2 activated		Profile 2 activated. Set this bit to Logic 1 to enable IRQ for DPLL0 Profile 2 activated.	0x0	R/W
		1	DPLL0 Profile 1 activated		Profile 1 activated. Set this bit to Logic 1 to enable IRQ for DPLL0 Profile 1 activated.	0x0	R/W
		0	DPLL0 Profile 0 activated		Profile 0 activated. Set this bit to Logic 1 to enable IRQ for DPLL0 Profile 0 activated.	0x0	R/W

Table 11. IRQ Map DPLL0 Mask Registers Details

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0115	APLL	[7:5]	Reserved		Reserved.	0x0	R
		4	DPLL0 distribution synced		Clock distribution synced. Set this bit to Logic 1 to enable IRQ for DPLL0 clock distribution synced.	0x0	R/W
			APLL0 unlocked		Unlock detected. Set this bit to Logic 1 to enable IRQ for APLL0 unlock detect (lock to unlock transition).	0x0	R/W
		2	APLL0 locked		Lock detected. Set this bit to Logic 1 to enable IRQ for APLL0 lock detect (unlock to lock transition).	0x0	R/W
		1	APLL0 calibration completed		Calibration completed. Set this bit to Logic 1 to enable IRQ for APLL0 calibration complete.	0x0	R/W
		0	APLL0 calibration started		Calibration started. Set this bit to Logic 1 to enable IRQ for APLL0 calibration start.	0x0	R/W

IRQ MAP DPLL1 MASK REGISTERS—REGISTER 0x0116 TO REGISTER 0x011A

Table 12. IRQ Map DPLL1 Mask Registers Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0116	Lock	DPLL1 frequency clamp deactivated	DPLL1 frequency clamp activated	DPLL1 phase slew limiter deactivated	DPLL1 phase slew limiter activated	DPLL1 frequency unlocked	DPLL1 frequency locked	DPLL1 phase unlocked	DPLL1 phase locked	0x00	R/W
0x0117	State	DPLL1 reference switched	DPLL1 freerun entered	DPLL1 holdover entered	DPLL1 hitless entered	DPLL1 hitless exited	DPLL1 history updated	Reserved	DPLL1 phase step detected	0x00	R/W
0x0118	Fast acquisition	Reserved			DPLL1 N-divider resynced	DPLL1 fast acquisition completed	DPLL1 fast acquisition started	Rese	erved	0x00	R/W
0x0119	Active profile			DPLL1 Profile 5 activated	DPLL1 Profile 4 activated	DPLL1 Profile 3 activated	DPLL1 Profile 2 activated	DPLL1 Profile 1 activated	DPLL1 Profile 0 activated	0x00	R/W
0x011A	APLL	Reserved			PLL1 distribution synced	APLL1 unlocked	APLL1 locked	APLL1 calibration completed	APLL1 calibration started	0x00	R/W

Table 13. IRQ_MAP_DPLL_1_MASK Register Details

Addr	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0116	Lock	7	DPLL1 frequency clamp deactivated		Frequency clamp deactivated. Set this bit to Logic 1 to enable IRQ for DPLL1 frequency clamp inactive.	0x0	R/W
		6	DPLL1 frequency clamp activated		Frequency clamp activated. Set this bit to Logic 1 to enable IRQ for DPLL1 frequency clamp active.	0x0	R/W
		5	DPLL1 phase slew limiter deactivated		Phase slew limiter deactivated. Set this bit to Logic 1 to enable IRQ for DPLL1 phase slew limiter deactivated.	0x0	R/W
			DPLL1 phase slew limiter activated		Phase slew limiter activated. Set this bit to Logic 1 to enable IRQ for DPLL1 phase slew limiter activated.	0x0	R/W
		3	DPLL1 frequency unlocked		Frequency unlocked. Set this bit to Logic 1 to enable IRQ for DPLL1 frequency unlock detect (lock to unlock transition).	0x0	R/W
		2	DPLL1 frequency locked		Frequency locked. Set this bit to Logic 1 to enable IRQ for DPLL1 frequency lock detect (unlock to lock transition).	0x0	R/W
		1	DPLL1 phase unlocked		Phase unlocked. Set this bit to Logic 1 to enable IRQ for DPLL1 phase unlock detect (lock to unlock transition).	0x0	R/W
		0	DPLL1 phase locked		Phase locked. Set this bit to Logic 1 to enable IRQ for DPLL1 phase lock detect (unlock to lock transition).	0x0	R/W
0x0117	State	7	DPLL1 reference switched		Reference switched. Set this bit to Logic 1 to enable IRQ for DPLL1 reference input switching.	0x0	R/W
		6	DPLL1 freerun entered		Freerun mode entered. Set this bit to Logic 1 to enable IRQ for DPLL1 freerun mode entered.	0x0	R/W
		5	DPLL1 holdover entered		Holdover mode entered. Set this bit to Logic 1 to enable IRQ for DPLL1 holdover mode entered.	0x0	R/W

Addr	Name	Bits	Bit Name	Settings	Description	Reset	Access
		4	DPLL1 hitless entered		Hitless mode entered. Set this bit to Logic 1 to enable IRQ for DPLL1 hitless mode entered.	0x0	R/W
		3	DPLL1 hitless exited		Hitless mode exited. Set this bit to Logic 1 to enable IRQ for DPLL1 hitless mode exited.	0x0	R/W
		2	DPLL1 history updated		Holdover history updated. Set this bit to Logic 1 to enable IRQ for DPLL1 tuning word holdover history updated.	0x0	R/W
		1	Reserved		Reserved.	0x0	R
		0	DPLL1 phase step detected		Phase step detected. Set this bit to Logic 1 to enable IRQ for DPLL1 reference input phase step detected.	0x0	R/W
0x0118	Fast	[7:5]	Reserved		Reserved.	0x0	R
	acquisition	4	DPLL1 N-divider resynced		N-divider resynchronized. Set this bit to Logic 1 to enable IRQ for DPLL1 N-divider resynced.	0x0	R/W
		3	DPLL1 fast acquisition complete		Fast Acquisition Complete. Set to Logic 1 to enable IRQ for DPLL1 fast acquisition complete.	0x0	R/W
		2	DPLL1 fast acquisition started		Fast Acquisition Started. Set to Logic 1 to enable IRQ for DPLL1 fast acquisition started.	0x0	R/W
		[1:0]	Reserved		Reserved.	0x0	R/W
0x0119	Active	[7:6]	Reserved		Reserved.	0x0	R
	profile	5	DPLL1 Profile 5 activated		Profile 5 activated. Set this bit to Logic 1 to enable IRQ for DPLL1 Profile 5 activated.	0x0	R/W
		4	DPLL1 Profile 4 activated		Profile 4 activated. Set this bit to Logic 1 to enable IRQ for DPLL1 Profile 4 activated.	0x0	R/W
		3	DPLL1 Profile 3 activated		Profile 3 activated. Set this bit to Logic 1 to enable IRQ for DPLL1 Profile 3 activated.	0x0	R/W
		2	DPLL1 Profile 2 activated		Profile 2 activated. Set this bit to Logic 1 to enable IRQ for DPLL1 Profile 2 activated.	0x0	R/W
		1	DPLL1 Profile 1 activated		Profile 1 activated. Set this bit to Logic 1 to enable IRQ for DPLL1 Profile 1 activated.	0x0	R/W
		0	DPLL1 Profile 0 activated		Profile 0 activated. Set this bit to Logic 1 to enable IRQ for DPLL1 Profile 0 activated.	0x0	R/W
0x011A	APLL	[7:5]	Reserved		Reserved.	0x0	R
		4	PLL1 distribution synced		Clock distribution synced. Set to Logic 1 to enable IRQ for DPLL1 clock distribution synced.	0x0	R/W
		3	APLL1 unlocked		Unlock detected. Set to Logic 1 to enable IRQ for APLL1 unlock detect (lock to unlock transition).	0x0	R/W
		2	APLL1 locked		Lock detected. Set to Logic 1 to enable IRQ for APLL1 lock detect (unlock to lock transition).	0x0	R/W
		1	APLL1 calibration completed		Calibration completed. Set to Logic 1 to enable IRQ for APLL1 calibration complete.	0x0	R/W
		0	APLL1 calibration started		Calibration started. Set to Logic 1 to enable IRQ for APLL1 calibration start.	0x0	R/W

SYSTEM CLOCK (SYSCLK) REGISTERS—REGISTER 0x0200 TO REGISTER 0x0209

Table 14. System Clock Registers Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0200	Feedback divider ratio					Feedback divi	der ratio			0x00	R/W
0x0201	Input	Reserved		Reserved		Enable maintaining amplifier	SYSCLK input divider ratio		Enable SYSCLK doubler	0x00	R/W
0x0202	Reference frequency		SYSCLK reference frequency [7:0]								R/W
0x0203	Reference frequency		SYSCLK reference frequency [15:8]								R/W
0x0204	Reference frequency					SYSCLK reference fre	quency [2	3:16]		0x00	R/W
0x0205	Reference frequency					SYSCLK reference fre	quency [3	1:24]		0x00	R/W
0x0206	Reference frequency					SYSCLK reference fre	quency [3	9:32]		0x00	R/W
0x0207	Stability timer					System clock stabili	ty period	[7:0]		0x00	R/W
0x0208	Stability timer	System clock stability period [15:8]								0x00	R/W
0x0209	Stability timer	Reserved System clock stability period [19:16]						0x00	R/W		

Table 15. System Clock Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0200	Feedback divider ratio	[7:0]	Feedback divider ratio		SYSCLK PLL feedback divide ratio. This bit field is the SYSCLK PLL multiplication ratio.	0x0	R/W
0x0201	Input	[7:4]	Reserved		Reserved.	0x0	R
		3	Enable maintaining amplifier		Enable SYSCLK maintaining amplifier. Logic 0: crystal maintaining amplifier disabled. Use this setting when not using a crystal as the system clock input. Logic 1: crystal maintaining amplifier enabled. Use this setting when using a crystal as the system clock input.	0x0	R/W
		[2:1]	SYSCLK input divider ratio	0 1 2 3	SYSCLK prescaler ratio. This bit field controls the system clock input divider. Prescaler bypassed. Divide by 2. System clock input frequency is divided by 2. Divide by 4. System clock input frequency is divided by 4. Divide by 8. System clock input frequency is divided by 2.	0x0	R/W
		0	Enable SYSCLK doubler		Enable SYSCLK doubler. The system clock doubler decreases the noise contribution of the system clock PLL. However, refer to the AD9545 data sheet for the input duty cycle requirements to use the doubler. Logic 0: system clock doubler disabled. Logic 1: system clock doubler enabled.	0x0	R/W
0x0202	0x0202 Reference frequency		SYSCLK reference frequency [7:0]		SYSCLK reference frequency. This 40-bit unsigned integer bit field contains the system clock reference frequency in units of millihertz. For example, the bit field setting for a 49.152 MHz crystal is 49,152,000,000 decimal (0x0B71B00000).	0x0	R/W
0x0203	x0203 Reference [7:0] SYSCLK frequency frequen				SYSCLK reference frequency. This 40-bit unsigned integer bit field contains the system clock reference frequency in units of millihertz. For example, the bit field setting for a 49.152 MHz crystal is 49,152,000,000 decimal (0x0B71B00000).	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access	
0x0204	Reference frequency	[7:0]	SYSCLK reference frequency [23:16]		SYSCLK reference frequency. This 40-bit unsigned integer bit field contains the system clock reference frequency in units of millihertz. For example, the bit field setting for a 49.152 MHz crystal is 49,152,000,000 decimal (0x0B71B00000).	0x0	R/W	
0x0205	Reference frequency	[7:0]	SYSCLK reference frequency [31:24]		SYSCLK reference frequency. This 40-bit unsigned integer bit field contains the system clock reference frequency in units of millihertz. For example, the bit field setting for a 49.152 MHz crystal is 49,152,000,000 decimal (0x0B71B00000).			
0x0206	Reference frequency	[7:0]	SYSCLK reference frequency [39:32]		SYSCLK reference frequency. This 40-bit unsigned integer bit field contains the system clock reference frequency in units of millihertz. For example, the bit field setting for a 49.152 MHz crystal is 49,152,000,000 decimal (0x0B71B00000).	0x0	R/W	
0x0207	Stability timer	[7:0]	System clock stability period [7:0]		SYSCLK stability period. This 20-bit unsigned integer bit field is the amount of time that the system clock PLL must be locked before the system clock stable bit is Logic 1. This time is in units of milliseconds. For example, for a system clock stability period of 50 ms, the value in this bit field is 50 decimal (0x32).	0x0	R/W	
0x0208	Stability timer	[7:0]	System clock stability period [15:8]		SYSCLK stability period. This 20-bit unsigned integer bit field is the amount of time that the system clock PLL must be locked before the system clock stable bit is Logic 1. This time is in units of milliseconds. For example, for a system clock stability period of 50 ms, the value in this bit field is 50 decimal (0x32).	0x0	R/W	
0x0209	Stability timer	[7:4] [3:0]	Reserved System clock stability period [19:16]		Reserved. SYSCLK stability period. This 20-bit unsigned integer bit field is the amount of time that the system clock PLL must be locked before the system clock stable bit is Logic 1. This time is in units of milliseconds. For example, for a system clock stability period of 50 ms, the value in this bit field is 50 decimal (0x32).	0x0 0x0	R R/W	

SYSCLK COMPENSATION REGISTERS—REGISTER 0x0280 TO REGISTER 0x029C

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0280	Auxiliary DPLL and reference time to digital converter (TDC) compensation source	R	Reserved		Compen- sate auxiliary DPLL via coefficients	Reserved	Compen- sate TDCs via auxiliary DPLL	Compen- sate TDCs via DPLLx	Compen- sate TDCs via coefficients	0x00	R/W
0x0281	Auxiliary NCO compensation source	Reserved	Compensate Auxiliary NCO 1 via auxiliary DPLL	Compen- sate Auxiliary NCO 1 via DPLLx	Compen- sate Auxiliary NCO 1 via coefficients	Reserved	Compen- sate Auxiliary NCO 0 via auxiliary DPLL	Compen- sate Auxiliary NCO 0 via DPLLx	Compen- sate Auxiliary NCO 0 via coefficients	0x00	R/W
0x0282	DPLL compensation source	Reserved	Compensate DPLL1 via auxiliary DPLL	Compen- sate DPLL1 via DPLLx	Compen- sate DPLL1 via coefficients	Reserved	Compen- sate DPLL0 via auxiliary DPLL	Compen- sate DPLL0 via DPLLx	Compen- sate DPLL0 via coefficients	0x00	R/W
0x0283	Rate change limit			Reserved	·			Slew rate limi	t	0x00	R/W
0x0284	Closed-loop source	Reserved Auxiliary DPLL source					0x00	R/W			
0x0285	Auxiliary DPLL Bandwidth 0	Auxiliary DPLL bandwidth [7:0]					0x00	R/W			

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0286	Compensation Bandwidth 1				Auxiliary DF	PLL bandwidth [15:8]			0x00	R/W
0x0287	Error source				Reserve	ed			DPLL channel error source	0x00	R/W
0x0288	Open-loop cutoff			Reserve	ed		Co	efficient outpu	it filter cutoff	0x00	R/W
0x0289	SYSCLK Compensation Polynomial 0				Constant cor	npensation value [7	:0]			0x00	R/W
0x028A	SYSCLK Compensation Polynomial 1				Constant com	pensation value [15	5:8]			0x00	R/W
0x028B	SYSCLK Compensation Polynomial 2				Constant com	pensation value [23	:16]			0x00	R/W
0x028C	SYSCLK Compensation Polynomial 3				Constant com	pensation value [31:	:24]			0x00	R/W
0x028D	SYSCLK Compensation Polynomial 4				Constant com	pensation value [39	:32]			0x00	R/W
0x028E	SYSCLK Compensation Polynomial 5				T ¹ sig	gnificand [7:0]				0x00	R/W
0x028F	SYSCLK Compensation Polynomial 6				T¹ sig	nificand [15:8]				0x00	R/W
0x0290	SYSCLK Compensation Polynomial 7				T	exponent				0x00	R/W
0x0291	SYSCLK Compensation Polynomial 8				T² sig	gnificand [7:0]				0x00	R/W
0x0292	SYSCLK Compensation Polynomial 9				T ² sig	nificand [15:8]				0x00	R/W
0x0293	SYSCLK Compensation Polynomial 10				T	² exponent				0x00	R/W
0x0294	SYSCLK Compensation Polynomial 11				T³ sig	gnificand [7:0]				0x00	R/W
0x0295	SYSCLK Compensation Polynomial 12				T³ sig	nificand [15:8]				0x00	R/W
0x0296	SYSCLK Compensation Polynomial 13				T	³ exponent				0x00	R/W
0x0297	SYSCLK Compensation Polynomial 14				T⁴ sig	gnificand [7:0]				0x00	R/W
0x0298	SYSCLK Compensation Polynomial 15				T⁴ sig	nificand [15:8]				0x00	R/W
0x0299	SYSCLK Compensation Polynomial 16				Ţ	¹ exponent				0x00	R/W
0x029A	SYSCLK Compensation Polynomial 17				T⁵ siq	gnificand [7:0]				0x00	R/W

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	t RW
)x029B	SYSCLK Compensation		I		T⁵ signi	ificand [15:8]				0x00	R/W
)x029C	Polynomial 18 SYSCLK Compensation Polynomial 19				T⁵ €	exponent				0x00	R/W
Table 1	1		ation Register Deta		1					1	1
Addr.	Name		Bit Name	Settings	Description	1					Access
0x0280	Auxiliary DPLL and reference TDC compensation source	reference5Compensate auxiliary DPLL via DPLLxUse DPLLx as the source to compensate the auxiliary DPLL. Setting this bit to Logic 1 enables DPLLx (where x is either 0 or 1) to apply frequency corrections to the auxiliary DPLL. DPLL0 is chosen if the channel error source bit is Logic 0, and DPLL1 is chosen if this bit is Logic 1. This mode is useful if one of the DPLLs is locked to a reference input with a frequency considered more accurate than the system clock source.Compensate of the to the auxiliary DPLL or to apply frequency corrections to the auxiliary DPLL or 					0x0 0x0	R R/W			
		4	Compensate auxiliary DPLL via coefficients		DPLL. Settin polynomial This mode is	g this bit to L temperature useful if appl characteristic	ogic 1 enab compensati ying a knowr	les the open on for the au n frequency v	-loop uxiliary DPLL. s.	0x0	R/ W
		3	Reserved		Reserved.					0x0	R
		2	Compensate TDCs via auxiliary DPLL		Setting this frequency co both the aux is useful if th with a frequ clock source frequency co frequency n	iliary DPLL as bit to Logic 1 prrections to t ciliary TDCs, as ne auxiliary D ency conside this bit mu prrections to g nonitoring lo	I enables the he time to di s well as the r PPLL is locked ered more ac st be set for go to the DPL gic.	e auxiliary Df gital converte eference TDC d to a referer ccurate than the auxiliary L reference in	PLL to apply ers, including is. This mode ince input the system DPLL nput	0x0	R/W
		1	Compensate TDCs via DPLLx		to Logic 1 er frequency c including bo TDCs. DPLLO 0, and DPLL if one of the frequency c source, and	DPLLs is locke onsidered m this bit must	(where x is the time to ary TDCs, as the channel this bit is Lo ed to a refere ore accurate be set for th	either 0 or 1) digital conve well as the r error source gic 1. This m nce input wit than the sys- e frequency) to apply erters, eference bit is Logic ode is useful h a stem clock	0x0	R/W
		0	Compensate TDCs via coefficients		bit to Logic 1 compensation the reference frequency v fit to a fifth-co frequency co	ature compen enables the on for TDCs, ir te TDCs. This s. temperatur order polynon prrections to <u>c</u> onitoring log	open-loop po including the a mode is used e characterist nial, and this go to the DPL	blynomial ter auxiliary TDC ful if applyin tic to the TDC bit must be so	s, as well as g a known is that can be et for the	0x0	R/W
0x0281	Auxiliary NCO	7	Reserved		Reserved.					0x0	R
	compensation source6Compensate Auxiliary NCO 1 via auxiliary DPLLUse auxiliary DPLL as the source to compensate Auxiliary N Setting this bit to Logic 1 enables the auxiliary DPLL to app frequency corrections to Auxiliary NCO 1. This mode is u the auxiliary DPLL is locked to a reference input with a freq considered more accurate than the system clock source.				to apply ode is useful if a frequency	0x0	R/W				

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		5	Compensate Auxiliary NCO 1 via DPLLx		Use DPLLx as the source to compensate Auxiliary NCO 1. Setting this bit to Logic 1 enables DPLLx (where x is either 0 or 1) to apply frequency corrections to Auxiliary NCO 1. DPLL0 is chosen if the channel error source bit is Logic 0, and DPLL1 is chosen if this bit is Logic 1. This mode is useful if one of the DPLLs is locked to a reference input with a frequency considered more accurate than the system clock source.	0x0	R/W
		4	Compensate Auxiliary NCO 1 via coefficients		Use temperature compensation polynomial for Auxiliary NCO 1. Setting this bit to Logic 1 enables the open-loop polynomial temperature compensation for Auxiliary NCO 0. This mode is useful if applying a known frequency vs. temperature characteristic that can be fit to a fifth-order polynomial.	0x0	R/W
		3	Reserved		Reserved.	0x0	R
		2	Compensate Auxiliary NCO 0 via auxiliary DPLL		Use auxiliary DPLL as the source to compensate Auxiliary NCO 0. Setting this bit to Logic 1 enables the auxiliary DPLL to apply frequency corrections to Auxiliary NCO 0. This mode is useful if the auxiliary DPLL is locked to a reference input with a frequency considered more accurate than the system clock source.	0x0	R/W
		1	Compensate Auxiliary NCO 0 via DPLLx		Use DPLLx as the source to compensate Auxiliary NCO 0. Setting this bit to Logic 1 enables DPLLx (where x is either 0 or 1) to apply frequency corrections to Auxiliary NCO 0. DPLL0 is chosen if the channel error source bit is Logic 0, and DPLL1 is chosen if this bit is Logic 1. This mode is useful if one of the DPLLs is locked to a reference input with a frequency considered more accurate than the system clock source.	0x0	R/W
	Auxiliary N		Compensate Auxiliary NCO 0 via coefficients		Use temperature compensation polynomial for Auxiliary NCO 0. Setting this bit to Logic 1 enables the open-loop polynomial temperature compensation for Auxiliary NCO 0. This mode is useful if applying a known frequency vs. temperature characteristic that can be fit to a fifth-order polynomial.	0x0	R/W
0x0282	DPLL	7	Reserved		Reserved.	0x0	R
	compensation source	6	Compensate DPLL1 via auxiliary DPLL		Use auxiliary DPLL as the source to compensate DPLL1. Setting this bit to Logic 1 enables the Auxiliary DPLL to apply frequency corrections to DPLL1. This mode is useful if the auxiliary DPLL is locked to a reference input with a frequency considered more accurate than the system clock source.	0x0	R/W
		5	Compensate DPLL1 via DPLLx		Use DPLLx as the source to compensate DPLL1. Setting this bit to Logic 1 enables DPLLx (where x is either 0 or 1) to apply frequency corrections to DPLL1. The channel error source bit must be set to Logic 0 so that DPLL0 is chosen to compensate DPLL1. This mode is useful if DPLL0 is locked to a reference input with a frequency considered more accurate than the system clock source.	0x0	R/W
		4	Compensate DPLL1 via coefficients		Use temperature compensation polynomial for DPLL1. Setting this bit to Logic 1 enables the open-loop polynomial temperature compensation for DPLL0. This mode is useful if applying a known frequency vs. temperature characteristic that can be fit to a fifth-order polynomial.	0x0	R/W
		3	Reserved		Reserved.	0x0	R
		2	Compensate DPLL0 via auxiliary DPLL		Use auxiliary DPLL as the source to compensate DPLL0. Setting this bit to Logic 1 enables the auxiliary DPLL to apply frequency corrections to DPLL0. This mode is useful if the auxiliary DPLL is locked to a reference input with a frequency considered more accurate than the system clock source.	0x0	R/W
		1	Compensate DPLL0 via DPLLx		Use DPLLx as the source to compensate DPLL0. Setting this bit to Logic 1 enables DPLLx (where x is either 0 or 1) to apply frequency corrections to DPLL0. The channel error source bit must be set to Logic 1 so that DPLL1 is chosen to compensate DPLL0. This mode is useful if DPLL1 is locked to a reference input with a frequency considered more accurate than the system clock source.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		0	Compensate DPLL0 via coefficients		Use temperature compensation polynomial for DPLLO. Setting this bit to Logic 1 enables the open-loop polynomial temperature compensation for DPLLO. This mode is useful if applying a known frequency vs. temperature characteristic that can be fit to a fifth-order polynomial.	0x0	R/W
0x0283	Rate change	[7:3]	Reserved		Reserved.	0x0	R
	limit	[2:0]	Slew rate limit		Error compensation rate change limiting. This 3-bit bit field controls the system clock compensation rate change limiting. It prevents the system clock compensation block from introducing system clock frequency changes that can cause system instabilities.	0x0	R/W
					None.		
					0.715 ppm/s.		
					1.43 ppm/s.		
				011	2.86 ppm/s.		
					5.72 ppm/s.		
				101 110	11.44 ppm/s. 22.88 ppm/s.		
				110	45.76 ppm/s.		
0x0284	Closed-loop	[7:5]	Reserved		Reserved.	0x0	R
00201	source		Auxiliary DPLL		Auxiliary DPLL closed-loop source. This 5-bit bit field selects	0x0	R/W
			source		the source of the auxiliary DPLL when using auxiliary DPLL compensation. For example, if the clock input connected to REFA is considered to be more accurate frequency source in the system, select REFA in this bit field.		
				0	Reference A.		
				1	Reference AA.		
				2	Reference B.		
				3	Reference BB.		
				6	Auxiliary TDC 0.		
0x0285		[7.0]	Augilians DDLL	7	Auxiliary TDC 1. Auxiliary DPLL bandwidth. This 16-bit bit field is the loop	0x0	R/W
0x0285	Auxiliary DPLL Bandwidth 0	[7:0]	Auxiliary DPLL bandwidth [7:0]		bandwidth of the auxiliary DPLL tracks the system clock frequency error and provides a correction to the AD9545 digital logic. It is in units of 0.1 Hz. For example, to set a loop bandwidth of 247.6 Hz, enter 2476d (0x09AC) into this bit field.	UXU	
0x0286	Compensation Bandwidth 1	[7:0]	Auxiliary DPLL bandwidth [15:8]		Auxiliary DPLL bandwidth. This 16-bit bit field is the loop band- width of the auxiliary DPLL tracks the system clock frequency error and provides a correction to the AD9545 digital logic. It is in units of 0.1 Hz (decihertz). For example, to set a loop bandwidth of 247.6 Hz, enter 2476d (0x09AC) into this bit field.	0x0	R/W
0x0287	Error source	[7:1]	Reserved		Reserved.	0x0	R
		0	DPLL channel error source		Compensation error source for DPLL Channel x. This bit allows the user to select which DPLL to use as the reference for correcting the system clock frequency error while using DPLL channel compensation.	0x0	R/W
				0	DPLL0. Selects DPLL0 as the source of system clock compensation error signal.		
				1	DPLL1. Selects DPLL1 as the source of system clock compensation error signal.		

Addr.	Name	Bits		Settings	•		Access
0x0288	Open-loop	[7:3]	Reserved		Reserved.	0x0	R
	cutoff	[2:0]	Coefficient output filter cutoff		Open-loop compensation filter cutoff frequency. This 3-bit bit field controls the open-loop compensation low-pass filter cutoff frequency.	0x0	R/W
				000	400 Hz (maximum).		
					200 Hz.		
					100 Hz.		
				011	50 Hz.		
					25 Hz.		
				101	12 Hz.		
					6 Hz.		
				111	3 Hz (minimum).		
0x0289	SYSCLK Compensation Polynomial 0	[7:0]	Constant compensation value [7:0]		Constant compensation value. This 40-bit bit field is the T ⁰ temperature compensation coefficient used in the open-loop direct compensation method. This bit field applies a fixed correction to the oscillator frequency and is useful for compensating for oscillator aging. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x028A	SYSCLK Compensation Polynomial 1	[7:0]	Constant compensation value [15:8]		Constant compensation value. This 40-bit bit field is the T ⁰ temperature compensation coefficient used in the open-loop direct compensation method. This bit field applies a fixed correction to the oscillator frequency and is useful for compensating for oscillator aging. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x028B	SYSCLK Compensation Polynomial 2	[7:0]	Constant compensation value [23:16]		Constant compensation value. This 40-bit bit field is the T ⁰ temperature compensation coefficient used in the open-loop direct compensation method. This bit field applies a fixed correction to the oscillator frequency and is useful for compensating for oscillator aging. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x028C	SYSCLK Compensation Polynomial 3	[7:0]	Constant compensation value [31:24]		Constant compensation value. This 40-bit bit field is the T ⁰ temperature compensation coefficient used in the open-loop direct compensation method. This bit field applies a fixed correction to the oscillator frequency and is useful for compensating for oscillator aging. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x028D	SYSCLK Compensation Polynomial 4	[7:0]	Constant compensation value [39:32]		Constant compensation value. This 40-bit bit field is the T ⁰ temperature compensation coefficient used in the open-loop direct compensation method. This bit field applies a fixed correction to the oscillator frequency and is useful for compensating for oscillator aging. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x028E	SYSCLK Compensation Polynomial 5	[7:0]	T ¹ significand [7:0]		T ¹ coefficient significand. This bit field is the significand portion of the T ¹ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x028F	SYSCLK Compensation Polynomial 6	[7:0]	T ¹ significand [15:8]		T ¹ coefficient significand. This bit field is the significand portion of the T ¹ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.		R/W
0x0290	SYSCLK Compensation Polynomial 7	[7:0]	T ¹ exponent		T ¹ coefficient exponent. This bit field is the exponent portion of the T ¹ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.		R/W
0x0291	SYSCLK Compensation Polynomial 8	[7:0]	T ² significand [7:0]		T ² coefficient significand. This bit field is the significand portion of the T ² temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W

Bits Bit Name

[7:0] T² significand

[15:8]

[7:0] T² exponent

[7:0] T³ significand [7:0]

Addr.

0x0292

0x0293

0x0294

Name

SYSCLK

SYSCLK

SYSCLK

Compensation

Polynomial 9

Compensation Polynomial 10

Compensation Polynomial 11

			Uu-	UTU
	Settings	Description	Reset	Access
		T ² coefficient significand. This bit field is the significand portion of the T ² temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
		T ² coefficient exponent. This bit field is the exponent portion of the T ² temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
]		T ³ coefficient significand. This bit field is the significand portion of the T ³ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
		T ³ coefficient significand. This bit field is the significand portion of the T ³ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
		T ³ coefficient exponent. This bit field is the exponent portion of the T ³ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
]		T ⁴ coefficient significand. This bit field is the significand	0x0	R/W

IIG-1146

				data sheet for details about calculating these coefficients.		
0x0295	SYSCLK Compensation Polynomial 12	[7:0]	T ³ significand [15:8]	T ³ coefficient significand. This bit field is the significand portion of the T ³ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x0296	SYSCLK Compensation Polynomial 13	[7:0]	T ³ exponent	T ³ coefficient exponent. This bit field is the exponent portion of the T ³ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x0297	SYSCLK Compensation Polynomial 14	[7:0]	T⁴ significand [7:0]	T ⁴ coefficient significand. This bit field is the significand portion of the T ⁴ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x0298	SYSCLK Compensation Polynomial 15	[7:0]	T⁴ significand [15:8]	T ⁴ coefficient significand. This bit field is the significand portion of the T ⁴ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x0299	SYSCLK Compensation Polynomial 16	[7:0]	T ⁴ exponent	T ⁴ coefficient exponent. This bit field is the exponent portion of the T ⁴ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x029A	SYSCLK Compensation Polynomial 17	[7:0]	T⁵ significand [7:0]	T ⁵ coefficient significand. This bit field is the significand portion of the T ⁵ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x029B	SYSCLK Compensation Polynomial 18	[7:0]	T ^s significand [15:8]	T ⁵ coefficient significand. This bit field is the significand portion of the T ⁵ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients.	0x0	R/W
0x029C	SYSCLK Compensation Polynomial 19	[7:0]	T ⁵ exponent	T ⁵ coefficient exponent. This bit field is the exponent portion of the T ⁵ temperature compensation coefficient used in the open-loop direct compensation method. Refer to the data sheet for details about calculating these coefficients	0x0	R/W

REFERENCE GENERAL A REGISTERS—REGISTER 0x0300 TO REGISTER 0x0303

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0300	Receiver settings	REFAA single-ended mode		REFA single- REFA different ended mode		ential mode	Reserved	REFA input mode	0x00	R/W	
0x0301	Demodulator band				Reserv	ed			REFA/REFAA demodulator band select	0x01	R/W
0x0302	Demodulator settings	Enable REFA demodulator polarity	Enable REFA demodulator persist	RE democ sync	dulator	Enable REFA demodulator	REFA demodulator event polarity	REFA demodulator sensitivity		0x40	R/W
0x0303	Demodulator settings	Enable REFAA demodulator polarity	Enable REFAA demodulator persist	REF democ sync	dulator	Enable REFAA demodulator	REFAA demodulator polarity	REFAA demodulator or sensitivity		0x40	R/W

Table 18. Reference General A Registers Summary

Table 19. Reference General A Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0300	Receiver settings	[7:6]	REFAA single- ended mode	0 1 10	REFAA single-ended mode. AC-coupled 1.2 V. Use this mode for ac coupling a single- ended reference input. The input impedance is approximately 23.5 k Ω with a dc bias voltage of approximately 0.6 V. DC-coupled 1.2 V CMOS. Use this mode for single-ended, dc-coupled, 1.2 V CMOS. DC-coupled 1.8 V CMOS. Use this mode for single-ended,	0x0	R/W
				11	dc-coupled, 1.8 V CMOS. Disable pull-down. This 1.2 V, CMOS, single-ended mode has an input resistance of approximately 46 k Ω to 1.2 V. The internal bias prevents chatter if this input is left unconnected.		
		[5:4]	REFA single- ended mode	0 1 10 11	REFA single-ended mode. AC-coupled 1.2 V. Use this mode for ac coupling a single- ended reference input. The input impedance is approximately 23.5 k Ω with a dc bias voltage of approximately 0.6 V. DC-coupled 1.2 V CMOS. Use this mode for single-ended, dc coupled, 1.2 V CMOS. Use this mode for single-ended, dc-coupled 1.8 V CMOS. Use this mode for single-ended, dc-coupled, 1.8 V CMOS. Dise this mode for single-ended, dc-coupled, 1.8 V CMOS. Disable pull down. This 1.2 V CMOS single-ended mode has an input resistance of approximately 46 k Ω to 1.2 V. The internal bias prevents chatter if this input is left unconnected.	0x0	R/W
		[3:2]	REFA differential mode	0	REFA differential mode. Self biased ac-coupled. Use this mode for ac-coupled differential clocks. The self generated dc bias voltage is approximately 0.6 V, and the minimum input frequency depends on the size of the decoupling capacitors. DC-coupled differential mode. Use this mode for dc- coupled differential clocks with common-mode voltages of approximately 0.6 V. There is no internally generated dc bias voltage in this mode. See the AD9545 data sheet for the actual limits. DC-coupled low voltage differential signaling (LVDS) mode. Use this mode for dc-coupled LVDS clocks <450 MHz. The expected dc bias level is approximately 1.2 V. See the AD9545 data sheet for the actual limits, and in cases of a	0x0	R/W
		1	Reserved		discrepancy, use the specification in the data sheet. Reserved.	0x0	R

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		0	REFA input		REFA input mode.	0x0	R/W
			mode	0	The REFA and REFAA input pins are single-ended inputs.		
				1	The REFA and REFAA input pins form a differential pair.		
0x0301	Demodulator	[7:1]	Reserved		Reserved.	0x0	R
	band	0	REFA/REFAA demodulator		REFA/REFAA demodulator band select. This bit selects low or high range of the REFA input carrier frequency.	0x1	R/W
			band select	0	Low band. Use this mode for carrier frequencies <30 MHz.		
				1	High band. Use this mode for carrier frequencies ≥30 MHz.		
0x0302	Demodulator settings	7	Enable REFA demodulator polarity		Enable REFA demodulator polarity. This bit enables automatic demodulator polarity detection for REFA. If this bit is Logic 0, automatic demodulator polarity is disabled, and the demodulator polarity is set using the REFA demodulator event polarity bit.	0x0	R/W
				0	Disable automatic polarity detection.		
				1	Enable automatic polarity detection.		
	6Enable REFA demodulator persistEnable REFA demodulator persist. Logic 0: the demodulator does not produce continuous events on the demodulator output signal. Logic 1: the demodulator produces continuous events on the demodulator output signal if five or more consecutive modulation events appear on the input reference signal.[5:4]REFA demodulator sync edgeREFA demodulator sync edge. These bits control the latency and allow the user delay the REFA modulator output. The value in this 2-bit register is the number of sync edges (after the base edge) to delay the demodulator output.		0x0	R/W			
			[5:4]REFA demodulator sync edgeREFA demodulator sync edge. These bits control the latency and allow the user delay the REFA modulator output. The value in this 2-bit register is the number of sync edges (after the base edge) to delay the demodulator output.				
		3	Enable REFA		Enable REFA demodulator.	0x0	R/W
			demodulator		Logic 0: REFA demodulator disabled.		
					Logic 1: REFA demodulator enabled.		
		2	REFA demodulator event polarity	0	REFA demodulator event polarity. This bit controls whether the narrow or wide pulse occurs first in a demodulation event. The first PWM pulse is narrow (<50% duty cycle), and is followed by a wide pulse (>50% duty cycle). The first PWM pulse is wide (>50% duty cycle), and is	0x0	R/W
					followed by a narrow pulse (<50% duty cycle).		
		[1:0]	REFA demodulator sensitivity		REFA demodulator sensitivity. This register controls the sensitivity of the REFA demodulator. The default value of 00b is the most sensitive, and 11b is the least sensitive. Demodulation events that have only a small variation in pulse width require a higher level of sensitivity.	0x0	R/W
0x0303	Demodulator settings	7	Enable REFAA demodulator polarity	0	Enable REFAA demodulator polarity. This bit enables automatic demodulator polarity detection for REFAA. If this bit is Logic 0, automatic demodulator polarity is disabled, and the demodulator polarity is set using the REFAA demodulator event polarity bit. Disable automatic polarity detection.	0x0	R/W
				1	Enable automatic polarity detection.		
		6 Enable Enable REFAA demodulator persist. 6 REFAA Logic 0: the demodulator does not produce continuous events on the demodulator output signal.		0x0	R/W		
			persist		Logic 1: the demodulator produces continuous events on the demodulator output signal if five or more consecutive modulation events appear on the input reference signal.		
		[5:4]	REFAA demodulator sync edge		REFAA demodulator sync edge. These bits control the latency and allow the user delay the REFAA modulator output. The value in this 2-bit register is the number of sync edges (after the base edge) to delay the demodulator output.	0x0	R/W

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		3	Enable		Enable REFAA demodulator.	0x0	R/W
			REFAA		Logic 0: REFAA demodulator disabled.		
			demodulator		Logic 1: REFAA demodulator enabled.		
		2	REFAA demodulator event		REFAA demodulator event polarity. This bit controls whether the narrow or wide pulse occurs first in a demodulation event.	0x0	R/W
			polarity	0	The first PWM pulse is narrow (<50% duty cycle) and is followed by a wide pulse (>50% duty cycle).		
				1	The first PWM pulse is wide (>50% duty cycle) and is followed by a narrow pulse (<50% duty cycle).		
		[1:0]	REFAA demodulator sensitivity		REFAA demodulator sensitivity. This register controls the sensitivity of the REFAA demodulator. The default value of 00b is the most sensitive, and 11b is the least sensitive. Demodulation events that have only a small variation in pulse width require a higher level of sensitivity.	0x0	R/W

REFERENCE GENERAL B REGISTERS—REGISTER 0x0304 TO REGISTER 0x0307

Table 20. Reference General B Register Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0304	Receiver settings	5			REFB single- REFB differen ended mode		ential mode	Reserved	REFB input mode	0x00	R/W
0x0305	Demodulator band				Reserv	ed			REFB/REFBB demodulator band select	0x01	R/W
0x0306	Demodulator settings	Enable REFB demodulator polarity	Enable REFB demodulator persist	demod	FB Julator edge	Enable REFB demodulator	REFB demodulator event polarity	REFB demodulator sensitivity		0x40	R/W
0x0307	Demodulator settings	Enable REFBB demodulator polarity	Enable REFBB demodulator persist	REF democ sync		Enable REFBB demodulator	REFBB demodulator event polarity	REFBB demodulator sensitivity		0x40	R/W

Table 21. Reference General B Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0304	Receiver	[7:6]	REFBB		REFBB single-ended mode.	0x0	R/W
	settings		single- ended mode	0	AC-coupled 1.2 V. Use this mode for ac coupling a single- ended reference input. The input impedance is approximately 23.5 k Ω with a dc bias voltage of approximately 0.6 V.		
				1	DC-coupled 1.2 V CMOS. Use this mode for single-ended, dc-coupled, 1.2 V CMOS.		
				10 11	DC-coupled 1.8 V CMOS. Use this mode for single-ended, dc-coupled, 1.8 V CMOS.		
					Disable pull down. This 1.2 V, CMOS, single-ended mode has an input resistance of approximately 46 k Ω to 1.2 V. The internal bias prevents chatter if this input is left unconnected.		
		[5:4]	[5:4] REFB single- ended mode		REFB single-ended mode.	0x0	R/W
				0	AC-coupled 1.2 V. Use this mode for ac coupling a single- ended reference input. The input impedance is approximately 23.5 k Ω with a dc bias voltage of approximately 0.6 V.		
				1	DC-coupled 1.2 V CMOS. Use this mode for single-ended, dc coupled, 1.2 V CMOS.		
				10	DC-coupled 1.8 V CMOS. Use this mode for single-ended, dc-coupled, 1.8 V CMOS.		

UG-1146

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
				11	Disable pull-down. This 1.2 V CMOS single-ended mode has an input resistance of approximately 46 k Ω to 1.2 V. The internal bias prevents chatter if this input is left unconnected.		
		[3:2]	REFB differential mode	0	REFB differential mode. Self biased ac-coupled. Use this mode for ac-coupled differential clocks. The self generated dc bias voltage is approximately 0.6 V, and the minimum input frequency depends on the size of the decoupling capacitors. DC-coupled differential mode. Use this mode for dc- coupled differential clocks with common-mode voltages of	0x0	R/W
				10	approximately 0.6 V. There is no internally generated dc bias voltage in this mode. See the AD9545 data sheet for the actual limits. DC-coupled LVDS mode. Use this mode for dc-coupled LVDS clocks <450 MHz. The expected dc bias level is approximately 1.2 V. See the AD9545 data sheet for the actual limits, and in cases of a discrepancy, use the		
					specification in the data sheet.		
		1	Reserved		Reserved.	0x0	R
		0	REFB input mode	0	REFB input mode. The REFB and REFBB input pins are single-ended inputs. The REFB and REFBB input pins form a differential pair.	0x0	R/W
)x0305	Demodulator	[7:1]	Reserved		Reserved.	0x0	R
	band	0	REFB/REFBB demodulator band select		REFB/REFBB demodulator band select. This bit selects low or high range of the REFB input carrier frequency.	0x1	R/W
				0 1	Low band. Use this mode for carrier frequencies $<$ 30 MHz. High band. Use this mode for carrier frequencies \ge 30 MHz.		
)x0306	Demodulator settings	7	Enable REFB demodulator polarity	0	Enable REFB demodulator polarity. This bit enables automatic demodulator polarity detection for REFB. If this bit is Logic 0, automatic demodulator polarity is disabled, and the demodulator polarity is set using the REFB demodulator event polarity bit. Disable automatic polarity detection.	0x0	R/W
				1	Enable automatic polarity detection.		
		6	Enable REFB demodulator persist		Enable REFB demodulator persist. Logic 0: the demodulator does not produce continuous events on the demodulator output signal.	0x0	R/W
					Logic 1: the demodulator produces continuous events on the DEMOD OUT signal if five or more consecutive modulation events appear on the input reference signal.		
		[5:4]	REFB demodulator sync edge		REFB demodulator sync edge. These bits control the latency and allow the user delay the REFB modulator output. The value in this 2-bit register is the number of sync edges (after the base edge) to delay the demodulator output.	0x0	R/W
		3	Enable REFB demodulator		Enable REFB demodulator. Logic 0: REFB demodulator disabled. Logic 1: REFB demodulator enabled.	0x0	R/W
		2	REFB demodulator		REFB demodulator event polarity. This bit controls whether the narrow or wide pulse occurs first in a demodulation event.	0x0	R/W
			event polarity	0	The first PWM pulse is narrow (<50% duty cycle) and is followed by a wide pulse (>50% duty cycle).		
				1	The first PWM pulse is wide (>50% duty cycle) and is followed by a narrow pulse (<50% duty cycle).		

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description		Access
		[1:0]	REFB demodulator sensitivity		REFB demodulator sensitivity. This register controls the sensitivity of the REFB demodulator. The default value of 00b is the most sensitive, and 11b is the least sensitive. Demodulation events that have only a small variation in pulse width require a higher level of sensitivity.	0x0	R/W
0x0307	Demodulator settings	7	Enable REFBB demodulator polarity	0	Enable REFBB demodulator polarity. This bit enables automatic demodulator polarity detection for REFBB. If this bit is Logic 0, automatic demodulator polarity is disabled, and the demodulator polarity is set using the REFBB demodulator event polarity bit. Disable automatic polarity detection.	0x0	R/W
				1	Enable automatic polarity detection.		
		6	Enable REFBB demodulator persist		Enable REFBB demodulator persist. Logic 0: the demodulator does not produce continuous events on the demodulator output signal. Logic 1: the demodulator produces continuous events on	0x0	R/W
					the demodulator output signal if five or more consecutive modulation events appear on the input reference signal.		
		[5:4]	REFBB demodulator sync edge		REFBB demodulator sync edge. These bits control the latency and allow the user delay the REFBB modulator output. The value in this 2-bit register is the number of sync edges (after the base edge) to delay the demodulator output.	0x0	R/W
		3	Enable REFBB demodulator		Enable REFBB demodulator. Logic 0: REFBB demodulator disabled. Logic 1: REFBB demodulator enabled.	0x0	R/W
		2	REFBB demodulator event polarity	0	REFBB demodulator event polarity. This bit controls whether the narrow or wide pulse occurs first in a demodulation event. The first PWM pulse is narrow (<50% duty cycle) and is	0x0	R/W
			polarity	1	followed by a wide pulse is wide (>50% duty cycle) and is followed by a wide pulse (>50% duty cycle). The first PWM pulse is wide (>50% duty cycle) and is followed by a narrow pulse (<50% duty cycle).		
		[1:0]	REFBB demodulator sensitivity		REFBB demodulator sensitivity. This register controls the sensitivity of the REFBB demodulator. The default value of 00b is the most sensitive, and 11b is the least sensitive. Demodulation events that have only a small variation in pulse width require a higher level of sensitivity.	0x0	R/W

REFERENCE INPUT A (REFA) REGISTERS—REGISTER 0x0400 TO REGISTER 0x0414

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x0400	R divider		REFA R divide ratio [7:0]									
0x0401	R divider		REFA R divide ratio [15:8]									
0x0402	R divider				REFA R div	vide ratio [23:16]			0x00	R/W	
0x0403	R divider	Rese	Reserved REFA R divide ratio [29:24]								R/W	
0x0404	Input period		REFA nominal period [7:0]							0x00	R/W	
0x0405	Input period		REFA nominal period [15:8]							0x00	R/W	
0x0406	Input period		REFA nominal period [23:16]								R/W	
0x0407	Input period		REFA nominal period [31:24]								R/W	
0x0408	Input period		REFA nominal period [39:32]							0x00	R/W	
0x0409	Input period		REFA nominal period [47:40]							0x00	R/W	
0x040A	Input period		REFA nominal period [55:48]								R/W	
0x040B	Input period		Reserved REFA nominal period [59:56]						0x00	R/W		
0x040C	Offset limit		REFA offset limit [7:0]								R/W	
0x040D	Offset limit		REFA offset limit [15:8]									

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x040E	Offset limit		REFA offset limit [23:16]								R/W
0x040F	Monitor hysteresis		Reserved REFA monitor hysteresis							0x03	R/W
0x0410	Validation timer		REFA validation timer [7:0]								R/W
0x0411	Validation timer		REFA validation timer [15:8]								R/W
0x0412	Validation timer		Reserved REFA validation timer [19:16]						0x00	R/W	
0x0413	Jitter tolerance		REFA jitter tolerance [7:0]								R/W
0x0414	Jitter tolerance		REFA jitter tolerance [15:8]							0x00	R/W

Table 23. Reference Input A Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0400 R divider		[7:0]	REFA R divide ratio [7:0]		REFA integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0401	R divider	[7:0]	REFA R divide ratio [15:8]		REFA integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0402	R divider	[7:0]	REFA R divide ratio [23:16]		REFA integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0403	R divider	[7:6]	Reserved		Reserved.	0x0	R
		[5:0]	REFA R divide ratio [29:24]		REFA integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0404	Input period	[7:0]	REFA nominal period [7:0]		REFA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0405	Input period	[7:0]	REFA nominal period [15:8]		REFA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0406	Input period	[7:0]	REFA nominal period [23:16]		REFA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0407	Input period	[7:0]	REFA nominal period [31:24]		REFA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0408	Input period	[7:0]	REFA nominal period [39:32]		REFA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0409	Input period	[7:0]	REFA nominal period [47:40]		REFA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x040A	Input period	[7:0]	REFA nominal period [55:48]		REFA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x040B	Input	[7:4]	Reserved		Reserved.	0x0	R
	period	[3:0]	REFA nominal period [59:56]		REFA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x040C	Offset limit	[7:0]	REFA offset limit [7:0]		REFA offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0xA0	R/W
0x040D	Offset limit	[7:0]	REFA offset limit [15:8]		REFA offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0x86	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x040E	0x040E Offset limit		REFA offset limit [23:16]		REFA offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0x1	R/W
0x040F	Monitor	[7:3]	Reserved		Reserved.	0x0	R
	hysteresis	[2:0]	REFA monitor hysteresis	0 1 2 3 4 5 6	REFA monitor hysteresis. This bit field is called T _{HYS} in the data sheet and controls the amount of hysteresis in the reference input monitor. This 3-bit value is specified as a percentage of Δ t _{REF} . The smaller the value, the more likely the reference monitor chatters if the input clock frequency is near the limit of the allowable frequency error. No hysteresis. 3.125% of Δ t _{REF} . 6.25% of Δ t _{REF} . 12.5% of Δ t _{REF} . 25% of Δ t _{REF} . 50% of Δ t _{REF} .	0x3	R/W
0x0410	Validation timer	[7:0]	REFA validation timer [7:0]	7	87.5% of Δ t _{REF} . REFA validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0xA	R/W
0x0411	Validation timer	[7:0]	REFA validation timer [15:8]		REFA validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0x0	R/W
0x0412	Validation	[7:4]	Reserved		Reserved.	0x0	R
	timer	[3:0]	REFA validation timer [19:16]		REFA validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0x0	R/W
0x0413	Jitter tolerance	[7:0]	REFA jitter tolerance [7:0]		REFA jitter tolerance. This bit field is called T_{TOL} in the data sheet, and determines the maximum amount of rms jitter before the excess jitter status bit is activated. This 16-bit value is in units of nanoseconds, and setting this bit to zero disables this feature.	0x0	R/W
0x0414	Jitter tolerance	[7:0]	REFA jitter tolerance [15:8]		REFA jitter tolerance. This bit field is called T_{TOL} in the data sheet, and determines the maximum amount of rms jitter before the excess jitter status bit is activated. This 16-bit value is in units of nanoseconds, and setting this bit to zero disables this feature.	0x0	R/W

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0420	R divider		•		REFAA R d	livide rati	o [7:0]	·	•	0x00	R/W
0x0421	R divider		REFAA R divide ratio [15:8] REFAA R divide ratio [23:16] served REFAA R divide ratio [29:24] REFAA nominal period [7:0] REFAA nominal period [7:0] REFAA nominal period [7:0] REFAA nominal period [15:8] REFAA nominal period [23:16] REFAA nominal period [23:16] REFAA nominal period [39:32] REFAA nominal period [39:32] REFAA nominal period [47:40] REFAA nominal period [55:48] REFAA offset limit [7:0] REFAA offset limit [7:0] REFAA offset limit [15:8] REFAA offset limit [23:16]					0x00	R/W		
0x0422	R divider				REFAA R di	vide ratio	[23:16]			0x00	R/W
0x0423	R divider	Res	erved		F	REFAA R d	ivide ratio	[29:24]		0x00	R/W
0x0424	Input period				REFAA nor	ninal peri	od [7:0]			0x00	R/W
0x0425	Input period			I	REFAA nom	inal perio	od [15:8]			0x00	R/W
0x0426	Input period			R	EFAA nom	inal perio	d [23:16]			0x00	R/W
0x0427	Input period			R	EFAA nom	inal perio	d [31:24]			0x00	R/W
0x0428	Input period			R	EFAA nom	inal perio	d [39:32]			0x00	R/W
0x0429	Input period			R	EFAA nom	inal perio	d [47:40]			0x00	R/W
0x042A	Input period			R	EFAA nom	inal perio	d [55:48]			0x00	R/W
0x042B	Input period		Res	served		R	EFAA nom	inal period	[59:56]	0x00	R/W
0x042C	Offset limit				REFAA o	ffset limit	[7:0]			0xA0	R/W
0x042D	Offset limit				REFAA of	fset limit	[15:8]			0x86	R/W
0x042E	Offset limit				REFAA of	^f set limit [23:16]			0x01	R/W
0x042F	Monitor hysteresis			Reserve	d		REFA	A monitor	hysteresis	0x03	R/W
0x0430	Validation timer				REFAA vali	dation tim	ner [7:0]			0x0A	R/W
0x0431	Validation timer			F	REFAA valic	lation tim	er [15:8]			0x00	R/W
0x0432	Validation timer		Res	served		R	FAA valid	ation timer	[19:16]	0x00	R/W
0x0433	Jitter tolerance				REFAA jitte	er toleran	ce [7:0]			0x00	R/W
0x0434	Jitter tolerance				REFAA jitte	r toleranc	e [15:8]			0x00	R/W

Table 24. Reference Input AA Register Summary

Table 25. Reference Input AA Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0420	R divider	[7:0]	REFAA R divide ratio [7:0]		REFAA integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0421	R divider	[7:0]	REFAA R divide ratio [15:8]		REFAA integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0422	R divider	[7:0]	REFAA R divide ratio [23:16]		REFAA integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0423	R divider	[7:6]	Reserved		Reserved.	0x0	R
		[5:0]	REFAA R divide ratio [29:24]		REFAA integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0424	Input period	[7:0]	REFAA nominal period [7:0]		REFAA nominal period. This bit field is called t_{REF} in the data sheet and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0425	Input period	[7:0]	REFAA nominal period [15:8]		REFAA nominal period. This bit field is called t_{REF} in the data sheet and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0426	Input period	[7:0]	REFAA nominal period [23:16]		REFAA nominal period. This bit field is called t_{REF} in the data sheet and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0427	Input period	[7:0]	REFAA nominal period [31:24]		REFAA nominal period. This bit field is called t_{REF} in the data sheet and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0428	Input period	[7:0]	REFAA nominal period [39:32]		REFAA nominal period. This bit field is called t_{REF} in the data sheet and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0429	Input period	[7:0]	REFAA nominal period [47:40]		REFAA nominal period. This bit field is called t_{REF} in the data sheet and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x042A	Input period	[7:0]	REFAA nominal period [55:48]		REFAA nominal period. This bit field is called t_{REF} in the data sheet and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x042B	Input	[7:4]	Reserved		Reserved.	0x0	R
	period	[3:0]	REFAA nominal period [59:56]		REFAA nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x042C	Offset limit	[7:0]	REFAA offset limit [7:0]		REFAA offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0xA0	R/W
0x042D	Offset limit	[7:0]	REFAA offset limit [15:8]		REFAA offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0x86	R/W
0x042E	Offset limit	[7:0]	REFAA offset limit [23:16]		REFAA offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0x1	R/W
0x042F	Monitor	[7:3]	Reserved		Reserved.	0x0	R
	hysteresis	[2:0]	REFAA monitor hysteresis	0 1 2 3 4	REFAA monitor hysteresis. This bit field is called T _{HYS} in the data sheet and controls the amount of hysteresis in the reference input monitor. This 3-bit value is specified as a percentage of Δ t _{REF} . The smaller the value, the more likely the reference monitor chatters if the input clock frequency is near the limit of the allowable frequency error. No hysteresis. 3.125% of Δ t _{REF} . 6.25% of Δ t _{REF} . 12.5% of Δ t _{REF} .	0x3	R/W
				5	50% of Δ t _{RFF} .		
				6	75% of Δ t _{REF} .		
				7	87.5% of Δ t _{REF} .		
0x0430	Validation timer	[7:0]	REFAA validation timer [7:0]		REFAA validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0xA	R/W
0x0431	Validation timer	[7:0]	REFAA validation timer [15:8]		REFAA validation timer. This bit field is called t_{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0x0	R/W
0x0432	Validation	[7:4]	Reserved		Reserved.	0x0	R
	timer	[3:0]	REFAA validation timer [19:16]		REFAA validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0433	Jitter tolerance	[7:0]	REFAA jitter tolerance [7:0]		REFAA jitter tolerance. This bit field is called T_{TOL} in the data sheet and determines the maximum amount of rms jitter before the excess jitter status bit is activated. This 16-bit value is in units of nanoseconds, and setting this bit to zero disables this feature.	0x0	R/W
0x0434	Jitter tolerance	[7:0]	REFAA jitter tolerance [15:8]		REFAA jitter tolerance. This bit field is called T_{TOL} in the data sheet and determines the maximum amount of rms jitter before the excess jitter status bit is activated. This 16-bit value is in units of nanoseconds, and setting this bit to zero disables this feature.	0x0	R/W

REFERENCE INPUT B (REFB) REGISTERS—REGISTER 0x0440 TO REGISTER 0x0454

 Table 26. Reference Input B Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0440	R divider			•	REFB R c	livide ratio	[7:0]	·		0x00	R/W
0x0441	R divider				REFB R d	ivide ratio	[15:8]			0x00	R/W
0x0442	R divider		REFB R divide ratio [7:0] REFB R divide ratio [15:8] REFB R divide ratio [23:16] REFB nominal period [7:0] REFB nominal period [7:0] REFB nominal period [7:0] REFB nominal period [15:8] REFB nominal period [23:16] REFB nominal period [23:16] REFB nominal period [31:24] REFB nominal period [39:32] REFB nominal period [47:40] REFB nominal period [55:48] REFB nominal period [55:48] REFB offset limit [7:0] REFB offset limit [15:8] REFB offset limit [15:8] REFB offset limit [23:16] REFB offset limit [23:16]							0x00	R/W
0x0443	R divider	Res	erved			REFB R div	vide ratio [29:24]		0x00	R/W
0x0444	Input period			•	REFB non	ninal perio	d [7:0]			0x00	R/W
0x0445	Input period				REFB nom	inal perio	d [15:8]			0x00	R/W
0x0446	Input period				REFB nomi	nal period	[23:16]			0x00	R/W
0x0447	Input period				REFB nomi	nal period	[31:24]			0x00	R/W
0x0448	Input period				REFB nomi	nal period	[39:32]			0x00	R/W
0x0449	Input period		REFB nominal period [47:40] 0x						0x00	R/W	
0x044A	Input period		REFB nominal period [55:48] 0						0x00	R/W	
0x044B	Input period		Res	served		R	EFB nomi	nal period [59:56]	0x00	R/W
0x044C	Offset limit				REFB o	ffset limit	[7:0]			0xA0	R/W
0x044D	Offset limit				REFB of	fset limit [15:8]			0x86	R/W
0x044E	Offset limit				REFB off	set limit [2	3:16]			0x01	R/W
0x044F	Monitor hysteresis			Reserve	d		REFI	3 monitor h	ysteresis	0x03	R/W
0x0450	Validation timer				REFB valie	dation time	er [7:0]			0x0A	R/W
0x0451	Validation timer				REFB valid	ation time	er [15:8]			0x00	R/W
0x0452	Validation timer		Res	served		R	EFB valida	tion timer [19:16]	0x00	R/W
0x0453	Jitter tolerance								0x00	R/W	
0x0454	Jitter tolerance				REFB jitte	r tolerance	e [15:8]			0x00	R/W

Table 27. Reference Input B Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0440	R divider	[7:0]	REFB R divide ratio [7:0]		REFB integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0441	R divider	[7:0]	REFB R divide ratio [15:8]		REFB integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0442	R divider	[7:0]	REFB R divide ratio [23:16]		REFB integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0443	R divider	[7:6]	Reserved		Reserved.	0x0	R
		[5:0]	REFB R divide ratio [29:24]		REFB integer reference divider. The value of the R divide ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1.	0x0	R/W
0x0444	Input period	[7:0]	REFB nominal period [7:0]		REFB nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0445	Input period	[7:0]	REFB nominal period [15:8]		REFB nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0446	Input period	[7:0]	REFB nominal period [23:16]		REFB nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0447	Input period	[7:0]	REFB nominal period [31:24]		REFB nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0448	Input period	[7:0]	REFB nominal period [39:32]		REFB nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x0449	Input period	[7:0]	REFB nominal period [47:40]		REFB nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x044A	Input period	[7:0]	REFB nominal period [55:48]		REFB nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x044B	Input	[7:4]	Reserved		Reserved.	0x0	R
	period	[3:0]	REFB nominal period [59:56]		REFB nominal period. This bit field is called t_{REF} in the data sheet, and is the reciprocal of the input frequency. This 60-bit value is in units of attoseconds (10 ⁻¹⁸ seconds).	0x0	R/W
0x044C	Offset limit	[7:0]	REFB offset limit [7:0]		REFB offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0xA0	R/W
0x044D	Offset limit	[7:0]	REFB offset limit [15:8]		REFB offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0x86	R/W
0x044E	Offset limit	[7:0]	REFB offset limit [23:16]		REFB offset limit. This bit field is called Δ t _{REF} in the data sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion.	0x1	R/W
0x044F	Monitor	[7:3]	Reserved		Reserved.	0x0	R
	hysteresis	[2:0]	REFB monitor hysteresis		REFB monitor hysteresis. This bit field is called T _{HYS} in the data sheet and controls the amount of hysteresis in the reference input monitor. This 3-bit value is specified as a percentage of Δ t _{REF} . The smaller the value, the more likely the reference monitor chatters if the input clock frequency is near the limit of the allowable frequency error.	0x3	R/W
				0	No hysteresis.		
				1	3.125% of Δ t _{REF} .		
				2	6.25% of Δ t _{REF} .		
				3	12.5% of Δ t _{REF} .		
				4	25% of Δ t _{REF} .		
				5	50% of Δ t _{REF} .		
				6	75% of Δ t _{REF} .		
0.0450		[7 0]		7	87.5% of Δ t _{REF} .		DAY
0x0450	Validation timer	[7:0]	REFB validation timer [7:0]		REFB validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFF are not allowed.	0xA	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0451	Validation timer	[7:0]	REFB validation timer [15:8]		REFB validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0x0	R/W
0x0452	Validation	[7:4]	Reserved		Reserved.	0x0	R
	timer	[3:0]	REFB validation timer [19:16]		REFB validation timer. This bit field is called tvALLD in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0x0	R/W
0x0453	Jitter tolerance	[7:0]	REFB jitter tolerance [7:0]		REFB jitter tolerance. This bit field is called T_{TOL} in the data sheet, and determines the maximum amount of rms jitter before the excess jitter status bit is activated. This 16-bit value is in units of nanoseconds, and setting this bit to zero disables this feature.	0x0	R/W
0x0454	Jitter tolerance	[7:0]	REFB jitter tolerance [15:8]		REFB jitter tolerance. This bit field is called T_{TOL} in the data sheet, and determines the maximum amount of rms jitter before the excess jitter status bit is activated. This 16-bit value is in units of nanoseconds, and setting this bit to zero disables this feature.	0x0	R/W

REFERENCE INPUT BB (REFBB) REGISTERS—REGISTER 0x0460 TO REGISTER 0x0474

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x0460	R divider		•	•	REFBB R	divide rati	o [7:0]	•	
0x0461	R divider				REFBB R c	livide ratic	o [15:8]		
0x0462	R divider				REFBB R d	ivide ratio	[23:16]		
0x0463	R divider	Rese	erved		l	REFBB R di	ivide ratio	[29:24]	
0x0464	Input period				REFBB nor	ninal perio	od [7:0]		
0x0465	Input period			I	REFBB non	ninal perio	d [15:8]		
0x0466	Input period			R	EFBB nom	inal perio	d [23:16]		
0x0467	Input period			R	EFBB nom	inal perio	d [31:24]		
0x0468	Input period			R	EFBB nom	inal perio	d [39:32]		
0x0469	Input period			R	EFBB nom	inal perio	d [47:40]		
0x046A	Input period			R	EFBB nom	inal perio	d [55:48]		
0x046B	Input period		Res	erved		R	EFBB nom	inal period	59:56]
0x046C	Offset limit				REFBB c	offset limit	[7:0]		
0x046D	Offset limit				REFBB o	ffset limit	[15:8]		
0x046E	Offset limit				REFBB of	fset limit [23:16]		

0x00 R/W R/W 0x00 0x00 R/W R/W 0x00 R/W 0x00 0x00 R/W 0x00 R/W 0x00 R/W 0x00 R/W R/W :56] 0x00 0xA0 R/W R/W 0x86 0x01 R/W 0x046F **REFBB** monitor hysteresis R/W Monitor hysteresis Reserved 0x03 0x0470 Validation timer REFBB validation timer [7:0] 0x0A R/W 0x0471 Validation timer REFBB validation timer [15:8] 0x00 R/W 0x0472 Validation timer Reserved **REFBB** validation timer [19:16] 0x00 R/W REFBB jitter tolerance [7:0] R/W 0x0473 Jitter tolerance 0x00 0x0474 REFBB jitter tolerance [15:8] 0x00 R/W Jitter tolerance

Reset

0x00

0x00

RW

R/W R/W

Name Bits **Bit Name** Settings Description Addr. Reset Access 0x0460 R divider [7:0] **REFBB R divide** REFBB integer reference divider. The value of the R divide 0x0 R/W ratio is the value stored in this register plus 1. For ratio [7:0] example, 0x00000 equals an R divider of 1. 0x0461 R divider [7:0] **REFBB R divide** REFBB integer reference divider. The value of the R divide 0x0 R/W ratio is the value stored in this register plus 1. For ratio [15:8] example, 0x00000 equals an R divider of 1. 0x0462 R divider [7:0] **REFBB R divide** REFBB integer reference divider. The value of the R divide 0x0 R/W ratio [23:16] ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1. 0x0463 R divider [7:6] Reserved Reserved. 0x0 R REFBB R divide REFBB integer reference divider. The value of the R divide R/W [5:0] 0x0 ratio [29:24] ratio is the value stored in this register plus 1. For example, 0x00000 equals an R divider of 1. REFBB nominal period. This bit field is called tREF in the 0x0464 Input [7:0] **REFBB** nominal R/W 0x0 data sheet and is the reciprocal of the input frequency. This period period [7:0] 60-bit value is in units of attoseconds $(10^{-18} \text{ seconds})$. REFBB nominal period. This bit field is called tREF in the data **REFBB** nominal 0x0465 [7:0] 0x0 R/W Input period [15:8] sheet and is the reciprocal of the input frequency. This 60-bit period value is in units of attoseconds (10⁻¹⁸ seconds). REFBB nominal period. This bit field is called tREF in the data 0x0466 [7:0] **REFBB** nominal R/W Input 0x0 sheet and is the reciprocal of the input frequency. This 60-bit period period [23:16] value is in units of attoseconds $(10^{-18} \text{ seconds})$. REFBB nominal period. This bit field is called tREF in the data **REFBB** nominal 0x0467 [7:0] 0x0 R/W Input sheet and is the reciprocal of the input frequency. This 60-bit period [31:24] period value is in units of attoseconds (10⁻¹⁸ seconds). REFBB nominal period. This bit field is called tREF in the data 0x0468 Input [7:0] **REFBB** nominal R/W 0x0 period [39:32] sheet and is the reciprocal of the input frequency. This 60-bit period value is in units of attoseconds (10⁻¹⁸ seconds). REFBB nominal period. This bit field is called tREF in the data 0x0469 [7:0] **REFBB** nominal R/W Input 0x0 sheet and is the reciprocal of the input frequency. This 60-bit period period [47:40] value is in units of attoseconds (10⁻¹⁸ seconds). REFBB nominal period. This bit field is called tRFF in the data 0x046A Input [7:0] **REFBB** nominal 0x0 R/W period [55:48] sheet and is the reciprocal of the input frequency. This 60-bit period value is in units of attoseconds (10⁻¹⁸ seconds). Reserved. 0x046B Input [7:4] Reserved 0x0 R period [3:0] **REFBB** nominal REFBB nominal period. This bit field is called t_{REF} in the 0x0 R/W data sheet and is the reciprocal of the input frequency. This period [59:56] 60-bit value is in units of attoseconds (10⁻¹⁸ seconds). 0x046C Offset limit [7:0] **REFBB** offset REFBB offset limit. This bit field is called Δ t_{REF} in the data 0xA0 R/W sheet. It controls the maximum allowable frequency error limit [7:0] before a reference becomes faulted. This 24-bit value is in units of parts per billion. REFBB offset limit. This bit field is called Δ t_{REF} in the data 0x046D Offset limit [7:0] **REFBB** offset R/W 0x86 limit [15:8] sheet. It controls the maximum allowable frequency error before a reference becomes faulted. This 24-bit value is in units of parts per billion. 0x046E Offset limit [7:0] **REFBB** offset REFBB offset limit. This bit field is called Δ t_{REF} in the data 0x1 R/W sheet. It controls the maximum allowable frequency error limit [23:16] before a reference becomes faulted. This 24-bit value is in units of parts per billion.

Table 29. Reference Input BB Register Details

UG-1	146
------	-----

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x046F	Monitor	[7:3]	Reserved		Reserved.	0x0	R
	hysteresis	[2:0]	REFBB monitor hysteresis	0 1 2 3 4 5 6	REFBB monitor hysteresis. This bit field is called T _{HYS} in the data sheet and controls the amount of hysteresis in the reference input monitor. This 3-bit value is specified as a percentage of Δ t _{REF} . The smaller the value, the more likely the reference monitor chatters if the input clock frequency is near the limit of the allowable frequency error. No hysteresis. 3.125% of Δ t _{REF} . 6.25% of Δ t _{REF} . 12.5% of Δ t _{REF} . 25% of Δ t _{REF} . 50% of Δ t _{REF} .	0x3	R/W
				7	87.5% of Δ t _{REF} .		
0x0470	Validation timer	[7:0]	REFBB validation timer [7:0]		REFBB validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFFF are not allowed.	0xA	R/W
0x0471	Validation timer	[7:0]	REFBB validation timer [15:8]		REFBB validation timer. This bit field is called t_{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds. The values 0x00000 and 0xFFFF are not allowed.	0x0	R/W
0x0472	Validation	[7:4]	Reserved		Reserved.	0x0	R
	timer	[3:0]	REFBB validation timer [19:16]		REFBB validation timer. This bit field is called t _{VALID} in the data sheet and is the amount of time a reference input clock is within the programmed frequency tolerance before that reference is declared valid. This 20-bit value is in units of milliseconds The values 0x00000 and 0xFFFFF are not allowed.	0x0	R/W
0x0473	Jitter tolerance	[7:0]	REFBB jitter tolerance [7:0]		REFBB jitter tolerance. This bit field is called T_{TOL} in the data sheet and determines the maximum amount of rms jitter before the excess jitter status bit is activated. This 16-bit value is in units of nanoseconds, and setting this bit to zero disables this feature.	0x0	R/W
0x0474	Jitter tolerance	[7:0]	REFBB jitter tolerance [15:8]		REFBB jitter tolerance. This bit field is called T _{TOL} in the data sheet and determines the maximum amount of rms jitter before the excess jitter status bit is activated. This 16-bit value is in units of nanoseconds, and setting this bit to zero disables this feature.	0x0	R/W

SOURCE PROFILE 0 A REGISTERS—REGISTER 0x0800 TO REGISTER 0x0811

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0800	Phase lock threshold		•	Profile	0 phase l	ock thresh	old [7:0]	•		0xBC	R/W
0x0801	Phase lock threshold			Profile	0 phase lo	ck thresh	old [15:8]			0x02	R/W
0x0802	Phase lock threshold			Profile 0	phase lo	ck threshc	ld [23:16]			0x00	R/W
0x0803	Phase lock fill rate			Pro	ofile 0 pha	se lock fill	rate			0x0A	R/W
0x0804	Phase lock drain rate			Prof	ile 0 phas	e lock drai	n rate			0x0A	R/W
0x0805	Frequency lock threshold			Profile 0	frequency	/ lock thre	shold [7:0]			0xBC	R/W
0x0806	Frequency lock threshold			Profile 0 f	requency	lock three	hold [15:8	3]		0x02	R/W
0x0807	Frequency lock threshold			Profile 0 fr	requency	lock thres	hold [23:1	6]		0x00	R/W
0x0808	Frequency lock fill rate			Profi	le 0 frequ	ency lock	fill rate			0x0A	R/W
0x0809	Frequency lock drain rate			Profile	0 freque	ncy lock d	rain rate			0x0A	R/W
0x080A	Phase step threshold			Profile	0 phase s	tep thresh	old [7:0]			0x00	R/W
0x080B	Phase step threshold			Profile () phase st	ep thresh	old [15:8]			0x00	R/W
0x080C	Phase step threshold			Profile 0	phase ste	ep thresho	ld [23:16]			0x00	R/W
0x080D	Phase step threshold			Profile 0	phase ste	ep thresho	ld [31:24]			0x00	R/W
0x080E	Phase skew			Pr	ofile 0 ph	ase skew [7:0]			0x00	R/W
0x080F	Phase skew			Pro	ofile 0 pha	ise skew ['	5:8]			0x00	R/W
0x0810	Phase skew			Pro	file 0 pha	se skew [2	3:16]			0x00	R/W
0x0811	Phase refinement			Profile 0	phase ske	ew refinen	nent steps			0x00	R/W

Table 30. Source Profile 0 A Registers Summary

Table 31. Source Profile 1 AA Register Summary

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0820 to	These reg	isters mimic th						1), but the		R/W
0x0831		registe	r addresses ar	e offset by 0x0	020. All defaul	lt values are id	entical.			

Table 32. Source Profile 2 B Register Summary

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0840 to	These reg	isters mimic th	ne Source Profi	le 0 A register	s (Register 0x0	800 through F	Register 0x081	1), but the		R/W
0x0851		registe	r addresses are	e offset by 0x0	020. All defaul	lt values are id	lentical.			

Table 33. Source Profile 3 BB Register Summary

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0860 to	These reg	isters mimic th	ne Source Profi	le 0 A register	s (Register 0x0	800 through F	Register 0x081	1), but the		R/W
0x0871		registe	r addresses are	e offset by 0x0	020. All defaul	lt values are id	entical.			

Table 34. Source Profile 4 NCO 0 Register Summary

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0880 to	These reg	isters mimic th	ne Source Prof	ile 0 A register	s (Register 0x0)800 through l	Register 0x081	1), but the		R/W
0x0891		registe	r addresses ar	e offset by 0x0	020. All defau	It values are ic	lentical.			

Table 35. Source Profile 5 NCO 1 Register Summary

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x08A0 to	These reg	isters mimic th	e Source Profi	le 0 A register	s (Register 0x0	800 through F	Register 0x081	1), but the		R/W
0x08B1		registe	r addresses are	e offset by 0x0	020. All defaul	lt values are id	entical.			

Table 36. Source Profile 6 DPLL0 Register Summary

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x08C0 to	These reg	jisters mimic tł	ne Source Prof	ïle 0 A register	rs (Register 0x0)800 through F	Register 0x081	1), but the		R/W
0x08D1		registe	r addresses ar	e offset by 0x0	020. All defau	lt values are id	entical.			

Table 37. Source Profile 7 DPLL1 Register Summary

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x08E0 to	These reg	isters mimic th	e Source Profi	le 0 A register	s (Register 0x0)800 through f	Register 0x081	1), but the		R/W
0x08F1		registe	r addresses are	e offset by 0x0	020. All defau	lt values are id	lentical.			

Table 38. Source Profile 0 A Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0800	Phase lock threshold	[7:0]	Profile 0 phase lock threshold [7:0]		Profile 0 phase lock threshold. Phase lock detector threshold (in picoseconds).	0xBC	R/W
0x0801	Phase lock threshold	[7:0]	Profile 0 phase lock threshold [15:8]		Profile 0 phase lock threshold. Phase lock detector threshold (in picoseconds).	0x2	R/W
0x0802	Phase lock threshold	[7:0]	Profile 0 phase lock threshold [23:16]		Profile 0 phase lock threshold. Phase lock detector threshold (in picoseconds).	0x0	R/W
0x0803	Phase lock fill rate	[7:0]	Profile 0 phase lock fill rate		Profile 0 phase lock fill rate. Phase lock detector fill rate per phase frequency detector (PFD) cycle.	0xA	R/W
0x0804	Phase lock drain rate	[7:0]	Profile 0 phase lock drain rate		Profile 0 phase lock drain rate. Phase lock detector lock drain rate per PFD cycle.	0xA	R/W
0x0805	Frequency lock threshold	[7:0]	Profile 0 frequency lock threshold [7:0]		Profile 0 frequency lock threshold. Frequency lock detector threshold (in picoseconds).	0xBC	R/W
0x0806	Frequency lock threshold	[7:0]	Profile 0 frequency lock threshold [15:8]		Profile 0 frequency lock threshold. Frequency lock detector threshold (in picoseconds).	0x2	R/W
0x0807	Frequency lock threshold	[7:0]	Profile 0 frequency lock threshold [23:16]		Profile 0 frequency lock threshold. Frequency lock detector threshold (in picoseconds).	0x0	R/W
0x0808	Frequency lock fill rate	[7:0]	Profile 0 frequency lock fill rate		Profile 0 frequency lock fill rate. Frequency lock detector fill rate per PFD cycle.	0xA	R/W
0x0809	Frequency lock drain rate	[7:0]	Profile 0 frequency lock drain rate		Profile 0 frequency lock drain rate. Frequency lock detector drain rate per PFD cycle.	0xA	R/W
0x080A	Phase step threshold	[7:0]	Profile 0 phase step threshold [7:0]		Profile 0 phase step detector threshold. This 32-bit bit field is the threshold (in picoseconds) at which the DPLL declares that an input reference phase step occurred. The value of this register must always be set so the detector only activates during a reference switching event and never during normal PLL operation (when the DPLL is not switching). A value of zero indicates that the feature is disabled.	0x0	R/W
0x080B	Phase step threshold	[7:0]	Profile 0 phase step threshold [15:8]		Profile 0 phase step detector threshold. This 32-bit bit field is the threshold (in picoseconds) at which the DPLL declares that an input reference phase step occurred. The value of this register must always be set so the detector only activates during a reference switching event and never during normal PLL operation (when the DPLL is not switching). A value of zero indicates that the feature is disabled.	0x0	R/W

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name Se	ettings	Description	Reset	Access
0x080C	Phase step threshold	[7:0]	Profile 0 phase step threshold [23:16]		Profile 0 phase step detector threshold. This 32-bit bit field is the threshold (in picoseconds) at which the DPLL declares that an input reference phase step occurred. The value of this register must always be set so the detector only activates during a reference switching event and never during normal PLL operation (when the DPLL is not switching). A value of zero indicates that the feature is disabled.	0x0	R/W
0x080D	Phase step threshold	[7:0]	Profile 0 phase step threshold [31:24]		Profile 0 phase step detector threshold. This 32-bit bit field is the threshold (in picoseconds) at which the DPLL declares that an input reference phase step occurred. The value of this register must always be set so the detector only activates during a reference switching event and never during normal PLL operation (when the DPLL is not switching). A value of zero indicates that the feature is disabled.	0x0	R/W
0x080E	Phase skew	[7:0]	Profile 0 phase skew [7:0]		Profile 0 phase skew. Closed-loop phase skew adjustment in picoseconds.	0x0	R/W
0x080F	Phase skew	[7:0]	Profile 0 phase skew [15:8]		Profile 0 phase skew. Closed-loop phase skew adjustment in picoseconds.	0x0	R/W
0x0810	Phase skew	[7:0]	Profile 0 phase skew [23:16]		Profile 0 phase skew. Closed-loop phase skew adjustment in picoseconds.	0x0	R/W
0x0811	Phase refinement	[7:0]	Profile 0 Phase skew refinement steps		Profile 0 phase skew refinement steps. This 8-bit bit field contains the number of the PFD cycles averaged during a phase build out acquisition.	0x0	R/W

LOOP FILTER COEFFICIENTS 0 REGISTERS—REGISTER 0x0C00 TO REGISTER 0x0C0B

Table 39. Loop Filter Coefficients 0 Registers Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0C00	Base Loop Filter 0				Alpha Sigr	ificand 0 [7:0]			0xC2	R/W
0x0C01	Base Loop Filter 0			ŀ	Alpha Sign	ficand 0 [1	5:8]			0xF0	R/W
0x0C02	Base Loop Filter 0				Alpha E	xponent 0				0xB3	R/W
0x0C03	Base Loop Filter 0				Beta Signi	ficand 0 [7	:0]			0x55	R/W
0x0C04	Base Loop Filter 0				Beta Signi	icand 0 [1	5:8]			0xC9	R/W
0x0C05	Base Loop Filter 0		Beta Exponent 0						0xFB	R/W	
0x0C06	Base Loop Filter 0								0x5C	R/W	
0x0C07	Base Loop Filter 0			G	amma Sigi	nificand 0 [15:8]			0xF6	R/W
0x0C08	Base Loop Filter 0				Gamma	Exponent	0			0xCA	R/W
0x0C09	Base Loop Filter 0				Delta Sign	ificand 0 [7	/:0]			0x11	R/W
0x0C0A	Base Loop Filter 0			[Delta Signi	ficand 0 [1	5:8]			0xDF	R/W
0x0C0B	Base Loop Filter 0				Delta E	xponent 0				0xCC	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0C00	Base Loop Filter 0	[7:0]	Alpha Significand 0 [7:0]		Alpha Significand 0.	0xC2	R/W
0x0C01	Base Loop Filter 0	[7:0]	Alpha Significand 0 [15:8]		Alpha Significand 0.	0xF0	R/W
0x0C02	Base Loop Filter 0	[7:0]	Alpha Exponent 0		Alpha Exponent 0.	0xB3	R/W
0x0C03	Base Loop Filter 0	[7:0]	Beta Significand 0 [7:0]		Beta Significand 0.	0x55	R/W
0x0C04	Base Loop Filter 0	[7:0]	Beta Significand 0 [15:8]		Beta Significand 0.	0xC9	R/W
0x0C05	Base Loop Filter 0	[7:0]	Beta Exponent 0		Beta Exponent 0.	0xFB	R/W
0x0C06	Base Loop Filter 0	[7:0]	Gamma Significand 0 [7:0]		Gamma Significand 0.	0x5C	R/W
0x0C07	Base Loop Filter 0	[7:0]	Gamma Significand 0 [15:8]		Gamma Significand 0.	0xF6	R/W
0x0C08	Base Loop Filter 0	[7:0]	Gamma Exponent 0		Gamma Exponent 0.	0xCA	R/W
0x0C09	Base Loop Filter 0	[7:0]	Delta Significand 0 [7:0]		Delta Significand 0.	0x11	R/W
0x0C0A	Base Loop Filter 0	[7:0]	Delta Significand 0 [15:8]		Delta Significand 0.	0xDF	R/W
0x0C0B	Base Loop Filter 0	[7:0]	Delta Exponent 0		Delta Exponent 0.	0xCC	R/W

Table 40. Loop Filter Coefficients 0 Registers Details

LOOP FILTER COEFFICIENTS 1 REGISTERS—REGISTER 0x0C0C TO REGISTER 0x0C17

Table 41. Loop Filter Coefficients 1 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x0C0C	Base Loop Filter 1		•		Alpha Sign	ficand 1 [7	:0]	•		0xA9	R/W
0x0C0D	Base Loop Filter 1			A	Ipha Signi	ficand 1 [1	5:8]			0xA0	R/W
0x0C0E	Base Loop Filter 1				Alpha E	xponent 1				0xB7	R/W
0x0C0F	Base Loop Filter 1				Beta Signi	icand 1 [7:	0]			0xCD	R/W
0x0C10	Base Loop Filter 1				Beta Signif	cand 1 [15	:8]			0xDB	R/W
0x0C11	Base Loop Filter 1				Beta Ex	ponent 1				0xF3	R/W
0x0C12	Base Loop Filter 1								0x79	R/W	
0x0C13	Base Loop Filter 1			Ga	amma Sign	ificand 1 ['	5:8]			0xD4	R/W
0x0C14	Base Loop Filter 1				Gamma	Exponent 1				0xCE	R/W
0x0C15	Base Loop Filter 1		Delta Significand 1 [7:0]						0x4D	R/W	
0x0C16	Base Loop Filter 1			[Delta Signif	icand 1 [15	5:8]			0xA7	R/W
0x0C17	Base Loop Filter 1				Delta E	ponent 1				0xCF	R/W

Table 42. Loop Filter Coefficients 1 Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x0C0C	Base Loop Filter 1	[7:0]	Alpha Significand 1 [7:0]		Alpha Significand 1.	0xA9	R/W
0x0C0D	Base Loop Filter 1	[7:0]	Alpha Significand 1 [15:8]		Alpha Significand 1.	0xA0	R/W
0x0C0E	Base Loop Filter 1	[7:0]	Alpha Exponent 1		Alpha Exponent 1.	0xB7	R/W
0x0C0F	Base Loop Filter 1	[7:0]	Beta Significand 1 [7:0]		Beta Significand 1.	0xCD	R/W
0x0C10	Base Loop Filter 1	[7:0]	Beta Significand 1 [15:8]		Beta Significand 1.	0xDB	R/W
0x0C11	Base Loop Filter 1	[7:0]	Beta Exponent 1		Beta Exponent 1.	0xF3	R/W
0x0C12	Base Loop Filter 1	[7:0]	Gamma Significand 1 [7:0]		Gamma Significand 1.	0x79	R/W
0x0C13	Base Loop Filter 1	[7:0]	Gamma Significand 1 [15:8]		Gamma Significand 1.	0xD4	R/W
0x0C14	Base Loop Filter 1	[7:0]	Gamma Exponent 1		Gamma Exponent 1.	0xCE	R/W
0x0C15	Base Loop Filter 1	[7:0]	Delta Significand 1 [7:0]		Delta Significand 1.	0x4D	R/W
0x0C16	Base Loop Filter 1	[7:0]	Delta Significand 1 [15:8]		Delta Significand 1.	0xA7	R/W
0x0C17	Base Loop Filter 1	[7:0]	Delta Exponent 1		Delta Exponent 1.	0xCF	R/W

DPLL CHANNEL 0 REGISTERS—REGISTER 0x1000 TO REGISTER 0x102A

Table 43. DPLL Channel 0 Registers Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1000	Freerun tuning word				DPLLO	freerun tuning	word [7:0]			0x00	R/W
0x1001	Freerun tuning word				DPLL0 f	reerun tuning	word [15:8]			0x00	R/W
0x1002	Freerun tuning word				DPLL0 fr	eerun tuning v	word [23:16]			0x00	R/W
0x1003	Freerun tuning word				DPLL0 fr	eerun tuning v	vord [31:24]			0x00	R/W
0x1004	Freerun tuning word				DPLL0 fr	eerun tuning v	word [39:32]			0x00	R/W
0x1005	Freerun tuning word	Reser	ved		C	OPLL0 freerun t	tuning word [45	40]		0x00	R/W
0x1006	Tuning word clamp				DPLL0 freerur	n tuning word o	offset clamp [7:0]		0xFF	R/W
0x1007	Tuning word clamp				DPLL0 freerun	tuning word c	offset clamp [15:	8]		0xFF	R/W
0x1008	Tuning word clamp				DPLL0 freerun	tuning word of	ffset clamp [23:1	6]		0xFF	R/W
0x1009	NCO gain			Reserved			DPLL0 NCO g	ain filter bandwid	th	0x00	R/W
0x100A	History accumulation timer				DPLL0 hist	ory accumulat	ion timer [7:0]			0x0A	R/W
0x100B	History accumulation timer				DPLL0 histo	ory accumulati	on timer [15:8]			0x00	R/W
0x100C	History accumulation timer				DPLL0 histo	ry accumulatic	on timer [23:16]			0x00	R/W
0x100D	History accumulation timer			Reserved		D	PLL0 history acc	umulation timer [27:24]	0x00	R/W
0x100E	History accumulation timer	Reser	ved	DPLL0 delay history until not slew limiting	DPLL0 delay history frequency lock	DPLL0 delay history phase lock	DPLL0 quick start history	DPLL0 single sample history	DPLL0 persistent history	0x38	R/W
0x100F	History accumulation timer			Res	erved		DPLL0 pause history while phase slew limiting	DPLL0 pause history frequency unlock	DPLL0 pause history phase unlock	0x00	R/W
0x1010	History accumulator hold off				DPLI	0 history hold	off time			0x00	R/W
0x1011	Phase slew limit				DPLL0	phase slew lim	it rate [7:0]			0x00	R/W
0x1012	Phase slew limit					hase slew limi				0x00	R/W
0x1013	Phase slew limit				DPLL0 p	hase slew limit	rate [23:16]			0x00	R/W
0x1014	Phase slew limit				DPLL0 p	hase slew limit	rate [31:24]			0x06	R/W
0x1015	Phase offset				DP	LL0 phase offse	et [7:0]			0x00	R/W
0x1016	Phase offset				DPL	L0 phase offse	et [15:8]			0x00	R/W
0x1017	Phase offset		DPLL0 phase offset [23:16]							0x00	R/W
0x1018	Phase offset		DPLL0 phase offset [31:24]								R/W
0x1019	Phase offset					L0 phase offset				0x00	R/W
0x101A	Phase temperature compensation polynomial			DPI	LLO phase temper	ature compens	sation C1 signific	and [7:0]		0x00	R/W
0x101B	Phase temperature compensation polynomial			DPL	L0 phase tempera	ture compensa	ation C1 significa	nd [15:8]		0x00	R/W

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x101C	Phase temperature compensation polynomial					temperature con				0x00	R/W
0x101D	Phase temperature compensation polynomial				DPLL0 phase ten		_			0x00	R/W
0x101E	Phase temperature compensation polynomial				DPLL0 phase tem	perature compe	nsation C ₂ sign	ificand [15:8]		0x00	R/W
0x101F	Phase temperature compensation polynomial				DPLL0 phase	temperature con	npensation C_2 e	exponent		0x00	R/W
0x1020	Phase temperature compensation polynomial				DPLL0 phase ten	nperature compe	ensation C₃ sigr	nificand [7:0]		0x00	R/W
0x1021	Phase temperature compensation polynomial				DPLL0 phase tem	perature compe	nsation C₃ sign	ificand [15:8]		0x00	R/W
0x1022	Phase temperature compensation polynomial		DPLL0 phase temperature compensation C_3 exponent								R/W
0x1023	Phase temperature compensation polynomial				DPLL0 phase ten	nperature compe	ensation C₄ sigr	nificand [7:0]		0x00	R/W
0x1024	Phase temperature compensation polynomial				DPLL0 phase tem	perature compe	nsation C₄ sign	ificand [15:8]		0x00	R/W
0x1025	Phase temperature compensation polynomial				DPLL0 phase	temperature con	npensation C4 e	exponent		0x00	R/W
0x1026	Phase temperature compensation polynomial				DPLL0 phase ten	nperature compe	ensation C₅ sigr	nificand [7:0]		0x00	R/W
0x1027	Phase temperature compensation polynomial		DPLL0 phase temperature compensation C ₅ significand [15:8]								R/W
0x1028	Phase temperature compensation polynomial		DPLL0 phase temperature compensation C_5 exponent								R/W
0x1029	Phase adjust filter bandwidth				Reserved		DPLL0 ph	ase temperature o bandwidt	compensation filter h	0x00	R/W
0x102A	Inactive Profile				Reserved			DPLL0 inactive pro	ofile index	0x00	R/W

Table 44. DPLL Channel 0 Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1000	Freerun tuning word	[7:0]	DPLL0 freerun tuning word [7:0]		DPLLO freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLLO while it is in freerun mode.	0x0	R/W
0x1001	Freerun tuning word	[7:0]	DPLL0 freerun tuning word [15:8]		DPLLO freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLLO while it is in freerun mode.	0x0	R/W
0x1002	Freerun tuning word	[7:0]	DPLL0 freerun tuning word [23:16]		DPLL0 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL0 while it is in freerun mode.	0x0	R/W
0x1003	Freerun tuning word	[7:0]	DPLL0 freerun tuning word [31:24]		DPLL0 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL0 while it is in freerun mode.	0x0	R/W
0x1004	Freerun tuning word	[7:0]	DPLL0 freerun tuning word [39:32]		DPLL0 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL0 while it is in freerun mode.	0x0	R/W
0x1005	Freerun	[7:6]	Reserved		Reserved.	0x0	R
	tuning word	[5:0]	DPLL0 freerun tuning word [45:40]		DPLL0 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL0 while it is in freerun mode.	0x0	R/W
0x1006	Tuning word clamp	[7:0]	DPLL0 freerun tuning word offset clamp [7:0]		DPLL0 freerun tuning word offset clamp. This 24-bit bit field sets the DPLL0 tuning word offset clamp, f_{CLAMP} . The formula is $f_{CLAMP} = DPLL0$ freerun tuning word offset clamp × ($f_{S}/236$), where f_{S} is the system clock frequency.	0xFF	R/W
0x1007	Tuning word clamp	[7:0]	DPLL0 freerun tuning word offset clamp [15:8]		DPLL0 freerun tuning word offset clamp. This 24-bit bit field sets the DPLL0 tuning word offset clamp, f_{CLAMP} . The formula is $f_{CLAMP} = DPLL0$ freerun tuning word offset clamp × ($f_{S}/236$), where f_{S} is the system clock frequency.	0xFF	R/W
0x1008	Tuning word clamp	[7:0]	DPLL0 freerun tuning word offset clamp [23:16]		DPLL0 freerun tuning word offset clamp. This 24-bit bit field sets the DPLL0 tuning word offset clamp, f_{CLAMP} . The formula is $f_{CLAMP} = DPLL0$ freerun tuning word offset clamp × ($f_s/236$), where f_s is the system clock frequency.	0xFF	R/W
0x1009	NCO gain	[7:4]	Reserved		Reserved.	0x0	R/W
		[3:0]	DPLL0 NCO gain filter bandwidth	0x0	DPLL0 NCO gain freerun tuning word filter bandwidth. This 4-bit bit field controls the low pass filter, –3 dB cutoff frequency of the DPLL0 NCO. 250 kHz (maximum).	0x0	R/W
				0x1	120 kHz.		
				0x2	62 kHz.		
				0x3	31 kHz.		
				0x4	16 kHz.		
				0x5	7.8 kHz.		
				0хб	3.9 kHz.		
				0x7	1.9 kHz.		
		1		0x8	970 Hz.		
				0x9	490 Hz.		
				0xa	240 Hz.		
				0xb	120 Hz.		
				0xc	61 Hz.		
				0xd	30 Hz. 15 Hz.		
				0xe			
				0xf	7.6 Hz (minimum).		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x100A	History accumulation timer	[7:0]	DPLL0 history accumulation timer [7:0]		DPLL0 history accumulation timer. This 28-bit bit field is the duration of the averaging period (in milliseconds) and calculates the holdover tuning word value. It is referred to as t_{HAT} in the data sheet. The allowable range is 1 ms to 268,435.455 sec (approximately 74.5 hours), and the behavior is undefined for a timer value of 0x0000.	0xA	R/W
0x100B	History accumulation timer	[7:0]	DPLL0 history accumulation timer [15:8]		DPLL0 history accumulation timer. This 28-bit bit field is the duration of the averaging period (in milliseconds) and calculates the holdover tuning word value. It is referred to as t_{HAT} in the data sheet. The allowable range is 1 ms to 268,435.455 sec (approximately 74.5 hours), and the behavior is undefined for a timer value of 0x0000.	0x0	R/W
0x100C	History accumulation timer	[7:0]	DPLL0 history accumulation timer [23:16]		DPLL0 history accumulation timer. This 28-bit bit field is the duration of the averaging period (in milliseconds) and calculates the holdover tuning word value. It is referred to as t_{HAT} in the data sheet. The allowable range is 1 ms to 268,435.455 sec (approximately 74.5 hours), and the behavior is undefined for a timer value of 0x0000.	0x0	R/W
0x100D	History	[7:4]	Reserved		Reserved.	0x0	R
	accumulation timer	[3:0]	DPLL0 history accumulation timer [27:24]		DPLL0 history accumulation timer. This 28-bit bit field is the duration of the averaging period (in milliseconds) and calculates the holdover tuning word value. It is referred to as t_{HAT} in the data sheet. The allowable range is 1 ms to 268,435.455 sec (approximately 74.5 hours), and the behavior is undefined for a timer value of 0x0000.	0x0	R/W
0x100E	History	[7:6]	Reserved		Reserved.	0x0	R
	accumulation timer	5	DPLL0 delay history until not phase slew limiting		DPLL0 delay history until not phase slew limiting. Setting this bit to Logic 1 delays the tuning word history averaging during acquisition until the DPLL0 phase slew limiter is inactive. At that point, the tuning word averaging is further delayed by the value in the DPLL0 history hold off time. This bit ensures that the holdover history accumulation begins only when the DPLL is fully settled. When this bit is Logic 0, the history averaging is not contingent on the state of the phase slew limiter.	0x1	R/W
		4	DPLL0 delay history frequency lock		DPLL0 delay history until frequency lock. Setting this bit to Logic 1 delays the tuning word history averaging during acquisition until the DPLL0 is frequency locked. At that point, the tuning word averaging is further delayed by the value in the DPLL0 history hold off time. This bit ensures that the holdover history accumulation begins only when the DPLL is fully settled. When this bit is Logic 0, the history averaging is not contingent on the state of the frequency lock detector.	0x1	R/W
		3	DPLLO delay history phase lock		DPLL0 delay history until phase lock. Setting this bit to Logic 1 delays the tuning word history averaging during acquisition until the DPLL0 is phase locked. At this point, the tuning word averaging is further delayed by the value in the DPLL0 history hold off time. This bit ensures that holdover history averaging begins only when the DPLL is fully settled. When this bit is Logic 0, the history averaging is not contingent on the state of the phase lock detector.	0x1	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		2	DPLL0 quick start history		DPLL0 quick start history. Setting this bit to Logic 1 allows the DPLL0 tuning word history to be available in 1/4 of the time specified in the DPLL0 history accumulation timer. This bit ensures that there is sufficient holdover history in cases where the DPLL is locked to a reference for a short period.	0x0	R/W
		1	DPLL0 single sample history		DPLL0 single sample history. Setting this bit to Logic 1 allows DPLL0 to use the most recent tuning word for holdover in the event that the tuning word history is not available. This bit can be used in conjunction with the quick start history bit in this register. This bit ensures that there is a minimal holdover history available in cases where the DPLL is locked to a reference for a short period.	0x0	R/W
		0	DPLL0 persistent history		DPLL0 persistent history. Setting this bit to Logic 1 prevents the DPLL0 tuning word history from being reset if there is an interruption in the tuning word averaging. This bit ensures that there is sufficient holdover history in cases where the DPLL is locked to a reference for a short period. When this bit is Logic 0, the history accumulation resets when the DPLL exits holdover and reacquires.	0x0	R/W
0x100F	History	[7:3]	Reserved		Reserved.	0x0	R
	accumulation timer	2	DPLL0 pause history while slew limiting		DPLLO pause history while phase slew limiting. Setting this bit to Logic 1 pauses the tuning word history averaging when DPLLO is phase slewing. The tuning word history is reset when the DPLL regains phase lock if the persistent history bit is Logic 0. This bit ensures that tuning word history averaging occurs only when the DPLL is fully settled. When this bit is Logic 0, the history averaging occurs regardless of phase slewing.	0x0	R/W
		1	DPLL0 pause history frequency unlock		DPLL0 pause history while frequency unlock. Setting this bit to Logic 1 pauses the holdover tuning word history averaging when DPLL0 is frequency unlocked. The holdover history is reset when the DPLL regains frequency lock if the persistent history bit is Logic 0. This bit ensures that holdover history averaging occurs only when the DPLL is fully settled. When this bit is Logic 0, the history averaging occurs regardless of frequency lock status.	0x0	R/W
		0	DPLL0 pause history phase unlock		DPLL0 pause history while phase unlock. Setting this bit to Logic 1 pauses the holdover tuning word history averaging when the DPLL0 phase slew limiter is active. The holdover history is reset when the DPLL is no longer phase slew limited if the persistent history bit is Logic 0. This bit ensures that holdover history averaging occurs only when the DPLL is fully settled. When this bit is Logic 0, the history averaging occurs regardless of phase lock status.	0x0	R/W
0x1010	History accumulation hold off	[7:0]	DPLL0 history hold off time		DPLL0 history hold off time. This 8-bit bit field is the amount of time (in milliseconds) that the DPLL tuning word history accumulation is delayed. Hold off is disabled if this bit field is 0x00.	0x0	R/W
0x1011	Phase slew limit	[7:0]	DPLL0 phase slew limit rate [7:0]		DPLL0 phase slew limit rate. This 28-bit bit field is the DPLL0 phase slew limit rate (in picoseconds/second) and is referred to as t _{OFST} in the data sheet.	0x0	R/W
0x1012	Phase slew limit	[7:0]	DPLL0 phase slew limit rate [15:8]		DPLL0 phase slew limit rate. This 28-bit bit field is the DPLL0 phase slew limit rate (in picoseconds/second) and is referred to as toFST in the data sheet.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1013	Phase slew limit	[7:0]	DPLL0 phase slew limit rate [23:16]		DPLL0 phase slew limit rate. This 28-bit bit field is the DPLL0 phase slew limit rate (in picoseconds/second) and is referred to as t_{OFST} in the data sheet.	0x0	R/W
0x1014	Phase slew limit	[7:0]	DPLL0 phase slew limit rate [31:24]		DPLL0 phase slew limit rate. This 28-bit bit field is the DPLL0 phase slew limit rate (in picoseconds/second) and is referred to as t _{OFST} in the data sheet.	0x6	R/W
0x1015	Phase offset	[7:0]	DPLL0 phase offset [7:0]		DPLL0 closed-loop phase offset. This signed 40-bit bit field is the DPLL0 closed-loop phase offset (in picoseconds) and is referred to as t _{OFST} in the data sheet.	0x0	R/W
0x1016	Phase offset	[7:0]	DPLL0 phase offset [15:8]		DPLL0 closed-loop phase offset. This signed 40-bit bit field is the DPLL0 closed-loop phase offset (in picoseconds) and is referred to as t _{OFST} in the data sheet.	0x0	R/W
0x1017	Phase offset	[7:0]	DPLL0 phase offset [23:16]		DPLL0 closed-loop phase offset. This signed 40-bit bit field is the DPLL0 closed-loop phase offset (in pico-seconds) and is referred to as t _{OFST} in the data sheet.	0x0	R/W
0x1018	Phase offset	[7:0]	DPLL0 phase offset [31:24]		DPLL0 closed-loop phase offset. This signed 40-bit bit field is the DPLL0 closed-loop phase offset (in picoseconds) and is referred to as toFST in the data sheet.	0x0	R/W
0x1019	Phase offset	[7:0]	DPLL0 phase offset [39:32]		DPLL0 closed-loop phase offset. This signed 40-bit bit field is the DPLL0 closed-loop phase offset (in pico-seconds) and is referred to as toFST in the data sheet.	0x0	R/W
0x101A	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₁ significand [7:0]		DPLL0 temperature compensation C_1 significand. This 10-bit bit field is the significand for the C_1 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x101B	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₁ significand [15:8]		DPLL0 temperature compensation C_1 significand. This 10-bit bit field is the significand for the C_1 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x101C	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C1 exponent		DPLL0 temperature compensation C_1 exponent. This 6-bit bit field is the exponent for the C_1 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x101D	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₂ significand [7:0]		DPLL0 temperature compensation C_2 significand. This 10-bit bit field is the significand for the C_2 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x101E	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₂ significand [15:8]		DPLL0 temperature compensation C_2 significand. This 10-bit bit field is the significand for the C_2 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x101F	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₂ exponent		DPLL0 temperature compensation C_2 exponent. This 6-bit bit field is the exponent for the C_2 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1020	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₃ significand [7:0]		DPLL0 temperature compensation C_3 significand. This 10-bit bit field is the significand for the C_3 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1021	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₃ significand [15:8]		DPLL0 temperature compensation C_3 significand. This 10-bit bit field is the significand for the C_3 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1022	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₃ exponent		DPLL0 temperature compensation C_3 exponent. This 6-bit bit field is the exponent for the C_3 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1023	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₄ significand [7:0]		DPLL0 temperature compensation C ₄ significand. This 10-bit bit field is the significand for the C ₄ coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1024	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₄ significand [15:8]		DPLL0 temperature compensation C ₄ significand. This 10-bit bit field is the significand for the C ₄ coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1025	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₄ exponent		DPLL0 temperature compensation C4 exponent. This 6-bit bit field is the exponent for the C4 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1026	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C₅ significand [7:0]		DPLL0 temperature compensation C_5 significand. This 10-bit bit field is the significand for the C_5 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1027	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₅ significand [15:8]		DPLL0 temperature compensation C_5 significand. This 10-bit bit field is the significand for the C_5 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1028	Phase temperature compensation polynomial	[7:0]	DPLL0 phase temperature compensation C ₅ exponent		DPLL0 temperature compensation C_5 exponent. This 6-bit bit field is the exponent for the C_5 coefficient of the DPLL0 temperature compensation polynomial.	0x0	R/W
0x1029	Phase adjust	[7:3]	Reserved		Reserved.	0x0	R
	filter bandwidth	[2:0]	DPLL0 phase temperature compensation filter bandwidth		DPLL0 temperature compensation low-pass filter bandwidth. This 3-bit bit field controls the low pass filter –3 dB cutoff frequency of the DPLL0 delay compensation block.	0x0	R/W
				0x0	240 Hz (maximum).		
				0x1	120 Hz.		
				0x2	60 Hz. 30 Hz.		
				0x3 0x4	30 Hz. 15 Hz.		
				0x4 0x5	7.6 Hz.		
				0x6	3.8 Hz.		
				0x7	1.9 Hz (minimum).		
0x102A	Inactive	[7:3]	Reserved		Reserved.	0x0	R
	profile	[2:0]	DPLL0 inactive profile index		DPLL0 inactive profile index. The inactive profile index is used while DPLL0 is in holdover to retain the exact DPLL configuration, including the desired input/output phase relationship.	0x0	R/W

APLL CHANNEL 0 REGISTERS—REGISTER 0x1080 TO REGISTER 0x1083

Table 45. APLL Channel 0 Registers Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1080	Charge pump current	Enable APLL0 manual charge pump current		APLL0 manual charge pump current						0x94	R/W
0x1081	M0 divider		APLL0 M0 feedback divider							0x00	R/W
0x1082	Loop filter control	APLL0 loop filter ze	APLL0 loop filter zero resistor (R1) APLL				D loop filter pole capacitor (C2) APLL0 loop filter second pole resistor (R3)				
0x1083	DC offset current	Re	served			APLL0 dc offset current direction		dc offset it value	Enable APLL0 dc offset current	0x03	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1080	Charge	7	Enable APLL0		Enables manual control of the APLL0 charge pump	0x0	R/W
	pump		manual charge		current.		
	current		pump current	0	Disables manual charge pump current control. Disables manual control of the APLL0 charge pump current.		
				1	Enables manual charge pump current control. Enables manual control of the APLL0 charge pump current.		
		[6:0]	APLL0 manual		APLL0 manual charge pump current (LSB = 3.5μ A). The	0x0	R/W
			charge pump		user must set the enable manual charge pump current		
			current	00000011	control bit in this register for this setting to be enabled. $1 \times LSB$.		
				0000001b			
				0000010b	$2 \times LSB.$		
		[7.0]		1111111b	127 × LSB.		D 444
0x1081	M0 divider	[7:0]	APLL0 M0 feedback divider		APLL multiplication ratio. APLL0 M0 feedback divider ratio. Allowable values are 14 to 255.	0x0	R/W
0x1082	Loop filter	[7:5]	APLL0 loop filter		Loop Filter R1. APLL0 Loop Filter R1 (zero resistor) value.	0x0	R/W
0X1002	control	[7.5]	zero resistor (R1)	000	0Ω (short).	0.00	11/ 11
			2010 100000 ()	000	250 Ω.		
				010	500 Ω.		
				010	750 Ω.		
				100	1.00 kΩ.		
				100	1.25 kΩ.		
				101	1.50 kΩ.		
				110	1.75 kΩ.		
		[4:2]	APLL0 loop filter		Loop Filter C2. APLL0 Loop Filter C2 (pole capacitor) value.	0x0	R/W
		[4.2]	pole capacitor	000	8 pF.	0.00	11/ 11
			(C2)	000	24 pF.		
				010	40 pF.		
				010	56 pF.		
				100	72 pF.		
				100	88 pF.		
				110	104 pF.		
				111	120 pF.		
		[1:0]	APLL0 loop filter		Loop Filter R3. APLL0 Loop Filter R3 (second pole	0x0	R/W
		[]	second pole		resistor) value.	ente	
			resistor (R3)	00	200 Ω.		
				01	250 Ω.		
				10	333 Ω.		
				11	500 Ω.		
0x1083	DC offset	[7:4]	Reserved		Reserved.	0x0	R
	current	3	APLL0 dc offset		DC offset current direction. This bit sets the direction of	0x0	R/W
			current direction		the APLL0 dc offset current.		
				0	Up. The dc offset current offset is positive.		
				1	Down. The dc offset current offset is negative.		

Table 46. APLL Channel 0 Registers Details

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		[2:1]	APLL0 dc offset current value		DC offset current. Magnitude of the APLL0 charge pump dc offset current value.	0x0	R/W
				00	50% offset current. Offset current is 50% of the programmed APLL0 charge pump current (default).		
				01	25% offset current. Offset current is 25% of the programmed APLL0 charge pump current.		
				10	12.5% offset current. Offset current is 12.5% of the programmed APLL0 charge pump current.		
				11	6.25% offset current. Offset current is 6.25% of the programmed APLL0 charge pump current.		
		0	Enable APLL0 dc offset current		DC offset current enable. Setting this bit enables the APLL0 dc offset current.	0x0	R/W

DISTRIBUTION GENERAL 0 REGISTERS—REGISTER 0x10C0 TO REGISTER 0x10DC

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x10C0	Modulation step		·		Modulat	on step [7:0]				0x00	R/W
0x10C1	Modulation step				Modulati	on step [15:8]				0x00	R/W
0x10C2	Modulation counter A				Q0A modulat	ion counter [7:0]				0x00	R/W
0x10C3	Modulation counter A				Q0A modulat	on counter [15:8]				0x00	R/W
0x10C4	Modulation counter A				Q0A modulati	on counter [23:16]				0x00	R/W
0x10C5	Modulation counter A		R	Reserved		Q	0A modulation	counter [27:24	4]	0x00	R/W
0x10C6	Modulation counter B				Q0B modulat	ion counter [7:0]				0x00	R/W
0x10C7	Modulation counter B				Q0B modulat	on counter [15:8]				0x00	R/W
0x10C8	Modulation counter B				Q0B modulati	on counter [23:16]				0x00	R/W
0x10C9	Modulation counter B		R	Reserved		_	0B modulation	counter [27:24	4]	0x00	R/W
0x10CA	Modulation counter C		Q0C modulation counter [7:0]							0x00	R/W
0x10CB	Modulation counter C				Q0C modulat	on counter [15:8]				0x00	R/W
0x10CC	Modulation counter C				Q0C modulati	on counter [23:16]				0x00	R/W
0x10CD	Modulation counter C		R	Reserved		Q	0C modulation	counter [27:24	4]	0x00	R/W
0x10CE	FB clock sync edge				Reserved				divider sync Ige	0x00	R/W
0x10CF	Modulator A settings		R	Reserved		Enable Q0A N-shot modulator	Enable Q0A single-pulse modulator	Q0A modulator polarity	Enable Q0A modulator	0x00	R/W
0x10D0	Modulator B settings		R	Reserved		Enable Q0B N-shot modulator	Enable Q0B single-pulse modulator	Q0B modulator polarity	Enable Q0B modulator	0x00	R/W
0x10D1	Modulator C settings	Reserved				Enable Q0C N-shot modulator	Enable Q0C single-pulse modulator	Q0C modulator polarity	Enable Q0C modulator	0x00	R/W
0x10D2	N-shot gaps				N-s	not gap	•		•	0x00	R/W
0x10D3	N-shot request	51					0x00	R/W			

UG-1146

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x10D4	N-shot enable	Enable Q0BB PRBS	Enable Q0BB N-shot	Enable Q0B PRBS	Enable Q0B N-shot	Enable Q0AA PRBS	Enable Q0AA N-shot	Enable Q0A PRBS	Enable Q0A N-shot	0x00	R/W
0x10D5	N-shot settings		Rese	rved		Enable Q0CC PRBS	Enable Q0CC N-shot	Enable QOC PRBS	Enable Q0C N-shot	0x00	R/W
0x10D6	N-shot retime				Reserved				Enable N- shot retime	0x00	R/W
0x10D7	Driver A configuration	Rese	Reserved F		OUT0A driver mode		OUT0A driver current		Enable OUT0A HCSL	0x01	R/W
0x10D8	Driver B configuration			Bypass mute retiming Channel B	OUT0B dr	iver mode	OUT0B driv	er current	Enable OUT0B HCSL	0x01	R/W
0x10D9	Driver C configuration	Rese	rved	Bypass mute retiming Channel C	OUT0C dr	iver mode	OUT0C driv	er current	Enable OUT0C HCSL	0x01	R/W
0x10DA	Secondary clock path		Rese	rved		Enable SYSCLK Q0C	Enable SYSCLK Q0B	Enable SYSCLK Q0A	Enable SYSCLK Sync Mask	0x00	R/W
0x10DB	Sync control		Reserved				Enable DPLL0 reference sync	Autosy	nc mode	0x00	R/W
0x10DC	Automute control	Mask OUT0CC autounmute	Mask OUT0C autounmute	Mask OUT0BB autounmute	Mask OUT0B autounmute	Mask OUT0AA autounmute	Mask OUT0A autounmute		itounmute ode	0x00	R/W

Table 48. Distribution General 0 Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x10C0	Modulation step		Modulation step [7:0]		Modulation step. This 16-bit bit field controls the duty cycle step, which is the duty cycle deviation of a modulation event. The unit is the number of distribution clock half cycles.	0x0	R/W
0x10C1	Modulation step	[7:0]	Modulation step [15:8]		Modulation step. This 16-bit bit field controls the duty cycle step, which is the duty cycle deviation of a modulation event. The unit is the number of distribution clock half cycles.	0x0	R/W
0x10C2	Modulation counter A		Q0A modulation counter [7:0]		Q0A modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10C3	Modulation counter A		Q0A modulation counter [15:8]		Q0A modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10C4	Modulation counter A		Q0A modulation counter [23:16]		Q0A modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10C5	Modulation	[7:4]	Reserved		Reserved.	0x0	R
	counter A		Q0A modulation counter [27:24]		Q0A modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10C6	Modulation counter B		Q0B modulation counter [7:0]		Q0B modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10C7	Modulation counter B	[7:0]	Q0B modulation counter [15:8]		Q0B modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x10C8	Modulation counter B		Q0B modulation counter [23:16]		Q0B modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10C9	Modulation		Reserved		Reserved.	0x0	R
	counter B		modulation counter [27:24]		Q0B modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10CA	Modulation counter C	[7:0]	Q0C modulation counter [7:0]		Q0C modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10CB	Modulation counter C	[7:0]	Q0C modulation counter [15:8]		Q0C modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10CC	Modulation counter C	[7:0]	Q0C modulation counter [23:16]		Q0C modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10CD	Modulation	[7:4]	Reserved		Reserved.	0x0	R
	counter C	[3:0]	Q0C modulation counter [27:24]		Q0C modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x10CE	Feedback	[7:2]	Reserved		Reserved.	0x0	R
	clock sync edge	[1:0]	Feedback divider sync edge		Feedback divider sync edge. This bit field is only used when embedded output clock modulation is turned on, and allows the user to delay the synchronization edge (relative to the modulation base edge) of the feedback divider. Allowable values (in decimal) are 0, 1, 2, or 3 clock edges.	0x0	R/W
0x10CF	Modulator A	[7:4]	Reserved		Reserved.	0x0	R
	settings	3	Enable Q0A N-shot modulator		Enable Q0A modulator N-shot. Setting this bit to Logic 1 enables the embedded clock modulator controller to use the N-shot request signal to trigger five modulation events when the N-shot request mode bit is Logic 0 (edge triggered) or continuously when the N-shot request mode bit is Logic 1 (level sensitive).	0x0	R/W
		2	Enable Q0A single-pulse modulation		Single-pulse modulation. Logic 0: dc balanced duty cycle modulation. Logic 1: single-pulse modulation.	0x0	R/W
		1	Q0A modulation polarity		Modulation polarity. This bit sets the type of (duty cycle) modulation event. Logic 0: low/high or low (single-pulse modulation). Logic 1: high/low or high (single-pulse modulation).	0x0	R/W
		0	Enable Q0A modulator		Enable embedded clock modulator. Setting this bit to Logic 1 enables the embedded clock (pulse width/duty cycle) modulation.	0x0	R/W
0x10D0	Modulator B	[7:4]	Reserved		Reserved.	0x0	R
	settings	3	Enable Q0B N- shot modulator		Enable Q0A Modulator N-shot. Setting this bit to Logic 1 enables the embedded clock modulator controller to use the N-shot request signal to trigger five modulation events when the N-shot request mode bit is Logic 0 (edge triggered) or continuously when the N-shot request mode bit is Logic 1 (level sensitive).	0x0	R/W
						0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		1	Q0B modulation		Modulation polarity. This bit sets the type of (duty cycle) modulation event.	0x0	R/W
			polarity		Logic 0: low/high or low (single-pulse modulation).		
					Logic 1: high/low or high (single-pulse modulation).		
		0	Enable Q0B modulator		Enable embedded clock modulator. Setting this bit to Logic 1 enables the embedded clock (pulse width/duty cycle) modulator.	0x0	R/W
0x10D1	Modulator C	[7:4]	Reserved		Reserved.	0x0	R
	settings	3	Enable Q0C N-shot modulator		Enable Q0A modulator N-shot. Setting this bit to Logic 1 enables the embedded clock modulator controller to use the N-shot request signal to trigger five modulation events when the N-shot request mode bit is Logic 0 (edge triggered) or continuously when the N-shot request mode bit is Logic 1 (level sensitive).	0x0	R/W
		2	Enable Q0C		Single-pulse modulation.	0x0	R/W
			single-pulse		Logic 0: dc balanced duty cycle modulation.		
			modulation		Logic 1: single-pulse modulation.		
		1	Q0C modulation polarity		Modulation polarity. This bit sets the type of (duty cycle) modulation event. Logic 0: low/high or low (single-pulse modulation).	0x0	R/W
		0	5 11 000		Logic 1: high/low or high (single-pulse modulation).	0.0	D (14)
		0	Enable Q0C modulator		Enable embedded clock modulator. Setting this bit to Logic 1 enables the embedded clock (pulse width/duty cycle) modulator.	0x0	R/W
0x10D2	N-shot gaps	[7:0]	N-shot gap		N-shot gap. This unsigned, 8-bit bit field contains the length (measured in Q divider output cycles) of the gap in a JESD204B N-shot pattern generation.	0x0	R/W
0x10D3	N-shot request	7	Reserved		Reserved.	0x0	R
		6	N-shot		Channel 0 N-shot request mode.	0x0	R/W
			request mode		Logic 0: the N-shot generators operate in burst mode, and the rising edge of the trigger signal initiates the burst.		
					Logic 1: the N-shot generators operate in period gapped mode. In this mode, N-shot bursts occur as long as the trigger is in a Logic 1 state; for this reason, it is referred to as a level sensitive trigger mode.		
		[5:0]	N-shot		Number of clock pulses in an N-shot burst. This unsigned, 6-bit bit field contains the number of clock cycles in an N-shot burst.	0x0	R/W
0x10D4	N-shot enable	7	Enable Q0BB PRBS		Q0BB JESD204B PRBS enable. Setting this bit to Logic 1 enables the pseudorandom bit sequence clocked at divider output rate.	0x0	R/W
		6	Enable Q0BB		N-shot enable.	0x0	R/W
			N-shot		Logic 0: JESD204B N-shot mode disabled.		
					Logic 1: JESD204B N-shot mode enabled. The output is muted until a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥ 8 .		
		5	Enable Q0B PRBS		Q0B JESD204B PRBS enable. Setting this bit to Logic 1 enables pseudorandom bit sequence clocked at the divider output rate.	0x0	R/W
		4	Enable Q0B		N-shot enable.	0x0	R/W
			N-shot		Logic 0: JESD204B N-shot mode disabled.		
					Logic 1: JESD204B N-shot mode enabled. The output is muted until a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥ 8 .		
		3	Enable Q0AA PRBS		Q0AA JESD204B PRBS enable. Setting this bit to Logic 1 enables the pseudorandom bit sequence clocked at the divider output rate.	0x0	R/W
		2	Enable Q0AA		N-shot enable.	0x0	R/W
			N-shot		Logic 0: JESD204B N-shot mode disabled.		
					Logic 1: JESD204B N-shot mode enabled. The output is muted until a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥ 8 .		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		1	Enable Q0A PRBS		Q0A JESD204B PRBS enable. Setting this bit to Logic 1 enables the pseudorandom bit sequence clocked at the divider output rate.	0x0	R/W
		0	Enable Q0A		N-shot enable.	0x0	R/W
			N-shot		Logic 0: JESD204B N-shot mode disabled.		
					Logic 1: JESD204B N-shot mode enabled. The output is muted until a		
					user programmed N-shot burst is requested, which can be periodic.		
					The associated Q divider must be ≥ 8 .		
0x10D5	N-shot		Reserved		Reserved.	0x0	R
	settings	3	Enable Q0CC PRBS		Q0CC JESD204B PRBS enable. Setting this bit to Logic 1 enables the pseudorandom bit sequence clocked at the divider output rate.	0x0	R/W
		2	Enable Q0CC		N-shot Enable	0x0	R/W
			N-shot		Logic 0: JESD204B N-shot mode disabled.		
					Logic 1: JESD204B N-shot mode enabled. The output is muted until		
					a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥ 8 .		
		1	Enable Q0C PRBS		Q0C JESD204B PRBS enable. Setting this bit to Logic 1 enables the pseudorandom bit sequence clocked at the divider output rate.	0x0	R/W
		0	Enable Q0C N-		N-shot enable.	0x0	R/W
			shot		Logic 0: JESD204B N-shot mode disabled.		
					Logic 1: JESD204B N-shot mode enabled. The output is muted until a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥8.		
0x10D6	N-shot retime	[7:1]	Reserved		Reserved.	0x0	R
		0	Enable N-shot		Enable N-shot retiming.	0x0	R/W
			retime		Logic 0: Mx pins or registers (user-selectable) provide the JESD204B N-shot retiming source.		
					Logic 1: the N short retiming block provides the JESD204B N-shot retiming source.		
0x10D7	Driver A	[7:6]	Reserved		Reserved.	0x0	R
	configuration	5	Bypass mute		Removes retiming from Channel A mute. In normal operation, this	0x0	R/W
			retiming		bit is Logic 0, and the signal to mute an output channel is retimed		
			Channel A		so that runt pulses are avoided. Setting this bit to Logic 1 removes		
		[4.2]			the retiming function, and mutes the channel immediately.	0.40	R/W
		[4:3]	OUT0A driver mode	0	Selects single-ended or differential output mode. Differential output. Divider Q0A determines the divide ratio.	0x0	K/ VV
			mode		•		
				1	Dual-, single-ended output driven by Divider Q0A. Divider Q0A determines the divide ratio.		
				10	Dual-, single-ended output driven by separate Q dividers. Both		
				10	Divider Q0A and Divider Q0AA are enabled, although it is recommended that they have the same divide ratio.		
		[2.1]	OUT0A driver		Output driver current. This current setting applies to both the	0x0	R/W
		[2.1]	current		normal and complimentary output pins.	0.00	10/00
				0	7.5 mA.		
					12.5 mA.		
					15 mA.		
		0	Enable OUT0A		Selects current source (HCSL) or current sink (CML) mode.	0x0	R/W
		Ŭ	HCSL		Logic 0: CML mode. An external pull-up resistor is required.	570	
					Logic 1: HCSL mode. An external pull-down resistor is required.		
					Logic 1. HOJE mode. An external pull-down resistor is required.		1

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x10D8	Driver B	[7:6]	Reserved		Reserved.	0x0	R
	configuration	5	Bypass mute		Removes retiming from Channel B mute. In normal operation, this	0x0	R/W
			retiming		bit is Logic 0, and the signal to mute an output channel is retimed		
			Channel B		so runt pulses are avoided. Setting this bit to Logic 1 removes the retiming function and mutes the channel immediately.		
		[4:3]	OUT0B driver		Selects single-ended or differential output mode.	0x0	R/W
			mode		Differential output. Divider Q0B determines the divide ratio.		
				1	Dual-, single-ended output driven by Divider Q0A. Divider Q0B determines the divide ratio.		
				10	Dual-, single-ended output driven by separate Q dividers. Both Divider Q0B and Divider Q0BB are enabled, although it is recommended that they have the same divide ratio.		
		[2:1]	OUT0B driver current		Output driver current. This current setting applies to both the normal and complimentary output pins.	0x0	R/W
				0	7.5 mA.		
				1	12.5 mA.		
				10	15 mA.		
		0	Enable OUT0B		Selects HCSL or CML mode.	0x0	R/W
			HCSL		Logic 0: CML mode. An external pull-up resistor is required.		
					Logic 1: HCSL mode. An external pull-down resistor is required.		
0x10D9	Driver C	[7:6]	Reserved		Reserved.	0x0	R
	configuration	5	Bypass mute retiming Channel C		Removes retiming from Channel C mute. In normal operation, this bit is Logic 0, and the signal to mute an output channel is retimed so runt pulses are avoided. Setting this bit to Logic 1 removes the retiming function, and mutes the channel immediately.	0x0	R/W
		[4:3]	OUT0C driver		Selects single-ended or differential output mode.	0x0	R/W
			mode	0	Differential output. Divider Q0C determines the divide ratio.		
					Dual-, single-ended output driven by Divider Q0A. Divider Q0C determines the divide ratio.		
				10	Dual-, single-ended output driven by separate Q dividers. Both Divider Q0C and Divider Q0CC are enabled, although it is recommended that they have the same divide ratio.		
		[2:1]	OUT0C driver current		Output driver current. This current setting applies to both the normal and complimentary output pins.	0x0	R/W
				0	7.5 mA.		
				1	12.5 mA.		
				10	15 mA.		
		0	Enable OUT0C		Selects HCSL or CML mode.	0x0	R/W
			HCSL		Logic 0: CML mode. An external pull-up resistor is required.		
					Logic 1: HCSL mode. An external pull-down resistor is required.		
0x10DA	Secondary	[7:4]	Reserved		Reserved.	0x0	R
	clock path	3	Enable SYSCLK Q0C		Enable SYSCLK to Divider Q0C. Setting this bit to Logic 1 enables a buffered copy of the system clock to Divider Q0C.	0x0	R/W
		2	Enable SYSCLK Q0B		Enable SYSCLK to Channel 0B. Setting this bit to Logic 1 enables a buffered copy of the system clock to Divider Q0B.	0x0	R/W
		1	Enable SYSCLK Q0A		Enable SYSCLK to Channel 0A. Setting this bit to Logic 1 enables a buffered copy of the system clock to Divider Q0A.	0x0	R/W
		0	Enable SYSCLK sync mask		Enable SYSCLK sync mask. Setting this bit to Logic 1 ensures no sync events occur on outputs that are assigned to outputting the SYSCLK. The purpose of this feature is to ensure no runt pulses or stalled clocks occur when a SYSCLK output clocks a microprocessor. Set this bit to Logic 1 only when the SYSCLK is fully configured and stable, because runt pulses can occur while configuring the SYSCLK.	0x0	R/W

Addr.	Name			Settings	Description		Access
0x10DB	Sync control		Reserved		Reserved.	0x0	R
		2	Enable DPLL0 reference sync		DPLL0 reference sync enable. Setting this bit to Logic 1 enables automatic reference synchronization on DPLL0.	0x0	R/W
		[1:0]	Autosync mode		Autosync mode. This bit field controls when the clock distribution block receives a synchronization event. The output drivers do not toggle until there is a synchronization event.	0x0	R/W
				0	Manual sync. Automatic output synchronization disabled. In this mode, the user must issue a clock distribution synchronization command manually.		
				1	Immediate. Output synchronization occurs immediately after APLL lock.		
					DPLL phase lock. Output synchronization occurs when the DPLL phase locks.		
					DPLL frequency lock. Output synchronization occurs when the DPLL frequency locks.		
x10DC	Automute	7	Mask OUT0CC		Mask OUT0CC autounmute.	0x0	R/W
	control		autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		
		6	Mask OUT0C		Mask OUT0C autounmute.	0x0	R/W
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
				Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.			
	5	Mask OUT0BB		Mask OUT0BB autounmute.	0x0	R/W	
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		
		4	Mask OUT0B		Mask OUT0B autounmute.	0x0	R/W
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.	UNU	
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		
		3	Mask OUT0AA		Mask OUT0AA autounmute.	0x0	R/W
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		
		2	Mask OUT0A		Mask OUT0A autounmute.	0x0	R/W
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		
		[1:0]	DPLL0 autounmute mode		DPLL0 autounmute mode. This bit field controls at which point the output drivers start to toggle during acquisition while DPLL0 is in hitless mode.	0x0	R/W
					Disabled. Automatic unmuting is disabled and the output driver starts toggling immediately.		
				1	Hitless acquisition. Automatic driver unmuting occurs upon activation of a hitless profile.		
					Phase lock detect (hitless mode only). Automatic driver unmuting occurs when phase lock is detected and the DPLL is in hitless mode.		
					Frequency lock detect (hitless mode only). Automatic driver unmuting occurs when frequency lock is detected and the DPLL is in hitless mode.		

DISTRIBUTION DIVIDER Q0A REGISTERS—REGISTER 0x1100 TO REGISTER 0x1108

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1100	Divide ratio			(QOA divide ratio [7:0]]		•		0x00	R/W
0x1101	Divide ratio			Q	0A divide ratio [15:8	3]				0x00	R/W
0x1102	Divide ratio			Q	0A divide ratio [23:1	6]				0x00	R/W
0x1103	Divide ratio		Q0A divide ratio [31:24]					0x00	R/W		
0x1104	Phase offset		Q0A phase [7:0]						0x00	R/W	
0x1105	Phase offset		Q0A phase [7.0] Q0A phase [15:8]					0x00	R/W		
0x1106	Phase offset				Q0A phase [23:16]					0x00	R/W
0x1107	Phase offset				Q0A phase [31:24]					0x00	R/W
0x1108	Phase slew configuration	Reserved	Q0A phase [32]	Enable Q0A half divide	Enable Q0A pulse width control	Q0A phase slew mode		imum p slew ste		0x07	R/W

Table 49. Distribution Divider Q0A Registers Summary

Table 50. Distribution Divider Q0AA Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1109 to		Thes		R/W							
0x1111		Register	0x1108), but 1	the register ac	ddresses are o	ffset by 0x00	09. All default	values are id	entical.		

Table 51. Distribution Divider Q0B Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x1112 to		Thes	These registers mimic the Distribution Divider Q0A registers (Register 0x1100 through									
0x111A		Register	0x1108), but t	he register ac	dresses are o	offset by 0x00	09. All default	values are id	entical.			

Table 52. Distribution Divider Q0BB Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x111B to		Thes	These registers mimic the Distribution Divider Q0A registers (Register 0x1100 through									
0x1123		Register	0x1108), but 1	the register ad	ddresses are c	offset by 0x00	09. All default	t values are id	entical.			

Table 53. Distribution Divider Q0C Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x1124 to		Thes	These registers mimic the Distribution Divider Q0A registers (Register 0x1100 through									
0x112C		Register	0x1108), but t	he register ac	ldresses are o	offset by 0x00	09. All default	values are id	entical.			

Table 54. Distribution Divider Q0CC Register Summary

Register	Name	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
0x112D to		Thes	These registers mimic the Distribution Divider Q0A registers (Register 0x1100 through									
0x1135		Register	Register 0x1108), but the register addresses are offset by 0x0009. All default values are identical.									

Image: Second	Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
Image: series of the	0x1100		[7:0]	ratio [7:0]		the Q0A divider. The default value of 0x00000000 equals a divide ratio of 1, resulting in an output frequency that exceeds the maximum frequency for the AD9545.	0x0	R/W
Image: Provide and the set of th	0x1101	Divide ratio	[7:0]			the Q0A divider. The default value of 0x00000000 equals a divide ratio of 1, resulting in an output frequency that	0x0	R/W
Image: series of the seris of the series of the series of the series of the s	0x1102	Divide ratio	[7:0]	-		the Q0A divider. The default value of 0x00000000 equals a divide ratio of 1, resulting in an output frequency that	0x0	R/W
Image: Section of the sectin of the section of the section	0x1103	Divide ratio	[7:0]			the Q0A divider. The default value of 0x00000000 equals a divide ratio of 1, resulting in an output frequency that	0x0	R/W
Image: Second	0x1104	Phase offset	[7:0]			in two ways: the bit field sets the initial phase offset after divider sync (reset); and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to (2 × (divide	0x0	R/W
Image: Second	0x1105	Phase offset	[7:0]			in two ways: the bit field sets the initial phase offset after divider sync (reset); and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to (2 × (divide	0x0	R/W
Image: Second	0x1106	Phase offset	[7:0]			in two ways: the bit field sets the initial phase offset after divider sync (reset); and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to (2 × (divide	0x0	R/W
configuration6Q0A phase [32]Q0A phase control. This bit field controls the Q0A phase in two ways: the bit field sets the initial phase offset after divider sync (reset); and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to (2 × (divide ratio) - 1) in units of Q0A distribution input clock half cycles.0x05Enable Q0A half divideEnable Q0A half divide. Setting this bit to Logic 1 adds 0.5 to the divide ratio programmed into the0x0	0x1107	Phase offset	[7:0]			in two ways: the bit field sets the initial phase offset after divider sync (reset); and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to (2 × (divide	0x0	R/W
 in two ways: the bit field sets the initial phase offset after divider sync (reset); and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to (2 × (divide ratio) – 1) in units of QOA distribution input clock half cycles. 5 Enable QOA half divide 5 Enable QOA half divide attack of the divide ratio programmed into the 	0x1108		7	Reserved		Reserved.	0x0	R
half divide 0.5 to the divide ratio programmed into the		configuration	6	Q0A phase [32]		in two ways: the bit field sets the initial phase offset after divider sync (reset); and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to (2 × (divide	0x0	R/W
			5			0.5 to the divide ratio programmed into the	0x0	R/W
pulse width controlwhether the Q0A phase bit field adjusts the phase offset or the pulse width.			4	pulse width		whether the Q0A phase bit field adjusts the phase offset or the pulse width.	0x0	R/W
0 The Q0A phase bit field controls the phase offset. 1 The Q0A phase bit field controls the pulse width.								

Table 55. Distribution Divider Q0A Registers Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		3	Q0A phase		Q0A phase slew mode.	0x0	R/W
			slew mode	0	Lag only (always slows down frequency). The phase controller slews the phase in the direction that always reduces the output frequency.		
				1	Lead or lag (quickest is automatically calculated). The phase controller slews the phase in the direction requiring the fewest steps. This means the output frequency can increase or decrease during a stepwise phase adjustment sequence.		
		[2:0]	Maximum phase slew step		Maximum phase slew step. This 3-bit bit field controls the maximum allowable phase step while adjusting the phase in the Q0A divider. Each step occurs every output clock cycle.	0x0	R/W
				0	One input clock half-cycle. The phase slew step size is half of the Q divider input period.		
				1	Two input clock half-cycles. The maximum phase slew step size equals the Q divider input period.		
				10	11°. The maximum phase slew step size equals 1/32 (~11.25°) of the output clock period.		
				11	23°. The maximum phase slew step size equals 1/16 (~22.5°) of the output clock period.		
				100	45°. The maximum phase slew step size equals 1/8 (~45°) of the output clock period.		
				101	90°. The maximum phase slew step size equals 1/4 (~90°) of the output clock period.		
				110	180°. The maximum phase slew step size equals half (~180°) of the output clock period.		
				111	Maximum. The maximum phase slew step size equals the output clock period.		

DPLL TRANSLATION PROFILE 0.0 REGISTERS—REGISTER 0x1200 TO REGISTER 0x1217

Table 56. DPLL Translation Profile 0.0 Registers Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1200	Priority and enable	Reserved	k		•	Profile 0.0 sele	ction priori	ty	Enable Profile 0.0	0x00	R/W
0x1201	Source	Res	erved			Prof	le 0.0 refer	ence source selection	on	0x00	R/W
0x1202	Zero delay feedback path	Res	erved			Interna	l/external z	ero delay feedback	path	0x00	R/W
0x1203	Feedback mode	Profile 0.0 loop filter base	Rese	rved		Profile 0.0 tag n	node	Enable Profile 0.0 external zero delay	Enable Profile 0.0 hitless	0x00	R/W
0x1204	Loop bandwidth				Profi	le 0.0 loop band	dwidth [7:0]			0x00	R/W
0x1205	Loop bandwidth				Profil	e 0.0 loop band	width [15:8]		0x00	R/W
0x1206	Loop bandwidth				Profile	0.0 loop band	width [23:1	5]		0x00	R/W
0x1207	Loop bandwidth				Profile	0.0 loop band	width [31:24	1]		0x00	R/W
0x1208	Hitless feedback divider				Profi	le 0.0 hitless N-	divider [7:0]			0xA0	R/W
0x1209	Hitless feedback divider				Profil	e 0.0 hitless N-c	livider [15:8]		0x0F	R/W
0x120A	Hitless feedback divider				Profile	0.0 hitless N-d	vider [23:1	5]		0x00	R/W
0x120B	Hitless feedback divider				Profile	0.0 hitless N-d	ivider [31:24	4]		0x00	R/W
0x120C	Buildout feedback divider				Profile	e 0.0 buildout N	-divider [7:)]		0xA0	R/W
0x120D	Buildout feedback divider				Profile	0.0 buildout N-	divider [15	8]		0x0F	R/W

AD9545 Register Map Reference Manual

Reg.	Name	Bit 7	Bit 6	Bit 5 Bit	4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x120E	Buildout feedback divider			Prof	ile 0.	0 buildout N-	divider [23:	16]	·	0x00	R/W
0x120F	Buildout feedback divider			Prof	ile 0.	0 buildout N-	divider [31:	24]		0x00	R/W
0x1210	Buildout feedback fraction			Pro	ofile	0.0 buildout f	raction [7:0]		0x00	R/W
0x1211	Buildout feedback fraction			Pro	ofile	0.0 buildout fr	action [15:	8]		0x00	R/W
0x1212	Buildout feedback fraction			Pro	file C	0.0 buildout fra	action [23:1	6]		0x00	R/W
0x1213	Buildout feedback modulus			Pro	ofile	0.0 buildout n	nodulus [7:	D]		0x00	R/W
0x1214	Buildout feedback modulus			Pro	file C).0 buildout m	odulus [15	8]		0x00	R/W
0x1215	Buildout feedback modulus			Prof	ile 0.	0 buildout mo	odulus [23:	16]		0x00	R/W
0x1216	Fast lock		Reserved			Pro	file 0.0 fast	acquisition e	excess bandwidth	0x00	R/W
0x1217	Fast lock	Reserved		0 fast acquisi timeout	tion	Reserved	Profi	e 0.0 fast acc	uisition lock settle time	0x00	R/W

Table 57. DPLL Translation Profile 0.1 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x1220 to		These	These registers mimic the DPLL Translation Profile 0.0 registers (Register 0x1200 through									
0x1237		Register 0>	Register 0x1217), but the register addresses are offset by 0x0020. All default values are identical.									

Table 58. DPLL Translation Profile 0.2 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x1240 to		These	These registers mimic the DPLL Translation Profile 0.0 registers (Register 0x1200 through									
0x1257		Register 0	Register 0x1217), but the register addresses are offset by 0x0020. All default values are identical.									

Table 59. DPLL Translation Profile 0.3 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1260 to		These registers mimic the DPLL Translation Profile 0.0 registers (Register 0x1200 through									
0x1277		Register 0x	Register 0x1217), but the register addresses are offset by 0x0020. All default values are identical.								

Table 60. DPLL Translation Profile 0.4 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x1280 to		These	These registers mimic the DPLL Translation Profile 0.0 registers (Register 0x1200 through									
0x1297		Register 0>	Register 0x1217), but the register addresses are offset by 0x0020. All default values are identical.									

Table 61. DPLL Translation Profile 0.5 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x12A0 to		These	These registers mimic the DPLL Translation Profile 0.0 registers (Register 0x1200 through									
0x12B7		Register 0	x1217), but t	Register 0x1217), but the register addresses are offset by 0x0020. All default values are identical.								

Table 62. DPLL Translation Profile 0.0 Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Acces
0x1200	Priority	[7:6]	Reserved		Reserved.	0x0	R
0.1200	and enable	[5:1]	Profile 0.0 selection priority		Profile 0 (Profile 0.0) selection priority. This 5-bit bit field contains the priority of the translation profile. This allows the user to assign different priorities to different reference inputs. 0x00 is the highest priority, and 0x1F is the lowest priority. The choice of priority level for a given translation profile is important. If the priority difference between the active profile, and a valid, but inactive higher priority profile is >7, the DPLL state machine always switches to the higher priority profile. This is called revertive reference switching. Therefore, if revertive switching is desired, ensure that the higher priority profile has a priority that is at least 8 greater than a lower priority profile. If the difference between the priorities of the active profile	0x0	R/W
					and a valid, but inactive higher priority profile is 0 to 7, the DPLL state machine remains on the lower priority profile. This is called nonrevertive reference switching.		
		0	Enable Profile 0.0		Enable DPLL0 Profile 0.0. Setting this bit to Logic 1 enables DPLL0 Profile 0. If this bit is Logic 0, DPLL0 never uses this profile.	0x0	R/W
0x1201	Source	[7:5]	Reserved		Reserved.	0x0	R
		[4:0]	Profile 0.0 reference source selection	0 1 2	Profile 0.0 reference source selection. This 5-bit bit field contains the input source of the translation profile. Reference A. Reference AA. Reference B.	0x0	R/W
				3	Reference BB. Feedback from DPLL1.		
				8 9	Auxiliary NCO 0. Auxiliary NCO 1.		
0x1202	Zero delay	[7:5]	Reserved		Reserved.	0x0	R
	feedback path	[4:0]	External zero delay feed- back path		Profile 0.0 external zero delay feedback path. This 5-bit bit field configures the Profile 0.0 feedback path in hitless external zero delay mode.	0x0	R/W
				0	Reference A. Select this mode if REFA is single-ended or in differential mode.		
				1 2 3	Reference AA. Reference B. Select this mode if REFB is single-ended or in differential mode. Reference BB.		
		[4:0]	Internal zero delay feed- back path		Profile 0.0 internal zero delay feedback path. This 5-bit bit field configures the Profile 0.0 feedback path in hitless internal zero delay mode.	0x0	R/W
				0	OUT0AP. Select this mode if OUT0A is single-ended or in differential mode. OUT0AN.		
				1	OUT0BP. Select this mode if OUT0B is single-ended or in differential mode.		
				3	OUT0BN. OUT0CP. Select this mode if OUT0C is single-ended or in differential mode.		
				5	OUTOCN.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1203	Feedback mode	7	Profile 0.0 loop filter		Profile 0.0 loop filter base coefficients. This bit controls the set of loop filter coefficients used for DPLL0 Profile 0.	0x0	R/W
			base	0	Nominal phase margin (~70°).		
				1	High phase margin (~88.5°). Use this setting for applications that require no more than 0.1 dB of peaking in the DPLL closed-loop transfer function.		
		[6:5]	Reserved		Reserved.	0x0	R/W
		[4:2]	Profile 0.0 tag mode		Profile 0.0 tag mode. This 3-bit bit field configures the Profile 0.0 tag mode.	0x0	R/W
				0	Neither the reference nor feedback path contains tagged events.		
				1	Only the reference path is tagged.		
				2	Only the feedback path is tagged.		
				3	Both reference and feedback paths are tagged, but the untagged rates are unequal.		
		-		4	Both reference and feedback paths are tagged, and the untagged rates are equal.		
		1	Enable Profile 0.0 external zero delay		Enable DPLL0 Profile 0 external zero delay mode. Setting this bit to Logic 1 enables the DPLL0 Profile 0 external zero delay path for hitless mode.	0x0	R/W
		0	Enable		Enable Profile 0.0 hitless operation.	0x0	R/W
			Profile 0.0	0	Selects the default phase buildout mode for DPLL0 Profile 0.		
			hitless	1	Enables hitless mode for DPLL0 Profile 0. Enable this bit for zero delay operation.		
0x1204	Loop bandwidth	[7:0]	Profile 0.0 loop		DPLL0 Profile 0 loop bandwidth. This 32-bit bit field is the DPLL loop bandwidth scaling factor. The default units for	0x0	R/W
			bandwidth [7:0]		this bit field are microseconds (10 sec to 6 sec).		
0x1205	Loop bandwidth	[7:0]	Profile 0.0		DPLL0 Profile 0 loop bandwidth. This 32-bit bit field is the DPLL loop bandwidth scaling factor. The default units for	0x0	R/W
	Danawiath		bandwidth [15:8]		this bit field are microseconds (10 sec to 6 sec).		
0x1206	Loop bandwidth	[7:0]	Profile 0.0 loop		DPLL0 Profile 0 loop bandwidth. This 32-bit bit field is the DPLL loop bandwidth scaling factor. The default units for	0x0	R/W
	bandwidth		bandwidth [23:16]		this bit field are microseconds (10 sec to 6 sec).		
0x1207	Loop bandwidth	[7:0]	Profile 0.0		DPLL0 Profile 0 loop bandwidth. This 32-bit bit field is the DPLL loop bandwidth scaling factor. The default units for	0x0	R/W
	Danawiath		loop bandwidth [31:24]		this bit field are microseconds (10 sec to 6 sec).		
0x1208	Hitless feedback	[7:0]	Profile 0.0 hitless N-		Profile 0.0 feedback divider in hitless mode. This 32-bit bit field is the DPLL0 feedback divide ratio while DPLL0 is in	0xA0	R/W
	divider		divider [7:0]		hitless mode. The feedback divide ratio is the value stored in this bit field plus one.		
0x1209	Hitless feedback	[7:0]	Profile 0.0 hitless N-		Profile 0.0 feedback divider in hitless mode. This 32-bit bit field is the DPLL0 feedback divide ratio while DPLL0 is in	0xF	R/W
	divider		divider [15:8]		hitless mode. The feedback divide ratio is the value stored in this bit field plus one.		
0x120A	Hitless	[7:0]	Profile 0.0		Profile 0.0 feedback divider in hitless mode. This 32-bit bit	0x0	R/W
	feedback divider		hitless N- divider [23:16]		field is the DPLL0 feedback divide ratio while DPLL0 is in hitless mode. The feedback divide ratio is the value stored in this bit field plus one.		
0x120B	Hitless	[7:0]	Profile 0.0		Profile 0.0 feedback divider in hitless mode. This 32-bit bit	0x0	R/W
	feedback divider		hitless N- divider [31:24]		field is the DPLL0 feedback divide ratio while DPLL0 is in hitless mode. The feedback divide ratio is the value stored in this bit field plus one.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x120C	Buildout feedback divider	[7:0]	Profile 0.0 buildout N- divider [7:0]		DPLL0 Profile 0 buildout N-divide ratio. This 32-bit bit field is the integer portion of the DPLL feedback divide ratio while DPLL0 is in phase buildout mode. It is also referred to as the N-divider in the data sheet.	0xA0	R/W
0x120D	Buildout feedback divider	[7:0]	Profile 0.0 buildout N- divider [15:8]		DPLL0 Profile 0 buildout N-divide ratio. This 32-bit bit field is the integer portion of the DPLL feedback divide ratio while DPLL0 is in phase buildout mode. It is also referred to as the N-divider in the data sheet.	0xF	R/W
0x120E	Buildout feedback divider	[7:0]	Profile 0.0 buildout N- divider [23:16]		DPLL0 Profile 0 buildout N-divide ratio. This 32-bit bit field is the integer portion of the DPLL feedback divide ratio while DPLL0 is in phase buildout mode. It is also referred to as the N-divider in the data sheet.	0x0	R/W
0x120F	Buildout feedback divider	[7:0]	Profile 0.0 buildout N- divider [31:24]		DPLL0 Profile 0 buildout N-divide ratio. This 32-bit bit field is the integer portion of the DPLL feedback divide ratio while DPLL0 is in phase buildout mode. It is also referred to as the N-divider in the data sheet.	0x0	R/W
0x1210	Buildout feedback fraction	[7:0]	Profile 0.0 buildout fraction [7:0]		DPLL0 Profile 0 feedback divider fraction in buildout mode. This 24-bit bit field is the numerator of the DPLL fractional feedback divider while DPLL0 is in phase buildout mode. It is also referred to as FRAC in the data sheet.	0x0	R/W
0x1211	Buildout feedback fraction	[7:0]	Profile 0.0 buildout fraction [15:8]		DPLL0 Profile 0 feedback divider fraction in buildout mode. This 24-bit bit field is the numerator of the DPLL fractional feedback divider while DPLL0 is in phase buildout mode. It is also referred to as FRAC in the data sheet.	0x0	R/W
0x1212	Buildout feedback fraction	[7:0]	Profile 0.0 buildout fraction [23:16]		DPLL0 Profile 0 feedback divider fraction in buildout mode. This 24-bit bit field is the numerator of the DPLL fractional feedback divider while DPLL0 is in phase buildout mode. It is also referred to as FRAC in the data sheet.	0x0	R/W
0x1213	Buildout feedback modulus	[7:0]	Profile 0.0 buildout modulus [7:0]		DPLL0 Profile 0 feedback divider modulus in buildout mode. This 24-bit bit field is the denominator of the DPLL fractional feedback divider while DPLL0 is in phase buildout mode. It is also referred to as MOD in the data sheet.	0x0	R/W
0x1214	Buildout feedback modulus	[7:0]	Profile 0.0 buildout modulus [15:8]		DPLL0 Profile 0 feedback divider modulus in buildout mode. This 24-bit bit field is the denominator of the DPLL fractional feedback divider while DPLL0 is in phase buildout mode. It is also referred to as MOD in the data sheet.	0x0	R/W
0x1215	Buildout feedback modulus	[7:0]	Profile 0.0 buildout modulus [23:16]		DPLL0 Profile 0 feedback divider modulus in buildout mode. This 24-bit bit field is the denominator of the DPLL fractional feedback divider while DPLL0 is in phase buildout mode. It is also referred to as MOD in the data sheet.	0x0	R/W
0x1216	Fast lock	[7:4]	Reserved		Reserved.	0x0	R
		[3:0]	Profile 0.0 fast acquisition excess bandwidth	0	DPLL0 Profile 0 fast acquisition excess bandwidth. This 4-bit bit field controls the DPLL0 loop bandwidth scaling factor (relative to the programmed DPLL loop bandwidth) while in fast acquisition mode. The DPLL automatically reduces the loop bandwidth by successive factors of 2 while the loop is acquiring. Setting this bit field to 0000b disables the feature. Feature disabled. 2×. The initial loop bandwidth is 2× the programmed value.	0x0	R/W
				10 11 100	 4×. The initial loop bandwidth is 4× the programmed value. 8×. The initial loop bandwidth is 8× the programmed value. 16×. The initial loop bandwidth is 16× the programmed value. 		
				101 110 111	32×. The initial loop bandwidth is 32× the programmed value. 64×. The initial loop bandwidth is 64× the programmed value. 128×. The initial loop bandwidth is 128× the programmed value.		
				1000	256×. The initial loop bandwidth is 256× the programmed value.		

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
				1001	512×. The initial loop bandwidth is 512× the		
					programmed value.		
				1010	1024×. The initial loop bandwidth is 1024× the		
		_			programmed value.		-
0x1217	Fast lock	7	Reserved		Reserved.	0x0	R
		[6:4]	Profile 0.0 fast acquisition timeout		DPLL0 Profile 0 fast acquisition timeout. This 3-bit bit field controls the maximum amount of time that DPLL0 waits to achieve phase lock (without chatter) before reducing the loop bandwidth by a factor of two while in fast acquisition mode. This feature prevents the fast acquisition algorithm from stalling in the event that lock is not achieved during the fast acquisition process.	0x0	R/W
				0	1 ms.		
				1	10 ms.		
				10	50 ms.		
				11	100 ms.		
				100	500 ms.		
				101	1 sec.		
				110	10 sec.		
				111	50 sec.		
		3	Reserved		Reserved.	0x0	R
		[2:0]	Profile 0.0 fast acquisition lock settle time		DPLL0 Profile 0 fast acquisition lock settle time. This 3-bit bit field controls how long DPLL0 must wait after achieving phase lock (without chatter) before reducing the loop bandwidth by a factor of 2 while in fast acquisition mode. If the lock detector chatters, this timer is reset.	0x0	R/W
				0	1 ms.		
				1	10 ms.		
				10	50 ms.		
				11	100 ms.		
				100	500 ms.		
				101	1 sec.		
				110	10 sec.		
				111	50 sec.		

DPLL CHANNEL 1 REGISTERS—REGISTER 0x1400 TO REGISTER 0x142A

Table 63. DPLL Channel 1 Registers Summary

Reg.	Name	Bit 7 Bi	it 6 B	it 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x1400	Freerun tuning word				DPLL1	freerun tuning	word [7:0]	·		0x00	R/W	
0x1401	Freerun tuning word				DPLL1 f	reerun tuning	word [15:8]			0x00	R/W	
0x1402	Freerun tuning word			DPLL1 freerun tuning word [7:0] 0 DPLL1 freerun tuning word [15:8] 0 DPLL1 freerun tuning word [23:16] 0 DPLL1 freerun tuning word [31:24] 0 DPLL1 freerun tuning word [39:32] 0 DPLL1 freerun tuning word [45:40] 0 DPLL1 freerun tuning word offset clamp [7:0] 0 DPLL1 freerun tuning word offset clamp [15:8] 0 DPLL1 freerun tuning word offset clamp [15:8] 0 DPLL1 freerun tuning word offset clamp [15:8] 0 DPLL1 freerun tuning word offset clamp [7:0] 0 DPLL1 freerun tuning word offset clamp [15:8] 0 DPLL1 freerun tuning word offset clamp [15:8] 0 DPLL1 freerun tuning word offset clamp [7:0] 0 DPLL1 freerun tuning word offset clamp [7:0] 0								
0x1403	Freerun tuning word			DPLL1 freerun tuning word [31:24] DPLL1 freerun tuning word [39:32] DPLL1 freerun tuning word [45:40] DPLL1 freerun tuning word offset clamp [7:0] DPLL1 freerun tuning word offset clamp [15:8]								
0x1404	Freerun tuning word				DPLL1 freerun tuning word [15:8] DPLL1 freerun tuning word [23:16] DPLL1 freerun tuning word [31:24] DPLL1 freerun tuning word [39:32] DPLL1 freerun tuning word [45:40] DPLL1 freerun tuning word offset clamp [7:0] DPLL1 freerun tuning word offset clamp [15:8] DPLL1 freerun tuning word offset clamp [23:16] Reserved DPLL1 NCO gain filter bandwidth DPLL1 history accumulation timer [7:0]						R/W	
0x1405	Freerun tuning word	Reserve	ed	DPLL1 freerun tuning word [15:8] i DPLL1 freerun tuning word [23:16] i DPLL1 freerun tuning word [31:24] i DPLL1 freerun tuning word [39:32] i DPLL1 freerun tuning word [45:40] i DPLL1 freerun tuning word offset clamp [7:0] i DPLL1 freerun tuning word offset clamp [15:8] i DPLL1 freerun tuning word offset clamp [23:16] i Reserved DPLL1 NCO gain filter bandwidth DPLL1 history accumulation timer [7:0] i							R/W	
0x1406	Tuning word clamp			DPLL1 freerun tuning word [39:32] DPLL1 freerun tuning word [45:40] DPLL1 freerun tuning word offset clamp [7:0] DPLL1 freerun tuning word offset clamp [15:8] DPLL1 freerun tuning word offset clamp [23:16]							R/W	
0x1407	Tuning word clamp										R/W	
0x1408	Tuning word clamp		DPLL1 freerun tuning word offset clamp [7:0] DPLL1 freerun tuning word offset clamp [15:8] DPLL1 freerun tuning word offset clamp [23:16]							0xFF	R/W	
0x1409	NCO gain			Reserved			DPLL1 NC	O gain filter band	dwidth	0x00	R/W	
0x140A	History accumulation timer			DPLL1 freerun tuning word offset clamp [23:16] Reserved DPLL1 NCO gain filter bandwidth							R/W	
0x140B	History accumulation timer			DPLL1 freerun tuning word [39:32] DPLL1 freerun tuning word [45:40] DPLL1 freerun tuning word offset clamp [7:0] DPLL1 freerun tuning word offset clamp [15:8] DPLL1 freerun tuning word offset clamp [23:16] Reserved DPLL1 NCO gain filter bandwidth DPLL1 history accumulation timer [7:0]						0x00	R/W	
0x140C	History accumulation timer		DPLL1 freerun tuning word offset clamp [15:8] DPLL1 freerun tuning word offset clamp [23:16] Reserved DPLL1 NCO gain filter bandwidth DPLL1 history accumulation timer [7:0] DPLL1 history accumulation timer [15:8]							0x00	R/W	

UG	-1	1	46

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x140D	History accumulation timer			Reserved		D	PLL1 history acc	cumulation timer [27:24]	0x00	R/W	
0x140E	History accumulation timer	Reserv	ved	DPLL1 delay history until not slew limiting	DPLL1 delay history frequency lock	DPLL1 delay history phase lock	DPLL1 quick start history	DPLL1 single sample history	DPLL1 persistent history	0x38	R/W	
0x140F	History accumulation timer			Rese	erved		DPLL1 pause history while phase slew limiting	DPLL1 pause history frequency unlock	DPLL1 pause history phase unlock	0x00	R/W	
0x1410	History accumulation hold off				DPLL	.1 history hold	l off time			0x00	R/W	
0x1411	Phase slew limit				DPLL1	phase slew lin	nit rate [7:0]			0x00	R/W	
0x1412	Phase slew limit				DPLL1 p	hase slew lim	it rate [15:8]			0x00	R/W	
0x1413	Phase slew limit					hase slew limi				0x00	R/W	
0x1414	Phase slew limit					hase slew limi				0x06	R/W R/W	
0x1415	Phase offset		DPLL1 phase offset [7:0]									
0x1416	Phase offset					L1 phase offse				0x00	R/W R/W	
0x1417	Phase offset			DPLL1 phase offset [23:16] DPLL1 phase offset [31:24]								
0x1418	Phase offset		DPLL1 phase offset [31:24]									
0x1419	Phase offset		DPLL1 phase offset [39:32] DPLL1 phase temperature compensation C ₁ significand [7:0]									
0x141A	Phase temperature compensation polynomial		DPLL1 phase temperature compensation C1 significand [7:0]								R/W	
0x141B	Phase temperature compensation polynomial		DPLL1 phase temperature compensation C1 significand [15:8]							0x00	R/W	
0x141C	Phase temperature compensation polynomial		DPLL1 phase temperature compensation C1 exponent							0x00	R/W	
0x141D	Phase temperature compensation polynomial		DPLL1 Phase temperature compensation C ₂ significand [7:0]							0x00	R/W	
0x141E	Phase temperature compensation polynomial			DPLL	1 phase tempera	ture compens	sation C ₂ signific	and [15:8]		0x00	R/W	
0x141F	Phase temperature compensation polynomial			D	PLL1 phase temp	perature comp	pensation C ₂ exp	oonent		0x00	R/W	
0x1420	Phase temperature compensation polynomial			DPL	L1 phase temper	ature compen	sation C₃ signifi	cand [7:0]		0x00	R/W	
0x1421	Phase temperature compensation polynomial			DPLL	1 phase tempera	ture compens	sation C₃ signific	and [15:8]		0x00	R/W	
0x1422	Phase temperature compensation polynomial			D)PLL1 phase temp	perature comp	pensation C₃ exp	oonent		0x00	R/W	
0x1423	Phase temperature compensation polynomial			DPL	L1 phase temper	ature compen	sation C ₄ signifi	cand [7:0]		0x00	R/W	
0x1424	Phase temperature compensation polynomial		DPLL1 phase temperature compensation C ₄ significand [15:8]							0x00	R/W	
0x1425	Phase temperature compensation polynomial		DPLL1 phase temperature compensation C ₄ exponent								R/W	
0x1426	Phase temperature compensation polynomial			DPL	L1 phase temper	ature compen	sation C₅ signifi	cand [7:0]		0x00	R/W	
0x1427	Phase temperature compensation polynomial			DPLL	.1 phase tempera	ture compens	sation C₅ signific	and [15:8]		0x00	R/W	

AD9545 Register Map Reference Manual

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1428	Phase temperature compensation polynomial			C	PLL1 phase temp	perature comp	ensation C₅ expo	onent		0x00	R/W
0x1429	Phase adjust filter bandwidth		Reserved				DPLL1 phase 1	temperature com bandwidth	pensation filter	0x00	R/W
0x142A	Inactive profile			Rese	erved		DPLL	1 inactive profile	index	0x00	R/W

Table 64. DPLL Channel 1 Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1400	Freerun tuning word	[7:0]	DPLL1 freerun tuning word [7:0]		DPLL1 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL1 while it is in freerun mode.	0x0	R/W
0x1401	Freerun tuning word	[7:0]	DPLL1 freerun tuning word [15:8]		DPLL1 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL1 while it is in freerun mode.	0x0	R/W
0x1402	Freerun tuning word	[7:0]	DPLL1 freerun tuning word [23:16]		DPLL1 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL1 while it is in freerun mode.	0x0	R/W
0x1403	Freerun tuning word	[7:0]	DPLL1 freerun tuning word [31:24]		DPLL1 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL1 while it is in freerun mode.	0x0	R/W
0x1404	Freerun tuning word	[7:0]	DPLL1 freerun tuning word [39:32]		DPLL1 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL1 while it is in freerun mode.	0x0	R/W
0x1405	Freerun	[7:6]	Reserved		Reserved.	0x0	R
	tuning word	[5:0]	DPLL1 freerun tuning word [45:40]		DPLL1 freerun tuning word. This 46-bit bit field is the frequency tuning word used by DPLL1 while it is in freerun mode.	0x0	R/W
0x1406	Tuning word clamp	[7:0]	tuning word offset clamp [7:0]		DPLL1 freerun tuning word offset clamp. This 24-bit bit field sets the DPLL1 tuning word offset clamp, f_{CLAMP} . The formula is $f_{CLAMP} = DPLL1$ freerun tuning word offset clamp × ($f_s/2^{36}$), where f_s is the system clock frequency.	0xFF	R/W
0x1407	Tuning word clamp	[7:0]	DPLL1 freerun tuning word offset clamp [15:8]		DPLL1 freerun tuning word offset clamp. This 24-bit bit field sets the DPLL1 tuning word offset clamp, f_{CLAMP} . The formula is $f_{CLAMP} = DPLL1$ freerun tuning word offset clamp × ($f_S/2^{36}$), where f_S is the system clock frequency.	0xFF	R/W
0x1408	Tuning word clamp	[7:0]	DPLL1 freerun tuning word offset clamp [23:16]		DPLL1 freerun tuning word offset clamp. This 24-bit bit field sets the DPLL1 tuning word offset clamp, f_{CLAMP} . The formula is $f_{CLAMP} = DPLL1$ freerun tuning word offset clamp × ($f_s/2^{36}$), where f_s is the system clock frequency.	0xFF	R/W
0x1409	NCO gain	[7:4]	Reserved		Reserved.	0x0	R/W
		[3:0]	DPLL1 NCO gain filter bandwidth		DPLL1 NCO gain freerun tuning word filter bandwidth. This 4- bit bit field controls the low-pass filter –3 dB cutoff frequency of the DPLL1 NCO.	0x0	R/W
				0x0	250 kHz (maximum).		
				0x1	120 kHz.		
					62 kHz.		
				0x3			
				0x4			
					7.8 kHz. 3.9 kHz.		
					1.9 kHz.		
					970 Hz.		
					490 Hz.		
					240 Hz.		
					120 Hz.		
					61 Hz.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
				0xd	30 Hz.		
				0xe	15 Hz.		
				0xf	7.6 Hz (minimum).		
0x140A	History accumulation timer	[7:0]	DPLL1 history accumulation timer [7:0]		DPLL1 history accumulation timer. This 28-bit bit field is the duration of the averaging period (in milliseconds) and calculates the holdover tuning word value. It is referred to as t_{HAT} in the data sheet. The allowable range is 1 ms to 268,435.455 sec (approximately 74.5 hours), and behavior is undefined for a timer value of 0x0000.	0xA	R/W
0x140B	History accumulation timer	[7:0]	DPLL1 history accumulation timer [15:8]		DPLL1 history accumulation timer. This 28-bit bit field is the duration of the averaging period (in milliseconds) and calculates the holdover tuning word value. It is referred to as t_{HAT} in the data sheet. The allowable range is 1 ms to 268,435.455 sec (approximately 74.5 hours), and behavior is undefined for a timer value of 0x0000.	0x0	R/W
0x140C	History accumulation timer	[7:0]	DPLL1 history accumulation timer [23:16]		DPLL1 history accumulation timer. This 28-bit bit field is the duration of the averaging period (in milliseconds) and calculates the holdover tuning word value. It is referred to as t_{HAT} in the data sheet. The allowable range is 1 ms to 268,435.455 sec (approximately 74.5 hours), and behavior is undefined for a timer value of 0x0000.	0x0	R/W
0x140D		[7:4]	Reserved		Reserved.	0x0	R
	accumulation timer	[3:0]	DPLL1 history accumulation timer [27:24]		DPLL1 history accumulation timer. This 28-bit bit field is the duration of the averaging period (in milliseconds) and calculates the holdover tuning word value. It is referred to as t_{HAT} in the data sheet. The allowable range is 1 ms to 268,435.455 sec (approximately 74.5 hours), and behavior is undefined for a timer value of 0x0000.	0x0	R/W
0x140E	History	[7:6]	Reserved		Reserved.	0x0	R
	accumulation timer	5	DPLL1 delay history until not slew limiting		DPLL1 delay history while not phase slew limiting. Setting this bit to Logic 1 delays the tuning word history averaging during acquisition until the DPLL1 phase slew limiter is inactive. At that point, the tuning word averaging is further delayed by the value in the DPLL1 history hold off time. This bit is intended to ensure that holdover history accumulation begins only when the DPLL is fully settled. When this bit is Logic 0, the history averaging is not contingent on the state of the phase slew limiter.	0x1	R/W
		4	DPLL1 delay history frequency lock		DPLL1 delay history until frequency lock. Setting this bit to Logic 1 delays the tuning word history averaging during acquisition until the DPLL1 is frequency locked. At that point, the tuning word averaging is further delayed by the value in the DPLL1 history hold off time. This bit is intended to ensure that holdover history accumulation begins only when the DPLL is fully settled. When this bit is Logic 0, the history averaging is not contingent on the state of the frequency lock detector.	0x1	R/W
		3	DPLL1 delay history phase lock		DPLL1 delay history until phase lock. Setting this bit to Logic 1 delays the tuning word history averaging during acquisition until the DPLL1 is phase locked. At that point, the tuning word averaging is further delayed by the value in the DPLL1 history hold off time. This bit is intended to ensure that holdover history averaging begins only when the DPLL is fully settled. When this bit is Logic 0, the history averaging is not contingent on the state of the phase lock detector.	0x1	R/W
		2	DPLL1 quick start history		DPLL1 quick start history. Setting this bit to Logic 1 allows the DPLL1 tuning word history to be available in 1/4 of the time specified in the DPLL1 history accumulation timer. This bit is intended to ensure that there is sufficient holdover history in cases where the DPLL has been locked to a reference for a short period.	0x0	R/W

Addr.	Name	Bits	Bit Name Set	ttings	Description	Reset	Access
		1	DPLL1 single- sample history		DPLL1 single sample history. Setting this bit to Logic 1 allows DPLL1 to use the most recent tuning word for holdover in the event that the tuning word history is not available. This bit can be used in conjunction with the quick start history bit in this register. his bit is intended to ensure that there is a minimal holdover history available in cases where the DPLL has been locked to a reference for a short period.	0x0	R/W
		0	DPLL1 persistent history		DPLL1 persistent history. Setting this bit to Logic 1 allows the DPLL1 tuning word history to not be reset if there is an interruption in the tuning word averaging. This bit is intended to ensure that there is sufficient holdover history in cases where the DPLL has been locked to a reference for a short period. When this bit is Logic 0, the history accumulation resets when the DPLL exits holdover and reacquires.	0x0	R/W
0x140F	History	[7:3]	Reserved		Reserved.	0x0	R
	accumulation timer	2	DPLL1 pause history while phase slew limiting		DPLL1 pause history while phase slew limiting. Setting this bit to Logic 1 pauses the tuning word history averaging when DPLL1 is phase slewing. The tuning word history is reset when the DPLL regains phase lock if the persistent history bit is Logic 0. This bit is intended to ensure that tuning word history averaging occurs only when the DPLL is fully settled. When this bit is Logic 0, the history averaging occurs regardless of phase slewing.	0x0	R/W
		1	DPLL1 pause history frequency unlock		DPLL1 pause history while frequency unlock. Setting this bit to Logic 1 pauses the holdover tuning word history averaging when DPLL1 is frequency unlocked. The holdover history is reset when the DPLL regains frequency lock if the persistent history bit is Logic 0. This bit is intended to ensure that holdover history averaging occurs only when the DPLL is fully settled. When this bit is Logic 0, the history averaging occurs regardless of frequency lock status.	0x0	R/W
		0	DPLL1 pause history phase unlock		DPLL1 pause history while phase unlock. Setting this bit to Logic 1 pauses the holdover tuning word history averaging when DPLL1 phase slew limiter is active. The holdover history is reset when the DPLL is no longer phase slew limited if the Persistent History bit is Logic 0. This bit is intended to ensure that holdover history averaging occurs only when the DPLL is fully settled. When this bit is Logic 0, the history averaging occurs regardless of phase lock status.	0x0	R/W
0x1410	History accumulation hold off	[7:0]	DPLL1 history hold off time		DPLL1 history hold off time. This 8-bit bit field is the amount of time (in milliseconds) that the DPLL tuning word history accumulation is delayed. Hold off is disabled if this bit field is 0x00.	0x0	R/W
0x1411	Phase slew limit	[7:0]	DPLL1 phase slew limit rate [7:0]		DPLL1 phase slew limit rate. This 28-bit bit field is the DPLL1 phase slew limit rate (in picoseconds/second). It is referred to as toFST in the data sheet.	0x0	R/W
0x1412	Phase slew limit	[7:0]	DPLL1 phase slew limit rate [15:8]		DPLL1 phase slew limit rate. This 28-bit bit field is the DPLL1 phase slew limit rate (in picoseconds/second). It is referred to as toFST in the data sheet.	0x0	R/W
0x1413	Phase slew limit	[7:0]	DPLL1 phase slew limit rate [23:16]	DPLL1 phase slew limit rate. This 28-bit bit field is the DPLL1 phase slew limit rate (in picoseconds/second). It is referred to as t_{OFST} in the data sheet.		0x0	R/W
0x1414	Phase slew limit	[7:0]	DPLL1 phase slew limit rate [31:24]		DPLL1 phase slew limit rate. This 28-bit bit field is the DPLL1 phase slew limit rate (in picoseconds/second). It is referred to as toFST in the data sheet.	0x6	R/W
0x1415	Phase offset	[7:0]	DPLL1 phase offset [7:0]		DPLL1 closed-loop phase offset. This signed, 40-bit bit field is the DPLL1 closed-loop phase offset (in picoseconds). It is referred to as t_{OFST} in the data sheet.	0x0	R/W
0x1416	Phase offset	[7:0]	DPLL1 phase offset [15:8]		DPLL1 closed-loop phase offset. This signed, 40-bit bit field is the DPLL1 closed-loop phase offset (in picoseconds). It is referred to as t_{OFST} in the data sheet	0x0	R/W

-1	14	46
-		
	-1	-114

Addr.	Name	Bits	Bit Name S	Settings	Description	Reset	Access
0x1417	Phase offset	[7:0]	DPLL1 phase offset [23:16]		DPLL1 closed-loop phase offset. This signed, 40-bit bit field is the DPLL1 closed-loop phase offset (in picoseconds). It is referred to as toFST in the data sheet	0x0	R/W
0x1418	Phase offset	[7:0]	DPLL1 phase offset [31:24]		DPLL1 closed-loop phase offset. This signed, 40-bit bit field is the DPLL1 closed-loop phase offset (in picoseconds). It is referred to as t_{OFST} in the data sheet	0x0	R/W
0x1419	Phase offset	[7:0]	DPLL1 phase offset [39:32]		DPLL1 closed-loop phase offset. This signed, 40-bit bit field is the DPLL1 closed-loop phase offset (in picoseconds). It is referred to as t_{OFST} in the data sheet	0x0	R/W
0x141A	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₁ significand [7:0]		DPLL1 temperature compensation C_1 significand. This 10-bit bit field is the significand for the C_1 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x141B	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₁ significand [15:8]		DPLL1 temperature compensation C_1 significand. This 10-bit bit field is the significand for the C_1 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x141C	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₁ exponent		DPLL1 temperature compensation C_1 exponent. This 6-bit bit field is the exponent for the C_1 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x141D	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₂ significand [7:0]		DPLL1 temperature compensation C_2 significand. This 10-bit bit field is the significand for the C_2 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x141E	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₂ significand [15:8]		DPLL1 temperature compensation C_2 significand. This 10-bit bit field is the significand for the C_2 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x141F	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₂ exponent		DPLL1 temperature compensation C_2 exponent. This 6-bit bit field is the exponent for the C_2 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x1420	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₃ significand [7:0]		DPLL1 temperature compensation C_3 significand. This 10-bit bit field is the significand for the C_3 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x1421	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₃ significand [15:8]		DPLL1 temperature compensation C_3 significand. This 10-bit bit field is the significand for the C_3 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x1422	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₃ exponent		DPLL1 temperature compensation C_3 exponent. This 6-bit bit field is the exponent for the C_3 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x1423	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₄ significand [7:0]		DPLL1 temperature compensation C ₄ significand. This 10-bit bit field is the significand for the C ₄ coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x1424	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₄ significand [15:8]		DPLL1 temperature compensation C_4 significand. This 10-bit bit field is the significand for the C_4 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x1425	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₄ exponent		DPLL1 temperature compensation C_4 exponent. This 6-bit bit field is the exponent for the C_4 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1426	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₅ significand [7:0]		DPLL1 temperature compensation C_5 significand. This 10-bit bit field is the significand for the C_5 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x1427	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C₅ significand [15:8]		DPLL1 temperature compensation C_5 significand. This 10-bit bit field is the significand for the C_5 coefficient of the DPLL1 temperature compensation polynomial.		R/W
0x1428	Phase temperature compensation polynomial	[7:0]	DPLL1 phase temperature compensation C ₅ exponent		DPLL1 temperature compensation C_5 exponent. This 6-bit bit field is the exponent for the C_5 coefficient of the DPLL1 temperature compensation polynomial.	0x0	R/W
0x1429	Phase adjust	[7:3]	Reserved		Reserved.	0x0	R
	filter bandwidth	[2:0]	DPLL1 phase temperature compensation filter bandwidth		DPLL1 temperature compensation low-pass filter bandwidth. This 3-bit bit field controls the low-pass filter –3 dB cutoff frequency of the DPLL1 delay compensation block. 240 Hz (maximum).	0x0	R/W
				0x1	120 Hz. 60 Hz.		
					30 Hz.		
					15 Hz.		
				0x5	7.6 Hz.		
				0хб	3.8 Hz.		
				0x7	1.9 Hz (minimum).		
0x142A	Inactive	[7:3]	Reserved		Reserved.	0x0	R
	profile	[2:0]	DPLL1 inactive profile index		DPLL1 inactive profile index. The inactive profile index is used while DPLL1 is in holdover to retain the exact DPLL configuration, including the desired input/output phase relationship.	0x0	R/W

APLL CHANNEL 1 REGISTERS—REGISTER 0x1480 TO REGISTER 0x1483

Table 65. APLL Channel 1 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1480	Charge pump current	Enable APLL1 manual charge pump current		APLL1 manual charge pump current						0x90	R/W
0x1481	M1 divider		APLL1				er			0x00	R/W
0x1482	Loop filter control	APLL1 loop filter zero	APLL1 loop filter zero resistor (R1) AP			L1 loop filter pole capacitor (C2) APLL1 loop filter second pole resistor (R3)				0xE0	R/W
0x1483	DC offset current	Reserved				APLL1 dc offset current direction		dc offset nt value	Enable APLL1 dc offset current	0x03	R/W

Table 66. APLL Channel 1 Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1480	Charge	7	Enable APLL1		Enables manual control of the APLL 1 charge pump current.	0x0	R/W
	pump current		manual charge pump current	0	Disable manual charge pump current control. Disables manual control of the APLL1 charge pump current		
				1	Enable manual charge pump current control. Enables manual control of the APLL1 charge pump current		
		[6:0]	APLL1 manual charge pump current		APLL1 manual charge pump current. LSB = 3.5μ A. The user must set the enable manual charge pump current control bit in this register for this setting to be enabled.	0x0	R/W
				0000001b	1 × LSB.		
				0000010b	$2 \times LSB.$		
				1111111b	127 × LSB.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Acces
0x1481	M1 divider	[7:0]	APLL1 M1 feedback divider		APLL multiplication ratio. APLL1 M1 feedback divide ratio. Allowable values are 14 to 255.	0x0	R/W
0x1482	Loop filter control	[7:5]	APLL1 loop filter zero resistor (R1)	000 001 010	Loop Filter R1. APLL1 Loop Filter R1 (zero resistor) value. 0 Ω (short). 250 Ω. 500 Ω.	0x0	R/W
				011 100	750 Ω. 1.00 kΩ.		
				101 110 111	1.25 kΩ. 1.50 kΩ. 1.75 kΩ.		
		[4:2]	APLL1 loop filter pole capacitor (C2)	000	Loop Filter C2. APLL1 Loop Filter C2 (pole capacitor) value. 8 pF.	0x0	R/W
				001 010 011	24 pF. 40 pF. 56 pF.		
				100 101	72 pF. 88 pF.		
		[1.0]		110 111	104 pF. 120 pF.		DAM
		[1:0]	APLL1 loop filter second pole resistor (R3)	00 01	Loop Filter R3. APLL1 Loop Filter R3 (second pole resistor) value. 200 Ω. 250 Ω.	0x0	R/W
				10 11	333 Ω. 500 Ω.		
0x1483	DC	[7:4]	Reserved		Reserved.	0x0	R
	offset current	3	APLL1 dc offset current direction	0	DC offset current direction. This bit sets the direction of the APLL1 dc offset current. Up. DC offset current offset is positive.	0x0	R/W
		[2:1]	APLL1 dc offset current value	1	Down. DC offset current offset is negative. DC offset current. magnitude of the APLL1 charge pump dc offset current value	0x0	R/W
				00	50% offset current. Offset current is 50% of the programmed APLL1 charge pump current (default). 25% offset current. Offset current is 25% of the		
				10	programmed APLL1 charge pump current. 12.5% offset current. Offset current is 12.5% of the programmed APLL1 charge pump current.		
				11	6.25% offset current. Offset current is 6.25% of the programmed APLL1 charge pump current.		
		0	Enable APLL1 dc offset current		DC offset current enable. Setting this bit enables the APLL1 dc offset current.	0x0	R/W

DISTRIBUTION GENERAL 1 REGISTERS—REGISTER 0x14C0 TO REGISTER 0x14DC

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x14C0	Modulation step				Modulation	step [7:0]				0x00	R/W
0x14C1	Modulation step				Modulation s	tep [15:8]				0x00	R/W
0x14C2	Modulation counter A			Q	1A modulation	counter [7:0]				0x00	R/W
0x14C3	Modulation counter A			Q	A modulation	counter [15:8]				0x00	R/W
0x14C4	Modulation counter A			Q1	A modulation o	ounter [23:16]				0x00	R/W
0x14C5	Modulation counter A		Rese	erved		Q1	A modulation c	ounter [27:24	4]	0x00	R/W
0x14C6	Modulation counter B		Q1B modulation counter [7:0]								R/W
0x14C7	Modulation counter B		Q1B modulation counter [15:8]								R/W
0x14C8	Modulation counter B		Q1B modulation counter [23:16]							0x00	R/W
0x14C9	Modulation counter B		Rese	erved		Q1	B modulation counter [27:24]			0x00	R/W
0x14CE	FB clock sync edge	Reserved Feedback divider sync edge								0x00	R/W
0x14CF	Modulator A settings		Rese	erved		Enable Q1A N-shot modulator	Enable Q1A single-pulse modulator	Q1A modulator polarity	Enable Q1A modulator	0x00	R/W
0x14D0	Modulator B settings	Reserved				Enable Q1B N-shot modulator	Enable Q1B single-pulse modulator	Q1B modulator polarity	Enable Q1B modulator	0x00	R/W
0x14D2	N-shot gaps				N-shot gap					0x00	R/W
0x14D3	N-shot request	Reserved	N-shot request mode			N-sho		0x00	R/W		
0x14D4	N-shot enable	Enable Q1BB PRBS	Enable Q1BB N- shot	Enable Q1B PRBS	Enable Q1B N-shot	Enable QOAA PRBS	Enable Q1AA N- shot	Enable Q1A PRBS	Enable Q1A N-shot	0x00	R/W
0x14D6	N-shot retime				Reserved Enable N-shot retime						R/W
0x14D7	Driver A configuration	Reserved		Bypass mute retiming Channel A	OUT1A dı	iver mode	OUT1A driv	er current	Enable OUT1A HCSL	0x01	R/W
0x14D8	Driver B configuration	Rese	erved	Bypass mute retiming Channel B	OUT1B driver mode		OUT1B driv	er current	Enable OUT1B HCSL	0x01	R/W
0x14DA	Secondary clock path			Reserved			Enable SYSCLK Q1B	Enable SYSCLK Q1A	Enable SYSCLK sync mask	0x00	R/W
0x14DB	Sync control			Reserved		Mask	Enable DPLL1 reference sync		nc mode	0x00	R/W
0x14DC	Automute control	Rese	erved	Mask OUT1BB autounmute	OUT1BB OUT1B		Mask OUT1A autounmute		tounmute ode	0x00	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x14C0	Modulation step	[7:0]	Modulation step [7:0]		Modulation step. This 16-bit bit field controls the duty cycle step, which is the duty cycle deviation of a modulation event. The unit is the number of distribution clock half cycles.	0x0	R/W
0x14C1	Modulation step	[7:0]	Modulation step [15:8]		Modulation step. This 16-bit bit field controls the duty cycle step, which is the duty cycle deviation of a modulation event. The unit is the number of distribution clock half cycles.	0x0	R/W
0x14C2	Modulation Counter A	[7:0]	Q1A modulation counter [7:0]		Q1A modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x14C3	Modulation Counter A	[7:0]	Q1A modulation counter [15:8]		Q1A modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x14C4	Modulation Counter A	[7:0]	Q1A modulation counter [23:16]		Q1A modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x14C5	Modulation	[7:4]	Reserved		Reserved.	0x0	R
	Counter A	[3:0]	Q1A modulation counter [27:24]		Q1A modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x14C6	Modulation Counter B	[7:0]	Q1B modulation counter [7:0]		Q1B modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x14C7	Modulation Counter B	[7:0]	Q1B modulation counter [15:8]		Q1B modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x14C8	Modulation Counter B	[7:0]	Q1B modulation counter [23:16]		Q1B modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x14C9	Modulation	[7:4]	Reserved		Reserved.	0x0	R
	Counter B	[3:0]	Q1B modulation counter [27:24]		Q1B modulation counter. This bit field sets the embedded clock frequency by controlling the count between modulation events on the modulation enabled dividers. The unit is Q divider cycles.	0x0	R/W
0x14CE	Feedback	[7:2]	Reserved		Reserved.	0x0	R
	clock sync edge	[1:0]	Feedback divider sync edge		Feedback divider sync edge. This bit field is only used when embedded output clock modulation is turned on, and allows the user to delay the synchronization edge (relative to the modulation base edge) of the feedback divider. Allowable values (in decimal) are 0, 1, 2, or 3 clock edges.	0x0	R/W
0x14CF	Modulator A	[7:4]	Reserved		Reserved.	0x0	R
	settings	3	Enable Q1A N-shot modulator		Enable Q1A modulator N-shot. Setting this bit to Logic 1 enables the embedded clock modulator controller to use the N-shot request signal to trigger five modulation events when N-shot request mode bit is Logic 0 (edge triggered) or continuously when the N-shot request mode bit is Logic 1 (level sensitive).	0x0	R/W
		2	Enable Q1A single-pulse modulation		Single-pulse modulation. Logic 0: dc balanced duty cycle modulation. Logic 1: single-pulse modulation.	0x0	R/W

Table 68. Distribution General 1 Register Details

Rev. B | Page 79 of 154

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		1	Q1A modulation		Modulation polarity. This bit sets the type of (duty cycle) modulation event.	0x0	R/W
			polarity		Logic 0: low/high or low (single-pulse modulation).		
					Logic 1: high/low or high (single-pulse modulation).		
		0	Enable Q1A modulator		Enable embedded clock modulator. Setting this bit to Logic 1 enables the embedded clock (pulse width/duty cycle) modulation.	0x0	R/W
0x14D0	Modulator B	[7:4]	Reserved		Reserved.	0x0	R
	settings	3	Enable Q1B N-shot modulator		Enable Q1B modulator N-shot. Setting this bit to Logic 1 enables the embedded clock modulator controller to use the N-shot request signal to trigger five modulation events when N-shot request mode bit is Logic 0 (edge triggered) or continuously when the N-shot request mode bit is Logic 1 (level sensitive).	0x0	R/W
		2	Enable Q1B		Single-pulse modulation.	0x0	R/W
			single-pulse		Logic 0: dc balanced duty cycle modulation.		
			modulation		Logic 1: single-pulse modulation.		
		1	Q1B modulation		Modulation polarity. This bit sets the type of (duty cycle) modulation event.	0x0	R/W
			polarity		Logic 0: low/high or low (single-pulse modulation).		
			F		Logic 1: high/low or high (single-pulse modulation).		
		0	Enable Q1B modulator		Enable embedded clock modulator. Setting this bit to Logic 1 enables the embedded clock (pulse width/duty cycle) modulator.	0x0	R/W
0x14D2	N-shot gaps	[7:0]	N-shot gap		N-shot gap. This unsigned, 8-bit bit field contains the	0x0	R/W
0,1402	N-SHOL Yaps	[7.0]	N-SHOL Yap		length (measured in Q divider output cycles) of the gap in a JESD204B	0.00	17 17
0x14D3	N-shot	7	Reserved		N-shot pattern generation. Reserved.	0x0	R
UX 14D5	request	7 6	N-shot		Channel 0 N-shot request mode.	0x0 0x0	R/W
		0	request mode		Logic 0: the N-shot generators operate in burst mode, and the rising edge of the trigger signal initiates the burst. Logic 1: the N-shot generators operate in period gapped mode. In this mode, N-shot bursts occur as long as the trigger is in a Logic 1 state; for this reason, it is referred to as a level sensitive trigger mode.	0.00	
		[5:0]	N-shot		Number of clock pulses in an N-shot burst. This unsigned, 6-bit bit field contains the number of clock cycles in an N-shot burst.	0x0	R/W
0x14D4	N-shot enable	7	Enable Q1BB PRBS		Q1BB JESD204B PRBS Enable. Setting this bit to Logic 1 enables the pseudorandom bit sequence clocked at divider output rate.	0x0	R/W
		6	Enable Q1BB N-shot		N-shot enable. Logic 0: JESD204B N-shot mode disabled. Logic 1: JESD204B N-shot mode enabled. The output is	0x0	R/W
			Fuchle OdD		muted until a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥8.	00	D
		5	Enable Q1B PRBS		Q1B JESD204B PRBS enable. Setting this bit to Logic 1 enables the pseudo random bit sequence clocked at the divider output rate.	0x0	R/W
		4	Enable Q1B N-shot		N-shot enable. Logic 0: JESD204B N-shot mode disabled.	0x0	R/W
					Logic 1: JESD204B N-shot mode enabled. The output is muted until a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥8.		

UG-1	146
------	-----

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		3	Enable Q1AA PRBS		Q1AA JESD204B PRBS enable. Setting this bit to Logic 1 enables the pseudorandom bit sequence clocked at the divider output rate.	0x0	R/W
		2	Enable Q1AA N-shot		N-shot enable.	0x0	R/W
					Logic 0: JESD204B N-shot mode disabled. Logic 1: Logic 1: JESD204B N-shot mode enabled. The output is muted until a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥8.		
		1	Enable Q1A PRBS		Q1A JESD204B PRBS enable. Setting this bit to Logic 1 enables the pseudorandom bit sequence clocked at the divider output rate.	0x0	R/W
		0	Enable Q1A N-shot		N-shot enable. Logic 0: JESD204B N-shot mode disabled. Logic 1: JESD204B N-shot mode enabled. The output is muted until a user programmed N-shot burst is requested, which can be periodic. The associated Q divider must be ≥8.	0x0	R/W
0x14D6	N-shot	[7:1]	Reserved		Reserved.	0x0	R
	retime	0	Enable N-shot retime		Enable N-shot retiming. Logic 0: Mx pins or registers (user-selectable) provide the JESD204B N-shot retiming source.	0x0	R/W
					Logic 1: the N short retiming block provides the JESD204B N-shot retiming source.		
0x14D7	Driver A	[7:6]	Reserved		Reserved.	0x0	R
	configuration	5	Bypass mute retiming Channel A		Removes retiming from Channel A mute. In normal operation, this bit is Logic 0, and the signal to mute an output channel is retimed so that runt pulses are avoided. Setting this bit to Logic 1 removes the retiming function, and mutes the channel immediately.	0x0	R/W
		[4:3]	OUT1A driver mode	0 1 10	Selects single-ended or differential output mode. Differential output. Divider Q0A determines the divide ratio. Dual-, single-ended output driven by Divider Q0A. Divider Q0A determines the divide ratio. Dual-, single-ended output driven by separate Q dividers. Both Divider Q0A and Divider Q0AA are enabled, although it is recommended that they have the same divide ratio.	0x0	R/W
		[2:1]	OUT1A driver current	0 1 10	Output driver current. This current setting applies to both the normal and complimentary output pins. 7.5 mA. 12.5 mA. 15 mA.	0x0	R/W
		0	Enable OUT1A HCSL		Selects HCSL or CML mode. Logic 0: CML mode. An external pull-up resistor is required. Logic 1: HCSL mode. An external pull-down resistor is	0x0	R/W
0x14D8	Driver B	[7:6]	Reserved		required. Reserved.	0x0	R
	configuration	5	Bypass mute retiming Channel B		Reserved. Removes retiming from Channel B mute. In normal operation, this bit is Logic 0, and the signal to mute an output channel is retimed so that runt pulses are avoided. Setting this bit to Logic 1 removes the retiming function and mutes the channel immediately.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		[4:3]	OUT1B driver		Selects single-ended or differential output mode.	0x0	R/W
			mode	0	Differential output. Divider Q1B determines the divide ratio.		
				1	Dual-, single-ended output driven by Divider Q1A. Divider Q1B determines the divide ratio.		
				10	Dual-, single-ended output driven by separate Q dividers. Both Divider Q1B and Divider Q1BB are enabled, although it is recommended that they have the same divide ratio.		
		[2:1]	OUT1B driver current		Output driver current. This current setting applies to both the normal and complimentary output pins.	0x0	R/W
				0	7.5 mA.		
				1	12.5 mA.		
				10	15 mA.		
		0	Enable OUT1B		Selects HCSL or CML mode.	0x0	R/W
			HCSL		Logic 0: CML mode. An external pull-up resistor is required.		
					Logic 1: HCSL mode. An external pull-down resistor is required.		
0x14DA	Secondary	[7:3]	Reserved		Reserved.	0x0	R
	clock path	2	Enable SYSCLK Q1B		Enable SYSCLK to Divider Q1B. Setting this bit to Logic 1 enables a buffered copy of the system clock to Divider Q1B.	0x0	R/W
		1	Enable SYSCLK Q1A		Enable SYSCLK to Divider Q1A. Setting this bit to Logic 1 enables a buffered copy of the system clock to Divider Q1A.	0x0	R/W
		0	Enable SYSCLK sync mask		Enable SYSCLK sync mask. Setting this bit to Logic 1 ensures that no sync events occur on outputs that are assigned to outputting the SYSCLK. This purpose of this feature is to ensure that no runt pulses or stalled clocks occur when a SYSCLK output clocks a microprocessor. Set this bit to Logic 1 only when the SYSCLK is fully configured and stable, because runt pulses can occur while	0x0	R/W
0x14DB	Sync control	[7:3]	Reserved		configuring the SYSCLK. Reserved.	0x0	R
071400	Sync control	2	Enable DPLL1		DPLL1 reference sync enable. Setting this bit to Logic 1	0x0	R/W
		2	reference sync		enables automatic reference synchronization on DPLL1.	0.0	10,00
		[1:0]	Autosync mode		Autosync mode. This bit field controls when the clock distribution block receives a synchronization event. The output drivers do not toggle until there is a synchronization event.	0x0	R/W
				0	Manual sync. Automatic output synchronization disabled. In this mode, the user must issue a clock distribution synchronization command manually.		
				1	Immediate. Output synchronization occurs immediately after APLL lock.		
				10	DPLL phase lock. Output synchronization occurs when the DPLL phase locks.		
				11	DPLL frequency lock. Output synchronization occurs when the DPLL frequency locks.		
0x14DC	Automute	[7:6]	Reserved		Reserved.	0x0	R/W
	control	5	Mask OUT1BB		Mask OUT1BB autounmute.	0x0	R/W
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		4	Mask OUT1B		Mask OUT1B autounmute.	0x0	R/W
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		
		3	Mask OUT1AA		Mask OUT1AA autounmute.	0x0	R/W
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		
		2	Mask OUT1A		Mask OUT1A autounmute.	0x0	R/W
			autounmute		Logic 0: normal operation. Automatic unmuting of the driver works in conjunction with the autounmute mode.		
					Logic 1: the automatic unmuting conditions are ignored and the driver is unmuted immediately.		
		[1:0]	DPLL0 autounmute mode		DPLL1 autounmute mode. This bit field controls at which point the output drivers start to toggle during acquisition while DPLL1 is in hitless mode.	0x0	R/W
				00	Disabled. Automatic unmuting is disabled and the output driver starts toggling immediately.		
				01	Hitless acquisition. Automatic driver unmuting occurs upon activation of a hitless profile.		
				10	Phase lock detect (PLD) (hitless mode only). Automatic driver unmuting occurs when phase lock is detected and the DPLL is in hitless mode.		
				11	Frequency lock detect (FLD) (hitless mode only). Automatic driver unmuting occurs when frequency lock is detected and the DPLL is in hitless mode.		

DISTRIBUTION DIVIDER 1 A REGISTERS—REGISTER 0x1500 TO REGISTER 0x1508

Table 69. Distribution Divider 1 A Register Summary Bit 2 Bit 1 Register Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 0 Reset 0x1500 Divider ratio Q1A divider ratio [7:0] 0x00 0x1501 Divider ratio Q1A divider ratio [15:8] 0x00 0x1502 Divider ratio Q1A divider ratio [23:16] 0x00 Q1A divider ratio [31:24] 0x1503 Divider ratio 0x00 0x1504 Phase offset Q1A phase [7:0] 0x00 0x1505 Phase offset Q1A phase [15:8] 0x00 0x1506 Phase offset Q1A phase [23:16] 0x00 0x1507 Phase offset Q1A phase [31:24] 0x00 Q1A phase 0x1508 Phase slew Q1A Enable Enable Q1A 0x07 Reserved Maximum phase configuration phase Q1A half pulse width slew mode slew step [32] divide control

Table 70. Distribution Divider 1 AA Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW		
0x1509 to		These registers mimic the Distribution Divider 1A registers (Register 0x1500 through											
0x1511		Register	0x1508), but 1	he register ac	ddresses are c	offset by 0x00	09. All default	t values are id	entical.				

UG-1146

RW

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Table 71. Distribution Divider 1 B Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW		
0x1512 to		These registers mimic the Distribution Divider 1A registers (Register 0x1500 through											
0x151A		Register 0x1508), but the register addresses are offset by 0x0009. All default values are identical.											

Table 72. Distribution Divider 1 BB Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW			
0x151B to		The	These registers mimic the Distribution Divider 1A registers (Register 0x1500 through											
0x1523		Register	0x1508), but	the register a	ddresses are o	offset by 0x00	09. All defau	lt values are ic	dentical.					

Table 73. Distribution Divider 1 A Register Details

Addr	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1500	Divider ratio	[7:0]	Q1A divider ratio [7:0]		Q1A divide ratio. This 32-bit bit field is the divide ratio for the Q1A divider. The default value of 0x00000000 equals a divide ratio of 1, which is invalid because it results in an output frequency that exceeds the maximum for the AD9545.	0x0	R/W
0x1501	Divider ratio	[7:0]	Q1A divider ratio [15:8]		Q1A divide ratio. This 32-bit bit field is the divide ratio for the Q1A divider. The default value of 0x00000000 equals a divide ratio of 1, which is invalid because it results in an output frequency that exceeds the maximum for the AD9545.	0x0	R/W
0x1502	Divider ratio	[7:0]	Q1A divider ratio [23:16]		Q1A divide ratio. This 32-bit bit field is the divide ratio for the Q1A divider. The default value of 0x00000000 equals a divide ratio of 1, which is invalid because it results in an output frequency that exceeds the maximum for the AD9545.	0x0	R/W
0x1503	Divider ratio	[7:0]	Q1A divider ratio [31:24]		Q1A divide ratio. This 32-bit bit field is the divide ratio for the Q1A divider. The default value of 0x00000000 equals a divide ratio of 1, which is invalid because it results in an output frequency that exceeds the maximum for the AD9545.	0x0	R/W
0x1504	Phase offset	[7:0]	Q1A phase [7:0]		Q1A phase control. This bit field controls the Q1A phase in two ways: the bit field sets the initial phase offset after divider sync (reset) and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to $(2 \times (divide ratio) - 1)$ in units of Q1A distribution input clock half cycles.	0x0	R/W
0x1505	Phase offset	[7:0]	Q1A phase [15:8]		Q1A phase control. This bit field controls the Q1A phase in two ways: the bit field sets the initial phase offset after divider sync (reset) and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to $(2 \times (divide ratio) - 1)$ in units of Q1A distribution input clock half cycles.	0x0	R/W
0x1506	Phase offset	[7:0]	Q1A phase [23:16]		Q1A phase control. This bit field controls the Q1A phase in two ways: the bit field sets the initial phase offset after divider sync (reset) and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to $(2 \times (divide ratio) - 1)$ in units of Q1A distribution input clock half cycles.	0x0	R/W
0x1507	Phase offset	[7:0]	Q1A phase [31:24]		Q1A phase control. This bit field controls the Q1A phase in two ways: the bit field sets the initial phase offset after divider sync (reset) and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to $(2 \times (divide ratio) - 1)$ in units of Q1A distribution input clock half cycles.	0x0	R/W

Addr	Name	Bits	Bit Name	Settings	Description	Reset	Access					
0x1508	Phase	7	Reserved		Reserved.	0x0	R					
	slew config- uration	6	Q1A phase [32]		Q1A phase control. This bit field controls the Q1A phase in two ways: the bit field sets the initial phase offset after divider sync (reset); and subsequent changes to this bit field automatically initiate a phase slew event until the programmed phase is reached. The range is 0 to $(2 \times (divide ratio) - 1)$ in units of Q1A distribution input clock half cycles.	0x0	R/W					
	5	Enable Q1A half divide		Enable Q1A half divide. Setting this bit to Logic 1 adds 0.5 to the divide ratio programmed into the corresponding 32-bit Q1A divide ratio bit field.	0x0	R/W						
	4 E		Enable Q1A pulse width control	0	Enable pulse width control mode. This bit controls whether the Q1A Phase bit field adjusts the phase offset or the pulse width.0 The Q1A phase bit field controls the phase offset.							
		3	Q1A phase slew mode		Q1A phase slew mode.	0x0	R/W					
				0	Lag only (always slows down frequency) The phase controller slews the phase in the direction that always reduces the output frequency.							
				1	Lead or lag—quickest is automatically calculated. The phase controller slews the phase in the direction requiring the fewest steps. This means that the output frequency can increase or decrease during a stepwise phase adjustment sequence.							
		[2:0]	Maximum phase slew step	000	Maximum phase slew step. Maximum phase slew step. This 3-bit bit field controls the maximum allowable phase step while adjusting the phase in the Q1A divider. Each step occurs every output clock cycle.	0x0	R/W					
				001	One input clock half-cycle. The phase slew step size is half of the Q divider input period.							
				010	Two input clock half-cycles. The maximum phase slew step size equals the Q divider input period.							
				011	1°. The maximum phase slew step size equals 1/32 (~11.25°) of the output clock period.							
				100	23°. The maximum phase slew step size equals 1/16 (~22.5°) of the output clock period.							
				101	45°. The maximum phase slew step size equals 1/8 (~45°) of the output clock period.							
				110	90°. The maximum phase slew step size equals 1/4 (~90°) of the output clock period.							
				111	180°. The maximum phase slew step size equals half (~180°) of the output clock period.							

DPLL TRANSLATION PROFILE 1.0 REGISTERS—REGISTER 0x1600 TO REGISTER 0x1617

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1600	Priority and enable	Reserve	ed		Profile	1.0 selection	priority	1	Enable Profile 1.0	0x00	R/W
0x1601	Source	F	Reserved			Profile 1.0 re	eference so	ource selectio	1	0x00	R/W
0x1602	Zero delay feedback path	F	Reserved	l	In	ternal/extern	al zero de	lay feedback	path	0x00	R/W
0x1603	Feedback mode	Profile 1.0 loop filter base	Re	eserved	Pro	file 1.0 tag m	ode	Enable Profile 1.0 external zero delay	Enable Profile 1.0 hitless	0x00	R/W
0x1604	Loop bandwidth					p bandwidth				0x00	R/W
0x1605	Loop bandwidth					bandwidth [0x00	R/W
0x1606	Loop bandwidth					bandwidth [2				0x00	R/W
0x1607	Loop bandwidth					bandwidth [3				0x00	R/W
0x1608	Hitless feedback divider					ess N-divider				0xA0	R/W
0x1609	Hitless feedback divider		Profile 1.0 hitless N-divider [15:8] Profile 1.0 hitless N-divider [23:16]						0x0F	R/W	
0x160A	Hitless feedback divider								0x00	R/W	
0x160B	Hitless feedback divider		Profile 1.0 hitless N-divider [31:24]						0x00	R/W	
0x160C	Buildout feedback divider	Profile 1.0 buildout N-divider [7:0]						0xA0	R/W		
0x160D	Buildout feedback divider		Profile 1.0 buildout N-divider [15:8]						0x0F	R/W	
0x160E	Buildout feedback divider			Profil	e 1.0 buildo	out N-divider	[23:16]			0x00	R/W
0x160F	Buildout feedback divider			Profil	e 1.0 buildo	out N-divider	[31:24]			0x00	R/W
0x1610	Buildout feedback fraction			Pro	file 1.0 buil	dout fraction	[7:0]			0x00	R/W
0x1611	Buildout feedback fraction			Prof	file 1.0 build	lout fraction	[15:8]			0x00	R/W
0x1612	Buildout feedback fraction			Profi	ile 1.0 build	out fraction [23:16]			0x00	R/W
0x1613	Buildout feedback modulus	Profile 1.0 buildout modulus [7:0]						0x00	R/W		
0x1614	14 Buildout Profile 1.0 buildout modulus [15:8] feedback modulus					0x00	R/W				
0x1615	Buildout feedback modulus			Profi	le 1.0 builde	out modulus	[23:16]			0x00	R/W
0x1616	Fast lock		Res	erved		Profile 1.0	fast acqui	sition excess	bandwidth	0x00	R/W
0x1617	Fast lock	Reserved	Profi	le 1.0 fast acc timeout		Reserved	Profile	1.0 fast acqu settle time		0x00	R/W

 Table 74. DPLL Translation Profile 1.0 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x1620 to		These reg	gisters m	imic the DPLL	Translatior	n Profile 1.0 reg	isters (Reg	ister 0x1600 t	hrough:	0x00	R/W
0x1637		Register 0x1	617), but	the register a	ddresses ar	e offset by 0x0	020. All de	fault values a	re identical.		

Table 76. DPLL Translation Profile 1.2 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW		
0x1640 to		These reg	These registers mimic the DPLL Translation Profile 1.0 registers (Register 0x1600 through										
0x1657		Register 0x1	617), but	the register a	ddresses ar	e offset by 0x0	020. All de	fault values a	re identical.				

Table 77. DPLL Translation Profile 1.3 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW		
0x1660 to		These reg	These registers mimic the DPLL Translation Profile 1.0 registers (Register 0x1600 through										
0x1677		Register 0x1	617), but	the register a	ddresses ar	e offset by 0x0	020. All de	fault values a	re identical.				

Table 78. DPLL Translation Profile 1.4 Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
0x1680 to		These reg	These registers mimic the DPLL Translation Profile 1.0 registers (Register 0x1600 through									
0x1697		Register 0x1	617), but	the register a	ddresses ar	e offset by 0x0	020. All de	fault values a	re identical.			

Table 79. DPLL Translation Profile 1.5 Register Summary

Reaister	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW	
Register	Name	DIL 7	$\mathbf{D}(\mathbf{r}) = \mathbf{D}(\mathbf{r}) = \mathbf{D}(\mathbf{r}) = \mathbf{D}(\mathbf{r}) = \mathbf{D}(\mathbf{r}) = \mathbf{D}(\mathbf{r}) = \mathbf{D}(\mathbf{r})$									
0x16A0 to		These re	These registers mimic the DPLL Translation Profile 1.0 registers (Register 0x1600 through									
0x16B7		Register 0x1	617), but	the register a	ddresses ar	e offset by 0x0	020. All de	fault values a	re identical.			

Table 80. DPLL Translation Profile 1.0 Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1600	Priority and	[7:6]	Reserved		Reserved.	0x0	R
	enable	[5:1]	Profile 1.0 selection priority		Profile 1.0 selection priority. This 5-bit bit field contains the priority of the translation profile. This allows the user to assign different priorities to different reference inputs. 0x00 is the highest priority, and 0x1F is the lowest priority.	0x0	R/W
					The choice of priority level for a given translation profile is important. If the priority difference between the active profile, and a valid, but inactive higher priority profile is >7, the DPLL state machine always switches to the higher priority profile. This is called revertive reference switching. Therefore, if revertive switching is desired, ensure the higher priority profile has a priority that is at least 8 greater than a lower priority profile. If the difference between the priorities of the active profile and a valid, but inactive higher priority profile is 0 to 7, the DPLL state machine remains on the lower priority profile. This is called nonrevertive reference switching.		
		0	Enable Profile 1.0		Enable DPLL1 Profile 0 (Profile 1.0). Setting this bit to Logic 1 enables DPLL1 Profile 0. If this bit is Logic 0, DPLL1 never uses this profile.	0x0	R/W
0x1601	Source	[7:5]	Reserved		Reserved.	0x0	R
		[4:0]	Profile 1.0 reference source selection		Profile 1.0 reference source selection. This 5-bit bit field contains the input source of the translation profile.	0x0	R/W
				0	Reference A.		
				1	Reference AA.		
				2	Reference B.		
				3	Reference BB.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Acces
				4	Feedback from DPLL0.		
				8	Auxiliary NCO 0.		
				9	Auxiliary NCO 1.		
0x1602	Zero delay	[7:5]	Reserved		Reserved.	0x0	R
	feedback path	[4:0]	External zero delay feedback path		Profile 1.0 external zero delay feedback path. This 5-bit bit field configures the Profile 1.0 feedback path in hitless external zero delay mode. Setting the Enable Profile 1.0 external zero delay bit to Logic 1 enables external zero delay mode for Prolife 1.0.	0x0	R/W
				0	Reference A. Select this mode if REFA is single-ended or in differential mode.		
				1	Reference AA.		
				2	Reference B. Select this mode if REFB is single-ended or in differential mode.		
				3	Reference BB.		
		[4:0]	Internal zero delay feedback path	0	Profile 1.0 internal zero delay feedback path. This 5-bit bit field configures the Profile 1.0 feedback path in hitless internal zero- delay mode. Setting the Enable Profile 1.0 internal zero delay bit to Logic 1 enables internal zero delay mode for Prolife 1.0. OUT1AP. Select this mode if OUT1A is single-ended or in differential mode.	0x0	R/W
				1	OUT1AN.		
				2	OUT1BP. Select this mode if OUT1B is single-ended or in		
				2	differential mode.		
				3	OUT1BN.		
0x1603 Feedback mode		7	Profile 1.0 loop filter base		Profile 1.0 loop filter base coefficients. This bit controls which set of loop filter coefficients are used for DPLL1 Profile 0.	0x0	R/W
				0	Nominal phase margin (~70°).		
				1	High phase margin (~88.5°) Use this setting for applications that require no more than 0.1 dB of peaking in the DPLL closed-loop transfer function.		
		[6:5]	Reserved		Reserved.	0x0	R/W
		[4:2]	Profile 1.0 tag mode		Profile 1.0 tag mode. This 3-bit bit field configures the Profile1.0 tag mode.	0x0	R/W
				0	Neither the reference nor feedback path contains tagged events.		
				1	Only the reference path is tagged.		
				2	Only the feedback path is tagged.		
					Both reference and feedback Paths are tagged, but the untagged rates are unequal.		
				4	untagged rates are equal.		D 444
		1	Enable Profile 1.0 external zero delay		Enable DPLL1 Profile 0 external zero delay mode. Setting this bit to Logic 1 enables the DPLL1 Profile 0 external zero delay path for hitless mode.	0x0	R/W
		0	Enable Profile 1.0		Enable Profile 1.0 hitless operation.	0x0	R/W
			hitless	0	Selects the default phase buildout mode for the DPLL1 Profile 0		
				1	Enables hitless mode for DPLL1 Profile 0. This bit must also be enabled for zero delay operation.		
x1604	Loop band- width	[7:0]	Profile 1.0 loop bandwidth [7:0]		DPLL1 Profile 0 loop bandwidth. This 32-bit bit field is the DPLL loop bandwidth scaling factor. The default units for this bit field are microseconds (10^{-6} seconds).	0x0	R/W
x1605	Loop band- width	[7:0]	Profile 1.0 loop bandwidth [15:8]		DPLL1 Profile 0 loop bandwidth. This 32-bit bit field is the DPLL loop bandwidth scaling factor. The default units for this bit field are microseconds (10 ⁻⁶ seconds).	0x0	R/W
)x1606	Loop band- width	[7:0]	Profile 1.0 loop bandwidth [23:16]		DPLL1 Profile 0 loop bandwidth. This 32-bit bit field is the DPLL loop bandwidth scaling factor. The default units for this bit field are microseconds (10 ⁻⁶ seconds).	0x0	R/W

UG-1146

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1607	Loop band- width		Profile 1.0 loop bandwidth [31:24]		DPLL1 Profile 0 loop bandwidth. This 32-bit bit field is the DPLL loop bandwidth scaling factor. The default units for this bit field are microseconds (10^{-6} seconds).	0x0	R/W
0x1608	Hitless feedback divider		Profile 1.0 hitless N- divider [7:0]		Profile 1.0 feedback divider in hitless mode. This 32-bit bit field is the DPLL1 feedback divide ratio while DPLL1 is in hitless mode. The feedback divide ratio is the value stored in this bit field plus one.	0xA0	R/W
0x1609	Hitless feedback divider	[7:0]	Profile 1.0 hitless N- divider [15:8]		Profile 1.0 feedback divider in hitless mode. This 32-bit bit field is the DPLL1 feedback divide ratio while DPLL1 is in hitless mode. The feedback divide ratio is the value stored in this bit field plus one.	0xF	R/W
0x160A	Hitless feedback divider	[7:0]	Profile 1.0 hitless N- divider [23:16]		Profile 1.0 feedback divider in hitless mode. This 32-bit bit field is the DPLL1 feedback divide ratio while DPLL1 is in hitless mode. The feedback divide ratio is the value stored in this bit field plus one.	0x0	R/W
0x160B	Hitless feedback divider	[7:0]	Profile 1.0 hitless N- divider [31:24]		Profile 1.0 feedback divider in hitless mode. This 32-bit bit field is the DPLL1 feedback divide ratio while DPLL1 is in hitless mode. The feedback divide ratio is the value stored in this bit field plus one.	0x0	R/W
0x160C	Buildout feedback divider	[7:0]	Profile 1.0 buildout N-divider [7:0]		DPLL1 Profile 0 buildout N-divide ratio. This 32-bit bit field is the integer portion of the DPLL feedback divide ratio while DPLL1 is in phase buildout mode. It is also referred to as the N-divider in the data sheet.	0xA0	R/W
0x160D	Buildout feedback divider	[7:0]	Profile 1.0 buildout N-divider [15:8]		DPLL1 Profile 0 buildout N-divide ratio. This 32-bit bit field is the integer portion of the DPLL feedback divide ratio while DPLL1 is in phase buildout mode. It is also referred to as the N- divider in the data sheet.	0xF	R/W
0x160E	Buildout feedback divider	[7:0]	Profile 1.0 buildout N-divider [23:16]		DPLL1 Profile 0 buildout N-divide ratio. This 32-bit bit field is the integer portion of the DPLL feedback divide ratio while DPLL1 is in phase buildout mode. It is also referred to as the N-divider in the data sheet.	0x0	R/W
0x160F	Buildout Feedback divider	[7:0]	Profile 1.0 buildout N-divider [31:24]		DPLL1 Profile 0 buildout N-divide ratio. This 32-bit bit field is the integer portion of the DPLL feedback divide ratio while DPLL1 is in phase buildout mode. It is also referred to as the N-divider in the data sheet.	0x0	R/W
0x1610	Buildout feedback fraction	[7:0]	Profile 1.0 buildout fraction [7:0]		DPLL1 Profile 0 feedback divider fraction in buildout mode. This 24-bit bit field is the numerator of the DPLL fractional feedback divider while DPLL1 is in phase buildout mode. It is also referred to as FRAC in the data sheet.	0x0	R/W
0x1611	Buildout feedback fraction	[7:0]	Profile 1.0 buildout fraction [15:8]		DPLL1 Profile 0 feedback divider fraction in buildout mode. This 24-bit bit field is the numerator of the DPLL fractional feedback divider while DPLL1 is in phase buildout mode. It is also referred to as FRAC in the data sheet.	0x0	R/W
0x1612	Buildout feedback fraction	[7:0]	Profile 1.0 buildout fraction [23:16]		DPLL1 Profile 0 feedback divider fraction in buildout mode. This 24-bit bit field is the numerator of the DPLL fractional feedback divider while DPLL1 is in phase buildout mode. It is also referred to as FRAC in the data sheet.	0x0	R/W
0x1613	Buildout feedback modulus	[7:0]	Profile 1.0 buildout modulus [7:0]		DPLL1 Profile 0 feedback divider modulus in buildout mode. This 24-bit bit field is the denominator of the DPLL fractional feedback divider while DPLL1 is in phase buildout mode. It is also referred to as MOD in the data sheet.	0x0	R/W
0x1614	Buildout feedback modulus	[7:0]	Profile 1.0 buildout modulus [15:8]		DPLL1 Profile 0 feedback divider modulus in buildout mode. This 24-bit bit field is the denominator of the DPLL fractional feedback divider while DPLL1 is in phase buildout mode. It is also referred to as MOD in the data sheet.	0x0	R/W
0x1615	Buildout feedback modulus	[7:0]	Profile 1.0 buildout modulus [23:16]		DPLL1 Profile 0 feedback divider modulus in buildout mode. This 24-bit bit field is the denominator of the DPLL fractional feedback divider while DPLL1 is in phase buildout mode. It is also referred to as MOD in the data sheet.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x1616	Fast lock	[7:4]	Reserved		Reserved.	0x0	R
		[3:0]	Profile 1.0 fast acquisition excess bandwidth		DPLL1 Profile 0 fast acquisition excess bandwidth. This 4-bit bit field controls the DPLL1 loop bandwidth scaling factor (relative to the programmed DPLL loop bandwidth) while in fast acquisition mode. The DPLL automatically reduces its loop bandwidth by successive factors of 2 while the loop is acquiring. Setting this bit field to 0000b disables the feature.	0x0	R/W
				0	Feature disabled.		
				1	$2\times$. The initial loop bandwidth is $2\times$ the programmed value.		
				10	1 1 5		
				11	1 1 5		
				100	16×. The initial loop bandwidth is 16× the programmed value.		
				101	1 1 5		
				110	64×. The initial loop bandwidth is 64× the programmed value.		
				111	128×. The initial loop bandwidth is 128× the programmed value.		
				1000	1 1 5		
				1001	512×. The initial loop bandwidth is 512× the programmed value.		
	1010 1024×. The initial loop bandwidth is 1024× the programmed value.						
							_
Jx1617	Fast lock	7	Reserved		Reserved.	0x0	R
0x1617		[6:4]	Profile 1.0 fast acquisition timeout	0 1 10 11 100 101 110 111	100 ms. 500 ms. 1 sec. 10 sec.	0x0	R/W
		3	Reserved		Reserved.	0x0	R
		[2:0]	Profile 1.0 fast acquisition lock settle time	11 100 101	10 ms. 50 ms.	0x0	R/W
				110			

OPERATIONAL CONTROLS GENERAL REGISTERS—**REGISTER 0x2000 TO REGISTER 0x2005**

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2000	Global	R	Reserved			Sync all	Calibrate SYSCLK	Calibrate all	Power down all	0x00	R/W
0x2001	Power-down reference	R				Power-down REFBB	Power-down REFB	Power-down REFAA	Power-down REFA	0x00	R/W
0x2002	Timeout reference	R	1			Timeout Reference Monitor BB	Timeout Reference Monitor B	Timeout Reference Monitor AA	Timeout Reference Monitor A	0x00	R/W
0x2003	Fault reference	R	Reserved			Fault REFBB	Fault REFB	Fault REFAA	Fault REFA	0x00	R/W
0x2004	Bypass reference monitor	R	R		Bypass Reference Monitor BB	Bypass Reference Monitor B	Bypass Reference Monitor AA	Bypass Reference Monitor A	0x00	R/W	
0x2005	Clear IRQ	Clear watchdog timer	F	leserve	d	IRQ clear PLL1	IRQ clear PLL0	IRQ clear common	IRQ clear all	0x00	R/W

Table 81. IRQ Map DPLL0 Clear Register Summary

Table 82. Operational Controls General Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2000	Global	[7:4]	Reserved		Reserved.	0x0	R/W
		3	Sync all		Synchronize all distribution dividers. The proper sequence for synchronizing the output dividers manually is to set this bit to Logic 1, write 0x01 to the IO_UPDATE register, set this bit to Logic 0, and write 0x01 to the IO_UPDATE register a second time.	0x0	R/W
					Logic 0: normal operation.		
					Logic 1: hold all distribution dividers in RESET with the divider outputs static.		
		2	Calibrate SYSCLK		Calibrate system clock PLL. Setting this bit to Logic 1 calibrates the system clock PLL. Because calibration occurs on the Logic 0 to Logic 1 transition, it is recommended to clear this bit after setting it. The system clock PLL must be calibrated during initial programming of the AD9545. Because the calibration signal is a logical OR of this bit and the calibrate all bit, this calibration bit is ineffective if the calibrate all bit is Logic 1 at the time this bit is set to Logic 1.	0x0	R/W
		1	Calibrate all		Calibrate all PLLs. Setting this bit to Logic 1 calibrates all PLLs, including the system clock PLL. Because calibration occurs on the Logic 0 to Logic 1 transition, it is recommended to clear this bit after setting it; this recommendation applies to all calibration bits on the AD9545. The system clock PLL and both APLLs must be calibrated during initial programming of the AD9545 for both PLL0 and PLL1 to function normally.	0x0	R/W
		0	Power down all		Power down entire chip. Setting this bit to Logic 1 puts the entire chip into a lower power mode. The serial port is still active in this state.	0x0	R/W
0x2001	Power- down reference	[7:4]	Reserved		Reserved.	0x0	R/W
		3	Power-down REFBB		Power-down REFBB. Setting this bit to Logic 1 powers down the REFBB input receiver.	0x0	R/W
		2	Power-down REFB		Power-down REFB. Setting this bit to Logic 1 powers down the REFB input receiver.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Acces
		1	Power-down REFAA		Power-down REFAA. Setting this bit to Logic 1 powers down the REFAA input receiver.	0x0	R/W
		0	Power-down REFA		Power-down REFA. Setting this bit to Logic 1 powers down the REFA input receiver.	0x0	R/W
0x2002	Timeout	[7:4]	Reserved		Reserved.	0x0	R/W
	reference	3	Timeout Reference Monitor BB		Timeout REFBB validation. Setting this autoclearing bit to Logic 1 (and issuing an input/output update) while the input reference is unfaulted and validation timer counts down immediately validates the reference input. Setting this bit to Logic 1 at other times has no effect. The following settings force REFBB valid:	0x0	R/W
					Set the bypass Reference Monitor BB bit to Logic 1.		
					Set the Fault REFBB bit to Logic 0.		
					Input/output update.		
					Set this bit to Logic 1.		
					Input/output update.		
		2	Timeout Reference Monitor B		Timeout REFB validation. Setting this autoclearing bit to Logic 1 (and issuing an input/output update) while the input reference is unfaulted and validation timer counts down immediately validates the reference input. Setting this bit to Logic 1 at other times has no effect. The following settings force REFB valid:		
					Set the Bypass Reference Monitor B bit to Logic 1.		
					Set the Fault REFB bit to Logic 0.		
					Input/output update.		
					Set this bit to Logic 1.		
					Input/output update.		
		1	Timeout Reference Monitor AA		Timeout REFAA validation. Setting this autoclearing bit to Logic 1 (and issuing an input/output update) while the input reference is unfaulted and validation timer counts down immediately validates the reference input. Setting this bit to Logic 1 at other times has no effect. The following settings force REFAA valid:	0x0	R/W
					Set the Bypass Reference Monitor AA bit to Logic 1.		
					Set the Fault REFAA bit to Logic 0.		
					Input/output update.		
					Set this bit to Logic 1.		
					Input/output update.		
		0	Timeout Reference Monitor A		Timeout REFA validation. Setting this autoclearing bit to Logic 1 (and issuing an input/output update) while the input reference is unfaulted and validation timer counts down immediately validates the reference input. Setting this bit to Logic 1 at other times has no effect. The following settings force REFA valid:	0x0	R/W
					Set the Bypass Reference Monitor A bit to Logic 1.		
					Set the Fault REFA bit to Logic 0.		
					Input/output update.		
					Set this bit to Logic 1.		
		1			Input/output update.		1

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2003	Fault reference	[7:4]	Reserved		Reserved.	0x0	R
		3	Fault REFBB		Force REFBB invalid. Setting this bit to Logic 1 invalidates the REFBB input and guarantees REFBB is not available as long as this bit is Logic 1.	0x0	R/W
		2	Fault REFB		Force REFB I invalid. Setting this bit to Logic 1 invalidates the REFBB input and guarantees REFB is not available as long as this bit is Logic 1.	0x0	R/W
		1	Fault REFAA		Force REFAA invalid. Setting this bit to Logic 1 invalidates the REFBB input and guarantees REFAA is not available as long as this bit is Logic 1.	0x0	R/W
		0	Fault REFA		Force REFA invalid. Setting this bit to Logic 1 invalidates the REFBB input and guarantees REFA is not available as long as this bit is Logic 1.	0x0	R/W
0x2004	Bypass	[7:4]	Reserved		Reserved.	0x0	R
	reference monitor	3	Bypass Reference Monitor BB		Bypass REFBB frequency monitor. Setting this bit to Logic 1 bypasses the reference input monitor and declares the reference unfaulted. See the register description for the Timeout Reference Monitor BB bit for the additional steps needed to force a reference input to be valid.	0x0	R/W
		2	Bypass Reference Monitor B		Bypass REFB frequency monitor. Setting this bit to Logic 1 bypasses the reference input monitor and declare that reference unfaulted. See the register description for Timeout Reference Monitor B bit for the additional steps needed to force a reference input to be valid.	0x0	R/W
		1	Bypass Reference Monitor AA		Bypass REFAA frequency monitor. Setting this bit to Logic 1 bypasses the reference input monitor and declare that reference unfaulted. See the register description for Timeout Reference Monitor AA bit for the additional steps needed to force a reference input to be valid.	0x0	R/W
		0	Bypass Reference Monitor A		Bypass REFA frequency monitor. Setting this bit to Logic 1 bypasses the reference input monitor and declare that reference unfaulted. See the register description for Timeout Reference Monitor A bit for the additional steps needed to force a reference input to be valid.	0x0	R/W
0x2005	Clear IRQ	7	Clear watchdog		Clear watchdog timer. Setting this write-only bit to Logic 1 immediately clears the watchdog timer.	0x0	R
		[6:4]	Reserved		Reserved.	0x0	R/W
		3	IRQ clear PLL1		Clear All PLL1 IRQ. Setting this write-only bit to Logic 1 clears all PLL1 IRQs. This bit always reads back as Logic 0.	0x0	R/W
		2	IRQ clear PLL0		Clear All PLL0 IRQ. Setting this write-only bit to Logic 1 clears all PLL0 IRQs. This bit always reads back as Logic 0.	0x0	R/W
		1	IRQ clear common		Clear common IRQ. Setting this write-only bit to Logic 1 clears all PLL1 IRQs. This bit always reads back as Logic 0.	0x0	R/W
		0	IRQ clear all		Clear all IRQs. Setting this write-only bit to Logic 1 clears all PLL1 IRQs. This bit always reads back as Logic 0.	0x0	R/W

IRQ MAP COMMON CLEAR REGISTERS—REGISTER 0x2006 TO REGISTER 0x200A

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2006	SYSCLK	SYSCLK unlocked	SYSCLK stabilized	SYSCLK locked	SYSCLK calibration deactivated	SYSCLK calibration started	Watchdog timeout occurred	EEPROM faulted	EEPROM completed	0x00	R/W
0x2007	Auxiliary DPLL	Rese	rved	Skew limit exceeded	Temperature warning occurred	Auxiliary DPLL unfaulted	Auxiliary DPLL faulted	Auxiliary DPLL unlocked	Auxiliary DPLL locked	0x00	R/W
0x2008	REFA	REFAA R divider resynced	REFAA validated	REFAA unfaulted	REFAA faulted	REFA R divider resynced	REFA validated	REFA unfaulted	REFA faulted	0x00	R/W
0x2009	REFB	REFBB R divider resynced	REFBB validated	REFBB unfaulted	REFBB faulted	REFB R divider resynced	REFB validated	REFB unfaulted	REFB faulted	0x00	R/W
0x200A	Timestamp		Reserved		Skew updated	Timestamp 1 event	Timestamp 0 event	Auxiliary NCO 1 event	Auxiliary NCO 0 event	0x00	R/W

Table 83. IRQ Map Common Clear Register Summary

Table 84. IRQ Map Common Clear Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2006	SYSCLK	7	SYSCLK unlocked		System clock unlocked. Set this bit to Logic 1 to clear the SYSCLK unlocked IRQ.	0x0	R/W
		6	SYSCLK stabilized		System clock stabilized. Set this bit to Logic 1 to clear the SYSCLK stable IRQ.	0x0	R/W
		5	SYSCLK locked		System clock locked. Set this bit to Logic 1 to clear the SYSCLK locked IRQ.	0x0	R/W
		4 SYSCLK System clock calibration deactivated. Set this bit to Log calibration to clear the SYSCLK calibration ended IRQ. deactivated deactivated		System clock calibration deactivated. Set this bit to Logic 1 to clear the SYSCLK calibration ended IRQ.	0x0	R/W	
		3	SYSCLK calibration activated		System clock calibration activated. Set this bit to Logic 1 to clear the SYSCLK calibration started IRQ.	0x0	R/W
		2	Watchdog timeout occurred		Watchdog timeout occurred. Set this bit to Logic 1 to clear the watchdog timer timeout IRQ.	0x0	R/W
		1	EEPROM faulted		EEPROM faulted. Set this bit to Logic 1 to clear the EEPROM fault IRQ.	0x0	R/W
		0	EEPROM completed		EEPROM operation completed. Set this bit to Logic 1 to clear the EEPROM operation complete IRQ.	0x0	R/W
0x2007	Auxiliary	[7:6]	Reserved		Reserved.	0x0	R
	DPLL	5	Skew limit exceeded		Skew limit exceeded. Set this bit to Logic 1 to clear the reference input skew measurement limit exceeded IRQ.	0x0	R/W
		4	Temperature warning occurred		Temperature range warning occurred. Set to Logic 1 to clear the temperature warning IRQ.	0x0	R/W
		3	Auxiliary DPLL unfaulted		Closed-loop SYSCLK compensation DPLL unfaulted. Set this bit to Logic 1 to clear the auxiliary DPLL unfault IRQ.	0x0	R/W
		2	Auxiliary DPLL faulted		Closed-loop SYSCLK compensation DPLL faulted. Set this bit to Logic 1 to clear the auxiliary DPLL fault IRQ.	0x0	R/W
		1	Auxiliary DPLL unlocked		Closed-loop SYSCLK compensation DPLL unlocked. Set this bit to Logic 1 to clear the auxiliary DPLL unlock IRQ.	0x0	R/W
		0	Auxiliary DPLL locked		Closed-loop SYSCLK compensation DPLL locked. Set this bit to Logic 1 to clear the auxiliary DPLL lock IRQ.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2008	REFA	7	REFAA R divider		REFAA R divider resynchronized. Set this bit to Logic 1 to	0x0	R/W
			resynced		clear the REFAA R divider resynced IRQ.		
		6	REFAA validated		REFAA validated. Set this bit to Logic 1 to clear the REFAA valid IRQ.	0x0	R/W
		5	REFAA unfaulted		REFAA unfaulted. Set this bit to Logic 1 to clear the REFAA unfaulted IRQ	0x0	R/W
		4	REFAA faulted		REFAA faulted. Set this bit to Logic 1 to clear the REFAA faulted IRQ.	0x0	R/W
		3	REFA R divider resynced		REFA R divider resynchronized. Set this bit to Logic 1 to clear the REFA R divider resynced IRQ.	0x0	R/W
		2	REFA validated		REFA validated. Set this bit to Logic 1 to clear the REFA valid IRQ.	0x0	R/W
		1	REFA unfaulted		REFA unfaulted. Set this bit to Logic 1 to clear the REFA unfaulted IRQ.	0x0	R/W
		0	REFA faulted		REFA faulted. Set this bit to Logic 1 to clear the REFA faulted IRQ.	0x0	R/W
0x2009	REFB	7	REFBB R divider resynced		REFBB R divider resynchronized. Set this bit to Logic 1 to clear the REFBB R divider resynced IRQ.	0x0	R/W
		6	REFBB validated		REFBB validated. Set this bit to Logic 1 to clear the REFBB valid IRQ.	0x0	R/W
		5	REFBB unfaulted		REFBB unfaulted. Set this bit to Logic 1 to clear the REFBB unfaulted IRQ.	0x0	R/W
		4	REFBB faulted		REFBB faulted. Set this bit to Logic 1 to clear the REFBB faulted IRQ.	0x0	R/W
		3	REFB R divider resynced		REFB R divider resynchronized. Set this bit to Logic 1 to clear the REFB R divider resynced IRQ.	0x0	R/W
		2	REFB validated		REFB validated. Set this bit to Logic 1 to clear the REFB valid IRQ.	0x0	R/W
		1	REFB unfaulted		REFB unfaulted. Set to this bit Logic 1 to clear the REFB unfaulted IRQ.	0x0	R/W
		0	REFB faulted		REFB faulted. Set this bit to Logic 1 to clear the REFB faulted IRQ.	0x0	R/W
0x200A	Timestamp	[7:5]	Reserved		Reserved.	0x0	R
		4	Skew updated		Skew measurement updated. Set this bit to Logic 1 to clear the reference input skew measurement updated IRQ.	0x0	R/W
		3	Timestamp 1 event		Timestamp 1 time code available. Set this bit to Logic 1 to clear the Timestamp 1 IRQ.	0x0	R/W
		2	Timestamp 0 event		Timestamp 0 time code available. Set this bit to Logic 1 to clear the Timestamp 0 IRQ.	0x0	R/W
		1	Auxiliary NCO 1 event		Auxiliary NCO 1 event. Set this bit to Logic 1 to clear the auxiliary NCO 1 IRQ.	0x0	R/W
		0	Auxiliary NCO 0 event		Auxiliary NCO 0 event. Set this bit to Logic 1 to clear the auxiliary NCO 0 IRQ.	0x0	R/W

IRQ MAP DPLL0 CLEAR REGISTERS—REGISTER 0x200B TO REGISTER 0x200F

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x200B	Lock	DPLL0 frequency clamp deactivated	DPLL0 frequency clamp activated	DPLL0 phase slew limiter deactivated	DPLL0 phase slew limiter activated	DPLL0 frequency unlocked	DPLL0 frequency locked	DPLL0 phase unlocked	DPLL0 phase locked	0x00	R/W
0x200C	State	DPLL0 reference switched	DPLL0 freerun entered	DPLL0 holdover entered	DPLL0 hitless entered	DPLL0 hitless exited	DPLL0 history updated	Reserved	DPLL0 phase step detected	0x00	R/W
0x200D	Fast acquisition		Reserved		DPLL0 N- divider resynced	DPLL0 fast acquisition completed	DPLL0 fast acquisition started	Rese	rved	0x00	R/W
0x200E	Active profile	Reser	ved	DPLL0 Profile 5 activated	DPLL0 Profile 4 activated	DPLL0 Profile 3 activated	DPLL0 Profile 2 activated	DPLL0 Profile 1 activated	DPLL0 Profile 0 activated	0x00	R/W
0x200F	APLL		Reserved		DPLL0 distribution synced	APLL0 unlocked	APLL0 locked	APLL0 calibration completed	APLL0 calibration started	0x00	R/W

Table 85. IRQ Map DPLL0 Clear Register Summary

Table 86. IRQ Map DPLL1 Clear Register Summary

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2010 to		These regist	ers mimi	c the IRQ Map	DPLL0 reg	isters (Register	0x200B th	nrough Regist	er 0x200F),	0x00	R/W
0x2014		but	the regis	ter addresses	are offset b	y 0x0005. All d	lefault valu	ues are identio	cal.		

Table 87. IRQ Map DPLL0 Clear Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x200B	Lock	7	DPLL0 frequency clamp deactivated		Frequency clamp deactivated. Set this bit to Logic 1 to clear IRQ for DPLL0 frequency clamp inactive.	0x0	R/W
		6	DPLL0 frequency clamp activated		Frequency clamp activated. Set this bit to Logic 1 to clear IRQ for DPLL0 frequency clamp active.	0x0	R/W
		5	DPLL0 phase slew limiter deactivated		Phase slew limiter deactivated. Set this bit to Logic 1 to clear IRQ for DPLL0 phase slew limiter deactivated.	0x0	R/W
		4	DPLL0 phase slew limiter activated		Phase slew limiter activated. Set this bit to Logic 1 to clear IRQ for DPLL0 phase slew limiter activated.	0x0	R/W
		3	DPLL0 frequency unlocked		Frequency unlocked. Set this bit to Logic 1 to clear IRQ for DPLL0 FLD (lock to unlock transition).	0x0	R/W
		2	DPLL0 frequency locked		Frequency locked. Set this bit to Logic 1 to clear IRQ for DPLL0 frequency unlock detect (unlock to lock transition).	0x0	R/W
		1	DPLL0 phase unlocked		Phase unlocked. Set this bit to Logic 1 to clear IRQ for DPLL0 PLD (lock to unlock transition).	0x0	R/W
		0	DPLL0 phase locked		Phase locked. Set this bit to Logic 1 to clear IRQ for DPLL0 phase unlock detect (unlock to lock transition).	0x0	R/W
0x200C	State	7	DPLL0 reference switched		Reference switched. Set this bit to Logic 1 to clear IRQ for DPLL0 reference input switching.	0x0	R/W
		6	DPLL0 freerun entered		Freerun mode entered. Set this bit to Logic 1 to clear IRQ for DPLL0 freerun mode entered.	0x0	R/W
		5	DPLL0 holdover entered		Holdover mode entered. Set this bit to Logic 1 to clear IRQ for DPLL0 holdover mode entered.	0x0	R/W
		4	DPLL0 hitless entered		Hitless mode entered. Set this bit to Logic 1 to clear IRQ for DPLL0 hitless mode entered.	0x0	R/W
		3	DPLL0 hitless exited		Hitless mode exited. Set this bit to Logic 1 to clear IRQ for DPLL0 hitless mode exited.	0x0	R/W
		2	DPLL0 history updated		Holdover history updated. Set this bit to Logic 1 to clear IRQ for DPLL0 tuning word holdover history updated.	0x0	R/W
		1	Reserved		Reserved.	0x0	R

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		0	DPLL0 phase step detected		Phase step detected. Set to Logic 1 to clear IRQ for DPLL0 reference input phase step detected.	0x0	R/W
0x200D	Fast	[7:5]	Reserved		Reserved.	0x0	R
	acquisition	4	DPLL0 N-divider resynced		N-divider resynchronized. Set this bit to Logic 1 to clear IRQ for DPLL0 N-divider resynced.	0x0	R/W
		3	DPLL0 fast acquisition completed		Fast acquisition completed. Set this bit to Logic 1 to clear IRQ for DPLL0 fast acquisition complete.	0x0	R/W
		2	DPLL0 fast acquisition started		Fast acquisition started. Set this bit to Logic 1 to clear IRQ for DPLL0 fast acquisition started.	0x0	R/W
		[1:0]	Reserved		Reserved.	0x0	R/W
0x200E	Active	[7:6]	Reserved		Reserved.	0x0	R
	profile	5	DPLL0 Profile 5 activated		Profile 5 activated. Set this bit to Logic 1 to clear IRQ for DPLL0 Profile 5 activated.	0x0	R/W
		4	DPLL0 Profile 4 activated		Profile 4 activated. Set this bit to Logic 1 to clear IRQ for DPLL0 Profile 4 activated.	0x0	R/W
		3	DPLL0 Profile 3 activated		Profile 3 activated. Set this bit to Logic 1 to clear IRQ for DPLL0 Profile 3 activated.	0x0	R/W
		2	DPLL0 Profile 2 activated		Profile 2 activated. Set this bit to Logic 1 to clear IRQ for DPLL0 Profile 2 activated.	0x0	R/W
		1	DPLL0 Profile 1 activated		Profile 1 activated. Set this bit to Logic 1 to clear IRQ for DPLL0 Profile 1 activated.	0x0	R/W
		0	DPLL0 Profile 0 activated		Profile 0 activated. Set this bit to Logic 1 to clear IRQ for DPLL0 Profile 0 activated.	0x0	R/W
0x200F	APLL	[7:5]	Reserved		Reserved.	0x0	R
		4	DPLL0 distribution synced		Clock distribution synced. Set this bit to Logic 1 to clear IRQ for DPLL0 clock distribution synced.	0x0	R/W
		3	APLL0 unlocked		Unlock detect. Set this bit to Logic 1 to clear IRQ for APLL0 lock detect (lock to unlock transition).	0x0	R/W
		2	APLL0 locked		Lock detect. Set this bit to Logic 1 to clear IRQ for APLL0 lock detect (unlock to lock transition).	0x0	R/W
		1	APLL0 calibration completed		Calibration completed. Set this bit to Logic 1 to clear IRQ for APLLO calibration complete.	0x0	R/W
		0	APLL0 calibration started		Calibration started. Set this bit to Logic 1 to clear IRQ for APLL0 calibration start.	0x0	R/W

OPERATIONAL CONTROL CHANNEL 0 REGISTERS—REGISTER 0x2100 TO REGISTER 0x2107

Table 88. Operational Control Channel 0 Register Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2100	Power down and calibration				Reserved			Calibrate APLL0	Power down Channel 0	0x00	R/W
0x2101	All Channel 0 control			Reserved		Sync all Channel 0 dividers	Reset all Channel 0 drivers	Mute all Channel 0 drivers	N-shot request Channel 0	0x00	R/W
0x2102	Divider Q0A	Reserv	/ed	Reset OUT0A/OUT0AA	Power down OUT0A/OUT0AA	Mute OUT0AA	Mute OUT0A	Reset Q0AA	Reset Q0A	0x00	R/W
0x2103	Divider Q0B	Reserv	/ed	Reset OUT0B/ OUT0BB	Power down OUT0B/OUT0BB	Mute OUT0BB	Mute OUT0B	Reset Q0BB	Reset Q0B	0x00	R/W
0x2104	Divider Q0C	Reserv	/ed	Reset OUT0C/ OUT0CC	Power down OUT0C/OUT0CC	Mute OUT0CC	Mute OUT0C	Reset Q0CC	Reset Q0C	0x00	R/W
0x2105	DPLL0 mode	Enable step detect reference fault		DPLLO assign transl	ation profile		lation profile t mode	DPLL0 force holdover	DPLL0 force freerun	0x00	R/W

AD9545 Register Map Reference Manual

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2106	DPLL0 fast acquisition mode			Reserved		Enable DPLL0 fast acquisition no output	Enable DPLL0 fast acquisition first	Enable DPLL0 fast acquisition from holdover	Enable DPLL0 fast acquisition from freerun	0x00	R/W
0x2107	Clear state		Resei	ved	Channel 0 automute clear	Clear DPLL0 fast acquisition done	Reserved	DPLL0 clear history	Channel 0 autosync one-shot	0x00	R/W

Table 89. Operational Control Channel 0 Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
1x2100 Power down calibra 1x2101 All Chanr	Power	[7:2]	Reserved		Reserved.	0x0	R
	down and calibration	1	Calibrate APLL0		APLL0 voltage controlled oscillator (VCO) calibration. Setting this bit from Logic 0 to Logic 1 performs the APLL VCO calibration on the next input/output update. VCO calibration must be done during initial configuration and any time the nominal APLL VCO frequency changes. VCO calibration must be performed after the APLL dividers are configured and the desired APLL input frequency is present. This bit field is not self clearing, and it is recommended that the user write a Logic 0 to this bit field after performing the VCO calibration.	0x0	R/W
		0Power down Channel 0Power down Channel 0. Setting this bit to Logic 1 powers all blocks in Channel 0. All Channel 0 outputs are tristated.0x					R/W
0x2101	All	[7:4]	Reserved		Reserved.	0x0	R
	Channel 0 control	3	Sync all Channel 0 dividers		Synchronize all Channel 0 dividers. If making the output driver static without resetting the corresponding Q Divider, use the mute bit in this register instead. The driver power- down bit must tristate the output driver. Logic 0: normal operation.	0x0	R/W
	Logic 1: all Channel 0 output drivers are held in a the corresponding Q dividers are held in reset state, differential drivers are held in a muted state	Logic 1: all Channel 0 output drivers are held in a static state at the corresponding Q dividers are held in reset. In the sync state, differential drivers are held in a muted state. Releasing from Logic 1 to Logic 0 initializes all outputs synchronously.					
		2	Reset all Channel 0 drivers		Reset all Channel 0 drivers. The reset function is identical to the Mute All Channel 0 drivers bit in this register, except the mute function delays muting an output driver to avoid a runt pulse, whereas the reset function mutes the output driver immediately. Both the reset and mute functions contain logic to prevent runt pulses while unmuting an output driver.	0x0	R/W
		1	1 Mute all Channel 0 drivers		Mute all Channel 0 drivers. The driver power-down bit must tristate the output driver. Logic 0: Channel 0 drivers are unmuted. The output drivers contain logic to prevent runt pulses while transitioning from a mute to unmute state. Logic 1: Channel 0 drivers are muted. In the muted state, differential drivers are held in a state in which the positive leg of the differential driver is static low, while the complimentary output is static high.	0x0	R/W
		0	N-shot request Channel 0		Channel 0 JESD204B N-shot Request. In most cases, return this bit to zero to avoid unwanted retriggering of the N-shot generators. Logic 0: Normal operation (JESD204B N-shot not requested). Logic 1: Channel 0 JESD204B N-shot request. This bit is in a buffered register, meaning an input/output update must follow this register write.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2102	Divider	[7:6]	Reserved		Reserved.	0x0	R
	Q0A	5	Reset OUT0A/OUT0AA		Reset OUT0A and OUT0AA drivers. Use the driver power- down bits instead of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning from a reset condition. The pin names for OUT0A/OUT0AA are OUT0AP/OUT0AN, respectively.	0x0	R/W
					Logic 0: normal operation.		
				Logic 1: OUT0A/OUT0AA is put immediately into reset and driven static low/high. In differential mode, OUT0AA is static high.			
		4	Power down OUT0A/OUT0AA		Power down OUT0A/OUT0AA.	0x0	R/W
					Logic 0: normal Operation		
					Logic 1: OUT0A/OUT0AA are powered down and tristated. OUT0A/OUT0AA correspond to Pins OUT0AP/OUT0AN, respectively.		
		3	Mute OUT0AA		Mute OUT0AA. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUT0AA is OUT0AN.	0x0 R	R/W
					Logic 0: normal operation. OUT0AA is unmuted.		
					Logic 1: OUT0AA is muted and driven static low. Use the driver power-down bit instead of this bit to tristate the output driver. Setting this bit has no effect if OUT0A is in differential mode.		
		2	Mute OUT0A		Mute OUT0A. Use the driver power-down bit of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUT0A is OUT0AP.	0x0	R/W
					Logic 0: normal operation. OUT0A is unmuted.		
					Logic 1: OUT0A is muted and driven static low. In differential mode, OUT0AA is static high.		
		1	Reset Q0AA		Reset Divider Q0AA. Setting this bit to Logic 1 immediately puts the Q0AA divider into reset.	0x0	R/W
		0	Reset Q0A		Reset Divider Q0A. Setting this bit to Logic 1 immediately puts the Q0A divider into reset.	0x0	R/W
0x2103		[7:6]	Reserved		Reserved.	0x0	R
	Q0B	5	Reset OUT0B/OUT0BB		Reset OUT0B and OUT0BB drivers. Use the driver power-down bit of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning	0x0	R/W
					from a reset condition. The pin names for OUT0B/OUT0BB are OUT0BP/OUT0BN, respectively.		
					Logic 0: normal operation.		
					Logic 1: OUT0B/OUT0BB is put immediately into reset and driven static low/high. In differential mode, OUT0BB is static high.		
		4 Power down Power down OUT0B/OUT0BB.					R/W
			OUT0B/OUT0BB	Logic 0: normal operation.			
					Logic 1: OUT0B/OUT0BB are powered down and tristated. OUT0B/OUT0BB correspond to Pins OUT0BP/OUT0BN, respectively.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		3	Mute OUT0BB		Mute OUT0BB. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUT0BB is OUT0BN.	0x0	R/W
					Logic 0: normal operation. OUTOBB is unmuted. Logic 1: OUTOBB is muted and driven static low. Use the driver power-down bit instead of this bit to tristate the output driver. Setting this bit has no effect if OUTOB is in differential mode.		
		2	Mute OUT0B		Mute OUT0B. Use the driver power-down bit instead of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUT0B is OUT0BP. Logic 0: normal operation. OUT0B is unmuted.	0x0	R/W
					Logic 1: OUT0B is muted and driven static low. In differential mode, OUT0BB is static high.		
		1	Reset Q0BB		Reset Divider Q0BB. Setting this bit to Logic 1 immediately puts the Q0BB divider into reset.	0x0	R/W
		0	Reset Q0B		Reset Divider Q0B. Setting this bit to Logic 1 immediately puts the Q0B divider into reset.	0x0	R/W
0x2104		[7:6]	Reserved		Reserved.	0x0	R
	QOC	5	Reset OUT0C/OUT0CC		Reset OUTOC and CC Drivers. Use the driver power-down bit instead of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning from a reset condition. The pin names for OUTOC/OUTOCC is OUTOCP/OUTOCCN, respectively.	0x0	R/W
					Logic 0: normal operation. Logic 1: OUT0C/OUT0CC is put immediately into reset and driven static low/high. In differential mode, OUT0CC is static high.		
		4	Power down OUT0C/ OUT0CC		Power down OUT0C/OUT0CC.	0x0	R/W
					Logic 0: normal operation Logic 1: OUTOC/OUTOCC are powered down and tristated. OUTOC/OUTOCC correspond to Pins OUT0CP/OUT0CN, respectively.		
		3	Mute OUT0CC		Mute OUTOCC. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUTOCC is OUTOCN	0x0	R/W
					Logic 0: normal operation. OUTOCC is unmuted. Logic 1: OUTOCC is muted and driven static low. Use the driver power-down bit instead of this bit to tristate the output driver. Setting this bit has no effect if OUTOC is in differential mode.		
		2	Mute OUT0C		Mute OUTOC. Use the driver power-down bit instead of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUTOC is OUTOCP. Logic 0: normal operation. OUTOC is unmuted.	0x0	R/W
					Logic 1: OUT0C is muted and driven static low. In differential mode, OUT0CC is static high.		
		1	Reset Q0CC		Reset Divider QOCC. Setting this bit to Logic 1 immediately puts the QOCC divider into reset.	0x0	R/W
		0	Reset Q0C		Reset Divider Q0C. Setting this bit to Logic 1 immediately puts the Q0C divider into reset.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2105	DPLL0	7	Enable step detect		Enable step detect reference fault.	0x0	R/W
	mode		reference fault		Logic 0: in the event that the phase step detector activates, DPLL0 ignores the clock edge that activated the step detector and initiates a new reference acquisition.		
					Logic 1: similar to Logic 0, but the input reference monitor is reset. In this case, validate the input reference prior to DPLL0 beginning a new reference input acquisition.		
		[6:4]	DPLL0 assign translation profile		DPLL0 manual translation profile assign. This 3-bit bit field controls which DPLL0 translation profile is selected when DPLL0 is in manual mode. Manual mode is selected in the DPLL0 profile selection mode bit field.	0x0	R/W
				000	DPLL Translation Profile 0.0.		
				001	DPLL Translation Profile 0.1.		
				010	DPLL Translation Profile 0.2.		
				011	DPLL Translation Profile 0.3.		
				100	DPLL Translation Profile 0.4.		
				101			
				110, 111			
		[3:2]	DPLL0 translation		DPLL0 translation profile selection mode. This 2-bit bit field	0x0	R/W
		[3:2]	profile select mode		controls how DPLL0 selects which translation profile to use.	0, CO	
				0	Fully automatic-based on priority-based selection. In this fully automatic mode, the DPLL state machine chooses the highest priority translation profile. If the DPLL is unable to find a profile per the selection process, it reverts to either holdover mode (if there is sufficient tuning word history) or freerun mode. In the case of a tie, the lowest numbered profile is chosen.		
				1	Manual profile selection with fallback to autoprofile selection. In this mode, the user chooses the profile to use. The DPLL uses the selected profile until it becomes invalid. At that time, the DPLL reverts to normal, priority-based profile selection.		
				2	Manual profile selection with fallback to holdover mode. In this mode, the user chooses the profile to use. The DPLL uses this profile until it becomes invalid. At that time, the DPLL reverts to holdover mode.		
				3	The user controls all operation.		
		1	DPLL0 force holdover		Force DPLL0 into holdover mode.	0x0	R/W
					Logic 0: normal operation.		
					Logic 1: DPLL0 is forced into holdover mode. In this mode,		
					DPLL0 does not lock to any input references and behaves		
					like a frequency synthesizer. If the DPLL0 history available bit is Logic 0, there is insufficient tuning word history, and		
					DPLL0 uses its freerun tuning word instead of its accumulated tuning word history.		
		0	DPLL0 force freerun		Force DPLL0 into freerun mode.	0x0	R/W
					Logic 0: normal operation.		
					Logic 1: DPLL0 is forced into freerun mode. In this mode, DPLL0 does not lock to any input references and behaves		
					like a frequency synthesizer.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2106	DPLL0 fast	[7:4]	Reserved		Reserved.	0x0	R
	acquisition	3	Enable DPLL0 fast		Enable DPLL0 fast acquisition If no outputs.	0x0	R/W
	mode		acquisition no output		Logic 0: normal operation. A fast acquisition event on DPLL0 is permitted to occur regardless of whether or not the Channel 0 outputs receive a sync signal or not. When all four fast acquisition bits in this register are Logic 0, all four fast acquisition modes are enabled as though these four bits are all Logic 1.		
					Logic 1: DPLL0 fast acquisition is enabled only if none of the DPLL0 outputs receive a sync signal. The purpose of this bit is to ensure that none of the outputs are toggling during a fast acquisition sequence.		
		2	Enable DPLL0 fast		Enable DPLL0 fast acquisition only during first acquisition.	0x0	R/W
			acquisition first		Logic 0: DPLL0 fast acquisition mode is not dependent the status of the DPLL0 fast acquisition done bit. When all four fast acquisition bits in this register are Logic 0, all four fast acquisition modes are enabled as though these four bits are all Logic 1.		
					Logic 1: DPLL0 fast acquisition is not enabled if the DPLL0 fast acquisition done bit is Logic 1. The purpose of this bit is to execute a fast acquisition sequence only once.		
		1	Enable DPLL0 fast		Enable DPLL0 fast acquisition from holdover mode.	0x0	R/W
			acquisition from holdover		Logic 0: DPLL0 fast acquisition mode is not enabled when exiting holdover mode. When all four fast acquisition bits in this register are Logic 0, all four fast acquisition modes are enabled as though these four bits are all Logic 1.		
					Logic 1: DPLL0 fast acquisition is enabled when exiting holdover mode.		
		0	Enable DPLL0 fast acquisition from freerun		Enable DPLL0 fast acquisition from freerun mode. Logic 0: DPLL0 fast acquisition mode is not enabled when exiting freerun mode. When all four fast acquisition bits in this register are Logic 0, all four fast acquisition modes are enabled as though these four bits are all Logic 1. Logic 1: DPLL0 fast acquisition is enabled when exiting	0x0	R/W
	-				freerun mode.		-
0x2107	Clear state	[7:5]	Reserved		Reserved.	0x0	R
		4	Channel 0 automute clear		Clear automute state. Setting this bit to Logic 1 allows the user to manually clear the automatic muting of Channel 0. This reinitializes the muting of outputs until the currently programmed condition in the DPLL0 autounmute mode bit field is satisfied.	0x0	R/W
		3	Clear DPLL0 fast acquisition done		Clear the DPLL0 fast acquisition done bit. Setting this autoclearing bit to Logic 1 clears the DPLL0 fast acquisition done bit.	0x0	R/W
		2	Reserved		Reserved.	0x0	R/W
		1	DPLL0 clear history		Clear DPLL0 tuning word history. Setting this bit to Logic 1 sets DPLL0 history available bit to Logic 0 and clears the internal tuning word history values for DPLL0. However, the DPLL0 tuning work history bit field remains intact until the processor calculates a new average and sets the DPLL0 history available bit to Logic 1, indicating a new average is available.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		0	Channel 0 clear autosync one-shot		Channel 0 clear autosync one-shot. This autoclearing bit rearms the autosync state machine for Channel 00. When used in conjunction with autosync mode = 01 binary, it is a convenient way to sync or resync the outputs.	0x0	R/W
					Logic 0: normal operation. A clock distribution autosync event only occurs once per channel when an autosync condition is met. The autosync mode bit field controls when this happens. For example, the output sync on DPLL frequency lock.		
					Logic 1: Clock distribution autosync is rearmed, and an output resync occurs when the next autosync event occurs. If the autosync mode bit field is set to 01 binary, setting this bit to Logic 1 triggers an immediate sync event provided that APLL0 is locked.		

OPERATIONAL CONTROL CHANNEL 1 REGISTERS—REGISTER 0x2200 TO REGISTER 0x2207

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2200	Power down and calibration			L	Reserved			Calibrate APLL1	Power down Channel 1	0x00	R/W
0x2201	All Channel 1 control			Reserved		Sync all Channel 1 dividers	Reset all Channel 1 drivers	Mute all Channel 1 drivers	N-shot request Channel 1	0x00	R/W
0x2202	Divider Q1A	Reserved		Reset OUT1A/ OUT1AA	Power down OUT1A/OUT1AA	Mute OUT1AA	Mute OUT1A	Reset Q1AA	Reset Q1A	0x00	R/W
0x2203	Divider Q1B	Reserved		Reset OUT1B/OUT1BB	Power down OUT1B/OUT1BB	Mute OUT1BB	Mute OUT1B	Reset Q1BB	Reset Q1B	0x00	R/W
0x2204	Reserved				Rese				0x00	R/W	
0x2205	DPLL1 Mode	Enable step detect reference fault	p rect erence			DPLL1 transla select mode	ation profile	DPLL1 force holdover	DPLL1 force freerun	0x00	R/W
0x2206	DPLL1 fast acquisition mode		Reserved				Enable DPLL1 fast acquisition first	Enable DPLL1 fast acquisition from holdover	Enable DPLL1 fast acquisition from freerun	0x00	R/W
0x2207	Clear state		Reser	ved	Channel 1 automute clear	Clear DPLL1 fast acquisition done	Reserved	DPLL1 clear history	Channel 1 autosync one-shot	0x00	R/W

Table 90. Operational Control Channel 1 Register Summary

Table 91. Operational Control Channel 1 Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2200	Power	[7:2]	Reserved		Reserved.	0x0	R
	down and calibration	1	Calibrate APLL1		APLL1 VCO calibration. Setting this bit from Logic 0 to Logic 1 performs the APLL VCO calibration on the next input/output update. VCO calibration must be done during initial configuration and any time the nominal APLL VCO frequency changes. Perform VCO calibration after the APLL dividers are configured and the desired APLL input frequency is present. This bit field is not self clearing, and it is recommended that the user write a Logic 0 to this bit field after performing the VCO calibration.	0x0	R/W
		0	Power down Channel 1		Power down Channel 1. Setting this bit to Logic 1 powers all blocks in Channel 1. All Channel 1 outputs are tristated.	0x0	R/W
0x2201	All	[7:4]	Reserved		Reserved.	0x0	R
	Channel 1 control	3	Sync all Channel 1 dividers		Synchronize all Channel 1 dividers. To make the output driver static without resetting the corresponding Q divider, use the mute bit in this register. Use the driver power-down bit to tristate the output driver.	0x0	R/W
					Logic 0: normal operation. Logic 1: all Channel 1 output drivers are held in a static state at the corresponding Q dividers (held in reset). In the sync state, differential drivers are held in a muted state. Releasing from Logic 1 to Logic 0 initializes all outputs synchronously.		
		2	Reset all Channel 1 drivers		Reset all channel 1 drivers. The reset function is identical to the Mute All Channel 1 drivers bit in this register, except the mute function delays muting an output driver to avoid a runt pulse, whereas the reset function mutes the output driver immediately. Both the reset and mute functions contain logic to prevent runt pulses while unmuting an output driver.	0x0	R/W
		1	Mute all Channel 1 drivers		Mute all Channel 1 drivers. Use the driver power-down bit to tristate the output driver. Logic 0: Channel 1 drivers are unmuted. The output drivers contain logic to prevent runt pulses while transitioning from a mute to unmute state. Logic 1: Channel 1 drivers are muted. In the muted state,	0x0	R/W
					differential drivers are held in a state in which the positive leg of the differential driver is static low, while the complimentary output is static high.		
		0	N-shot request Channel 1		Channel 1 JESD204B N-shot request. In most cases, return this bit to zero to avoid unwanted retriggering of the N- shot generators. Logic 0: normal operation (JESD204B N-shot not requested).	0x0	R/W
					Logic 1: Channel 1 JESD204B N-Shot request. This bit is in a buffered register, meaning that an input/output update must follow this register write.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2202	Divider	[7:6]	Reserved		Reserved.	0x0	R
	Q1A	5	Reset OUT1A/OUT1AA		Reset OUT1A and OUT1AA drivers. Use the driver power- down bit instead of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning from a reset condition. The pin names for OUT1A/OUT1AA are OUT1AP/OUT1AN, respectively.	0x0	R/W
					Logic 0: normal operation.		
					Logic 1: OUT1A/OUT1AA is put immediately into reset and driven static low/high. In differential mode, OUT1AA is static high.		
		4	Power down		Power down OUT1A/OUT1AA.	0x0	R/W
			OUT1A/OUT1AA		Logic 0: normal operation.		
					Logic 1: OUT1A/OUT1AA are powered down and tristated. OUT1A/OUT1AA correspond to Pins OUT1AP/OUT1AN, respectively.		
		3	Mute OUT1AA		Mute OUT1AA. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUT1AA is OUT1AN.	0x0	R/W
					Logic 0: normal operation. OUT1AA is unmuted. Logic 1: OUT1AA is muted and driven static low. Use the driver power-down bit instead of this bit to tristate the output driver. Setting this bit has no effect if OUT1A is in differential mode.		
		2	Mute OUT1A		Mute OUT1A. Use the driver power-down bit instead of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUT1A is OUT1AP.	0x0	R/W
					Logic 0: normal operation. OUT1A is unmuted. Logic 1: OUT1A is muted and driven static low. In differential mode, OUT1AA is be static high.		
		1	Reset Q1AA		Reset Divider Q1AA. Setting this bit to Logic 1 immediately puts the Q1AA divider into reset.	0x0	R/W
		0	Reset Q1A		Reset Divider Q1A. Setting this bit to Logic 1 immediately puts the Q1A divider into reset.	0x0	R/W
0x2203	Divider	[7:6]	Reserved		Reserved.	0x0	R
	Q1B	5	Reset OUT1B/OUT1BB		Reset OUT1B and OUT1BB drivers. Use the driver power- down bit instead of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning from a reset condition. The pin names for OUT1B/OUT1BB are OUT1BP/OUT1BN, respectively.	0x0	R/W
					Logic 0: normal operation. Logic 1: OUT1B/OUT1BB is put immediately into reset and driven static low/high. In differential mode, OUT1BB is static high.		
		4	Power down		Power down OUT1B/OUT1BB.	0x0	R/W
			OUT1B/OUT1BB		Logic 0: normal operation.		
					Logic 1: OUT1B/OUT1BB are powered down and tristated. OUT1B/OUT1BB correspond to Pins OUT1BP/OUT1BN, respectively.		
		3	Mute OUT1BB		Mute OUT1BB. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUT1BB is OUT1BN	0x0	R/W
					Logic 0: normal operation. OUT1BB is unmuted.		
					Logic 1: OUT1BB is muted and driven static low. Use the driver power-down bit instead of this bit in order to tristate the output driver. Setting this bit has no effect if OUT1B is in differential mode.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		2	Mute OUT1B		Mute OUT1B. Use the driver power-down bit instead of this bit to tristate the output driver. The output drivers contain logic to prevent runt pulses while transitioning both to and from a mute condition. The pin name for OUT1B is OUT1BP	0x0	R/W
					Logic 0: normal operation. OUT1B is unmuted. Logic 1: OUT0B is muted and driven static low. In differential mode, OUT1BB is static high.		
		1	Reset Q1BB		Reset Divider Q1BB. Setting this bit to Logic 1 immediately puts the Q1BB divider into reset.	0x0	R/W
		0	Reset Q1B		Reset Divider Q1B. Setting this bit to Logic 1 immediately puts the Q1B divider into reset.	0x0	R/W
0x2205	DPLL1 mode	7	Enable step detect reference fault		Enable step detect reference fault. Logic 0: in the event that the phase step detector activates, DPLL1 ignores the clock edge that activates the step detector and initiates a new reference acquisition. Logic 1: similar to Logic 0, but the input reference monitor	0x0	R/W
					is reset. In this case, the input reference must be validated prior to DPLL1 beginning a new reference input acquisition.		
		[6:4]	DPLL1 assign translation profile		DPLL1 manual translation profile assign. This 3-bit bit field controls which DPLL1 translation profile is selected when DPLL1 is in manual mode. Manual mode is selected in the DPLL1 profile selection mode bit field.	0x0	R/W
				000	DPLL Translation Profile 1.0.		
				001	DPLL Translation Profile 1.1.		
				010	DPLL Translation Profile 1.2.		
				011	DPLL Translation Profile 1.3.		
				100	DPLL Translation Profile 1.4.		
				101	DPLL Translation Profile 1.5.		
				110, 111	Do not use.		
		[3:2]	DPLL1 translation profile select mode		DPLL1 translation profile selection mode. This 2-bit bit field controls how DPLL1 selects which translation profile to use.	0x0	R/W
				0	Fully automatic-based on priority-based selection. In this fully automatic mode, the DPLL state machine chooses the highest priority translation profile. If the DPLL is unable to find a profile per the selection process, it revert to either holdover (if there is sufficient tuning word history) or freerun mode. In the case of a tie, the lowest numbered profile is chosen.		
				1	Manual profile selection with fallback to autoprofile selection. In this mode, the user chooses the profile to use. The DPLL uses the selected profile until it becomes invalid. At that time, the DPLL reverts to normal, priority-based profile selection.		
					Manual profile selection with fallback to holdover mode. In this mode, the user chooses the profile to use. The DPLL uses this profile until it becomes invalid. At that time, the DPLL reverts to holdover mode.		
		1	DPLL1 force holdover	3	The user controls all operation. Force DPLL1 into holdover mode.	0.0	R/W
		1	DPLLT IOICE NOIGOVER		Logic 0: normal operation.	0x0	K/ W
					Logic 0: normal operation. Logic 1: DPLL1 is forced into holdover mode. In this mode, DPLL1 does not lock to any input references and behaves like a frequency synthesizer. If the DPLL1 history available bit is Logic 0, there is insufficient tuning word history, and DPLL1 uses its freerun tuning word instead of its accumulated tuning word history.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		0	DPLL1 force freerun		Force DPLL1 into freerun mode.	0x0	R/W
					Logic 0: normal operation.		
					Logic 1: DPLL1 is forced into freerun mode. In this mode,		
					DPLL1 does not lock to any input references and behaves		
					like a frequency synthesizer.		_
0x2206	DPLL1 fast	[7:4]	Reserved		Reserved.	0x0	R
	acquisition mode	3	Enable DPLL1 fast		Enable DPLL1 fast acquisition if no outputs.	0x0	R/W
	mode		acquisition if no output		Logic 0: normal operation. A fast acquisition event on DPLL1 is permitted to occur regardless of whether or not		
			output		the Channel 1 outputs receive a sync signal or not. When all		
					four fast acquisition bits in this register are Logic 0, all four		
					fast acquisition modes are enabled as though these four		
					bits are all Logic 1.		
					Logic 1: DPLL1 fast acquisition is enabled only if none of		
					the DPLL1 outputs receive a sync signal. The purpose of this bit is to ensure that none of the outputs are toggling		
					during a fast acquisition sequence.		
		2	Enable DPLL1 fast		Enable DPLL1 fast acquisition only during first acquisition.	0x0	R/W
		-	acquisition first		Logic 0: DPLL1 fast acquisition mode is not dependent the	UNU	
					status of the DPLL1 fast acquisition done bit. When all four		
					fast acquisition bits in this register are Logic 0, all four fast		
					acquisition modes are enabled as though these four bits		
					are all Logic 1.		
					Logic 1: DPLL1 fast acquisition is not enabled if the DPLL1 fast acquisition done bit is Logic 1. The purpose of this bit is		
					to execute a fast acquisition sequence only once.		
		1	Enable DPLL1 fast		Enable DPLL1 fast acquisition from holdover mode.	0x0	R/W
		-	acquisition from		Logic 0: DPLL1 fast acquisition mode is not enabled when		
			holdover		exiting holdover mode. When all four fast acquisition bits in		
					this register are Logic 0, all four fast acquisition modes are		
					enabled as though these four bits are all Logic 1.		
					Logic 1: DPLL1 fast acquisition is enabled when exiting holdover mode.		
		0	Enable DPLL1 fast		Enable DPLL1 fast acquisition from freerun mode.	0x0	R/W
		0	acquisition from		Logic 0: DPLL1 fast acquisition mode is not enabled when	0.00	11/ 11
			freerun		exiting freerun mode. When all four fast acquisition bits in		
					this register are Logic 0, all four fast acquisition modes are		
					enabled as though these four bits are all Logic 1.		
					Logic 1: DPLL1 fast acquisition is enabled when exiting		
0	Classistate	[7, 6]	Deserved		freerun mode.	00	0
0x2207	Clear state	[7:5]	Reserved		Reserved.	0x0	R R/W
		4	Channel 1 automute clear		Clear automute state. Setting this bit to Logic 1 allows the user to manually clear the automatic muting of Channel 1.	0x0	K/ VV
					This reinitializes the muting of outputs until the currently		
					programmed condition in the DPLL1 autounmute mode bit		
					field is satisfied.		
		3	Clear DPLL1 fast		Clear the DPLL1 fast acquisition done bit. Setting this	0x0	R/W
			acquisition done		autoclearing bit to Logic 1 clears the DPLL1 fast acquisition done bit.		
		2	Reserved		Reserved.	0x0	R/W
		1	DPLL1 clear history		Clear DPLL1 tuning word history. Setting this bit to Logic 1	0x0	R/W
			2. LET cical history		sets the DPLL1 history available bit to Logic 0 and clears the	0.0	
					internal tuning word history values for DPLL1. However, the		
					DPLL1 tuning work history bit field remains intact until the		
					processor calculates a new average and sets the DPLL1 history available bit to Logic 1, indicating that a new		
					average is available.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		0	Channel 1 clear autosync one-shot		Channel 1 clear autosync one-shot. This autoclearing bit rearms the autosync state machine for Channel 1. When used in conjunction with autosync mode = 01 binary, it is a convenient way to sync (or resync) the outputs.	0x0	R/W
					Logic 0: normal operation. A clock distribution autosync event only occurs once per channel when an autosync condition is met. The autosync mode bit field controls when this happens. For example, output sync on DPLL frequency lock.		
					Logic 1: clock distribution autosync is rearmed, and an output resync occurs when the next autosync event occurs. If the autosync mode bit field is set to 01 binary, setting this bit to Logic 1 triggers an immediate sync event provided that APLL1 is locked.		

AUXILIARY NCO 0 REGISTERS—REGISTER 0x2800 TO REGISTER 0x281E

Table 92. Auxiliary NCO 0 Registers Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2800	Center frequency	Auxiliary NCO 0 center frequency [7:0]									R/W
0x2801	Center frequency		Auxiliary NCO 0 center frequency [15:8]								
0x2802	Center frequency	Auxiliary NCO 0 center frequency [23:16]								0x00	R/W
0x2803	Center frequency	Auxiliary NCO 0 center frequency [31:24]								0x00	R/W
0x2804	Center frequency	Auxiliary NCO 0 center frequency [39:32]									R/W
0x2805	Center frequency	Auxiliary NCO 0 center frequency [47:40]									R/W
0x2806	Offset frequency	Auxiliary NCO 0 center frequency [55:48]									R/W
0x2807	Offset frequency	Auxiliary NCO 0 offset frequency [7:0]									R/W
0x2808	Offset frequency	Auxiliary NCO 0 offset frequency [15:8]									R/W
0x2809	Offset frequency	Auxiliary NCO 0 offset frequency [23:16]									R/W
0x280A	Offset frequency	Auxiliary NCO 0 offset frequency [31:24]									R/W
0x280B	Tag ratio		Auxiliary NCO 0 tag ratio [7:0]								R/W
0x280C	Tag ratio	Auxiliary NCO 0 tag ratio [15:8]								0x00	R/W
0x280D	Tag delta	Auxiliary NCO 0 tag delta [7:0]									R/W
0x280E	Tag delta	Auxiliary NCO 0 tag delta [15:8]								0x00	R/W
0x280F	Type adjust	Reserved Auxiliary NCO 0 cycle Auxiliary NCO 0 delt type type							0x00	R/W	
0x2810	Delta rate limit	Auxiliary NCO 0 delta rate limit [7:0]									R/W
0x2811	Delta rate limit	Auxiliary NCO 0 delta rate limit [15:8]								0x00	R/W
0x2812	Delta rate limit	Auxiliary NCO 0 delta rate limit [23:16]									R/W
0x2813	Delta rate limit	Auxiliary NCO 0 delta rate limit [31:24]								0x00	R/W
0x2814	Delta adjust	Auxiliary NCO 0 delta [7:0]								0x00	R/W
0x2815	Delta adjust		Auxiliary NCO 0 delta [15:8]								
0x2816	Delta adjust		Auxiliary NCO 0 delta [23:16]								R/W
0x2817	Delta adjust	Auxiliary NCO 0 delta [31:24]									R/W
0x2818	Delta adjust	Auxiliary NCO 0 delta [39:32]									R/W
0x2819	Cycle adjust	Auxiliary NCO 0 cycle absolute [7:0]									R/W
0x281A	Cycle adjust	Auxiliary NCO 0 cycle absolute [15:8]									R/W
0x281B	Cycle adjust	Auxiliary NCO 0 cycle absolute [23:16]									R/W
0x281C	Cycle adjust	Auxiliary NCO 0 cycle absolute [31:24]									R/W
0x281D	Cycle adjust	Auxiliary NCO 0 cycle absolute [39:32]									R/W
0x281E	Pulse width	Auxiliary NCO 0 pulse width exponent Auxiliary NCO 0 pulse width significand								0x00	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2800	Center frequency	[7:0]	Auxiliary NCO 0 center frequency [7:0]		Auxiliary NCO 0 center frequency. This 56-bit integer bit field contains the auxiliary NCO 0 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x0001000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2801	Center frequency	[7:0]	Auxiliary NCO 0 center frequency [15:8]		Auxiliary NCO 0 center frequency. This 56-bit integer bit field contains the auxiliary NCO 0 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2802	Center frequency	[7:0]	Auxiliary NCO 0 center frequency [23:16]		Auxiliary NCO 0 center frequency. This 56-bit integer bit field contains the auxiliary NCO 0 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2803	Center frequency	[7:0]	Auxiliary NCO 0 center frequency [31:24]		Auxiliary NCO 0 center frequency. This 56-bit integer bit field contains the auxiliary NCO 0 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2804	Center frequency	[7:0]	Auxiliary NCO 0 center frequency [39:32]		Auxiliary NCO 0 center frequency. This 56-bit integer bit field contains the auxiliary NCO 0 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2805	Center frequency	[7:0]	Auxiliary NCO 0 center frequency [47:40]		Auxiliary NCO 0 center frequency. This 56-bit integer bit field contains the auxiliary NCO 0 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2806	Center frequency	[7:0]	Auxiliary NCO 0 center frequency [55:48]		Auxiliary NCO 0 center frequency. This 56-bit integer bit field contains the auxiliary NCO 0 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2807	Offset frequency	[7:0]	Auxiliary NCO 0 offset frequency [7:0]		Auxiliary NCO 0 offset frequency. This 32-bit unsigned integer bit field contains the auxiliary NCO 0 offset frequency. The units are in 2 Hz to 24 Hz. The upper 8 bits form the integer portion, and the lower 24 bits form the fractional portion. For example, program this bit field to 0x01000000 to achieve a 1 Hz center frequency. The maximum offset frequency is approximately 256 Hz.	0x0	R/W
0x2808	Offset frequency	[7:0]	Auxiliary NCO 0 offset frequency [15:8]		Auxiliary NCO 0 offset frequency. This 32-bit unsigned integer bit field contains the auxiliary NCO 0 offset frequency. The units are in 2 Hz to 24 Hz. The upper 8 bits form the integer portion, and the lower 24 bits form the fractional portion. For example, program this bit field to 0x01000000 to achieve a 1 Hz center frequency. The maximum offset frequency is approximately 256 Hz.	0x0	R/W
0x2809	Offset frequency	[7:0]	Auxiliary NCO 0 offset frequency [23:16]		Auxiliary NCO 0 offset frequency. This 32-bit unsigned integer bit field contains the auxiliary NCO 0 offset frequency. The units are in 2 Hz to 24 Hz. The upper 8 bits form the integer portion, and the lower 24 bits form the fractional portion. For example, program this bit field to 0x01000000 to achieve a 1 Hz center frequency. The maximum offset frequency is approximately 256 Hz.	0x0	R/W

Table 93 Auxiliary NCO 0 Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x280A	Offset frequency	[7:0]	Auxiliary NCO 0 offset frequency [31:24]		Auxiliary NCO 0 offset frequency. This 32-bit unsigned integer bit field contains the auxiliary NCO 0 offset frequency. The units are in 2 Hz to 24 Hz. The upper 8 bits form the integer portion, and the lower 24 bits form the fractional portion. For example, program this bit field to 0x01000000 to achieve a 1 Hz center frequency. The maximum offset frequency is approximately 256 Hz.	0x0	R/W
0x280B	Tag ratio	[7:0]	Auxiliary NCO 0 tag ratio [7:0]		Auxiliary NCO 0 tag ratio. This unsigned integer 16-bit bit field specifies the interval between tagged and untagged time stamps. The units are the period of the time stamp interval. A value of 0x0000 in this bit field disables the feature. A value of 0x0002 specifies that every third time stamp is tagged, for example.	0x0	R/W
0x280C	Tag ratio	[7:0]	Auxiliary NCO 0 tag ratio [15:8]		Auxiliary NCO 0 tag ratio. This unsigned integer 16-bit bit field specifies the interval between tagged and untagged time stamps. The units are the period of the time stamp interval. A value of 0x0000 in this bit field disables the feature. A value of 0x0002 specifies that every third time stamp is tagged, for example.	0x0	R/W
0x280D	Tag delta	[7:0]	Auxiliary NCO 0 tag delta [7:0]		Auxiliary NCO 0 tag delta. This autoclearing, signed integer 16-bit bit field shifts the phase of tagged time stamps. The units are the period of the time stamp interval.	0x0	R/W
0x280E	Tag delta	[7:0]	Auxiliary NCO 0 tag delta [15:8]		Auxiliary NCO 0 tag delta. This autoclearing, signed integer 16-bit bit field shifts the phase of tagged time stamps. The units are the period of the time stamp interval.	0x0	R/W
0x280F	Туре	[7:2]	Reserved		Reserved.	0x0	R
	adjust	1	Auxiliary NCO 0 cycle type	0	Auxiliary NCO 0 cycle type. This bit controls the operation of the auxiliary NCO 0 cycle bit field. Absolute value. The unsigned, 40-bit auxiliary NCO 0 cycle bit field directly replaces the integer portion of the auxiliary NCO 0 time bit field.	0x0	R/W
				1	Relative change. The signed, 40-bit auxiliary NCO 0 cycle bit field increments or decrements the integer portion of the auxiliary NCO 0 time bit field relative to its current value.		
		0	Auxiliary NCO 0 delta type	0	Auxiliary NCO 0 delta type. This bit specifies the units when programming the size of the phase offset of the auxiliary NCO (using the auxiliary NCO 0 delta register). Delta T. The absolute time offset specified in units of picoseconds.	0x0	R/W
				1	Delta UI. The relative phase offset specified as a fraction of the auxiliary NCO period and with a total range of $-1/2$ UI to approximately $-1/2$ UI.		
0x2810	Delta rate limit	[7:0]	Auxiliary NCO 0 delta rate limit [7:0]		Auxiliary NCO 0 delta rate limit. This unsigned, 32-bit bit field controls the slew rate limit of Auxiliary NCO 0 while phase slewing due to a phase offset change. The units are 2 UI to 36 UI. For example, for a slew limit of 1 μ s/s, the required value is 10 to 6/2 to 36, which equals 68,719 decimal (0x00010C6F). This feature is disabled when this bit field is set to 0x00000000.	0x0	R/W
0x2811	Delta rate limit	[7:0]	Auxiliary NCO 0 delta rate limit [15:8]		Auxiliary NCO 0 delta rate limit. This unsigned, 32-bit bit field controls the slew rate limit of Auxiliary NCO 0 while phase slewing due to a phase offset change. The units are 2 UI to 36 UI. For example, for a slew limit of 1 μ s/s, the required value is 10 to 6/2 to 36, which equals 68,719 decimal (0x00010C6F). This feature is disabled when this bit field is set to 0x00000000.	0x0	R/W

UG	-1	14	46
υu	- 1		τU

Addr.	Name	Bits	Bit Name S	Settings	Description	Reset	Access
0x2812	Delta rate limit	[7:0]	Auxiliary NCO 0 delta rate limit [23:16]		Auxiliary NCO 0 delta rate limit. This unsigned, 32-bit bit field controls the slew rate limit of Auxiliary NCO 0 while phase slewing due to a phase offset change. The units are 2 UI to 36 UI. For example, for a slew limit of 1 μ s/s, the required value is 10 to 6/2 to 36, which equals 68,719 decimal (0x00010C6F). This feature is disabled when this bit field is set to 0x000.00000.	0x0	R/W
0x2813	Delta rate limit	[7:0]	Auxiliary NCO 0 delta rate limit [31:24]		Auxiliary NCO 0 delta rate limit. This unsigned, 32-bit bit field controls the slew rate limit of Auxiliary NCO 0 while phase slewing due to a phase offset change. The units are 2 UI to 36 UI I. For example, for a slew limit of 1 μ s/s, the required value is 10 to 6/2 to 36, which equals 68,719 decimal (0x00010C6F). This feature is disabled when this bit field is set to 0x00000000.	0x0	R/W
0x2814	Delta adjust	[7:0]	Auxiliary NCO 0 Delta [7:0]		Auxiliary NCO 0 delta. This signed, twos compliment, 40-bit integer bit field is the amount of phase shift of auxiliary NCO 0. The units of this bit field depend on the setting of the Auxiliary NCO 0 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 0 Delta T [7:0]		Auxiliary NCO 0 Delta T. When the Auxiliary NCO 0 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 0.	0x0	R/W
		[7:0]	Auxiliary NCO 0 delta UI [7:0]		Auxiliary NCO 0 delta UI. When the Auxiliary NCO 0 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of Auxiliary NCO 0 relative to 360° . The allowable range is from $-1/2$ UI to approximately $+1/2$ UI.	0x0	R/W
0x2815	Delta adjust	[7:0]	Auxiliary NCO 0 delta [15:8]		Auxiliary NCO 0 delta. This signed, twos compliment, 40-bit integer bit field is the amount of phase shift of auxiliary NCO 0. The units of this bit field depend on the setting of the Auxiliary NCO 0 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 0 delta T [15:8]		Auxiliary NCO 0 delta T. When the Auxiliary NCO 0 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 0.	0x0	R/W
		[7:0]	Auxiliary NCO 0 delta UI [15:8]		Auxiliary NCO 0 delta UI. When the Auxiliary NCO 0 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of Auxiliary NCO 0 relative to 360° . The allowable range is from $-1/2$ UI to approximately $+1/2$ UI.	0x0	R/W
0x2816	Delta adjust	[7:0]	Auxiliary NCO 0 delta [23:16]		Auxiliary NCO 0 delta. This signed, twos compliment, 40-bit integer bit field is the amount of phase shift of Auxiliary NCO 0. The units of this bit field depend on the setting of the Auxiliary NCO 0 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 0 delta T [23:16]		Auxiliary NCO 0 delta T. When the Auxiliary NCO 0 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 0.	0x0	R/W
		[7:0]	Auxiliary NCO 0 delta UI [23:16]		Auxiliary NCO 0 delta UI. When the Auxiliary NCO 0 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of Auxiliary NCO 0 relative to 360° . The allowable range is from $-1/2$ UI to approximately $+1/2$ UI.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2817	Delta adjust	[7:0]	Auxiliary NCO 0 delta [31:24]		Auxiliary NCO 0 delta. This signed, twos compliment, 40-bit integer bit field is the amount of phase shift of auxiliary NCO 0. The units of this bit field depend on the setting of the Auxiliary NCO 0 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 0 delta T [31:24]		Auxiliary NCO 0 delta T. When the Auxiliary NCO 0 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 0.	0x0	R/W
		[7:0]	Auxiliary NCO 0 delta UI [31:24]		Auxiliary NCO 0 Delta UI. When the Auxiliary NCO 0 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of Auxiliary NCO 0 relative to 360° . The allowable range is from $-1/2$ UI to approximately $+1/2$ UI.	0x0	R/W
0x2818	Delta adjust	[7:0]	Auxiliary NCO 0 Delta[39:32]		Auxiliary NCO 0 delta. This signed, twos compliment, 40-bit integer bit field is the amount of phase shift of Auxiliary NCO 0. The units of this bit field depend on the setting of the Auxiliary NCO 0 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 0 delta T [39:32]		Auxiliary NCO 0 delta T. When the Auxiliary NCO 0 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 0.	0x0	R/W
0×2810		[7:0]	Auxiliary NCO 0 delta UI [39:32]		Auxiliary NCO 0 delta UI. When the Auxiliary NCO 0 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of auxiliary NCO 0 relative to 360°. The allowable range is from –1/2 UI to approximately +1/2 UI.	0x0	R/W
0x2819	Cycle adjust	[7:0]	Auxiliary NCO 0 cycle absolute [7:0]		Auxiliary NCO 0 cycle absolute value. When the Auxiliary NCO 0 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 0 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 0 cycle relative change [7:0]		Auxiliary NCO 0 cycle relative change. When the Auxiliary NCO 0 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 0 time bit field relative to its current value.	0x0	R/W
0x281A	Cycle adjust	[7:0]	Auxiliary NCO 0 cycle absolute [7:0]		Auxiliary NCO 0 cycle absolute value. When the Auxiliary NCO 0 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 0 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 0 cycle relative change [7:0]		Auxiliary NCO 0 cycle relative change. When the Auxiliary NCO 0 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 0 time bit field relative to its current value.	0x0	R/W
0x281B	Cycle adjust	[7:0]	Auxiliary NCO 0 cycle absolute [7:0]		Auxiliary NCO 0 cycle absolute value. When the Auxiliary NCO 0 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 0 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 0 cycle relative change [7:0]		Auxiliary NCO 0 cycle relative change. When the Auxiliary NCO 0 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 0 time bit field relative to its current value.	0x0	R/W

Addr.	Name	Bits	Bit Name Settin	gs Description	Reset	Access
0x281C	Cycle adjust	[7:0]	Auxiliary NCO 0 cycle absolute [7:0]	Auxiliary NCO 0 cycle absolute value. When the Auxiliary NCO 0 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 0 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 0 cycle relative change [7:0]	Auxiliary NCO 0 cycle relative change. When the Auxiliary NCO 0 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 0 time bit field relative to its current value.	0x0	R/W
0x281D	Cycle adjust	[7:0]	Auxiliary NCO 0 cycle absolute [7:0]	Auxiliary NCO 0 cycle absolute value. When the Auxiliary NCO 0 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 0 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 0 cycle relative change [7:0]	Auxiliary NCO 0 cycle relative change. When the Auxiliary NCO 0 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 0 time bit field relative to its current value.	0x0	R/W
0x281E	Pulse width	[7:4]	Auxiliary NCO 0 pulse width exponent	Auxiliary NCO 0 pulse width exponent. This 4-bit bit field allows the user to adjust the duration of the auxiliary NCO pulse generator. The pulse width is determined by the following formula: Pulse width = $(96/f_s) \times (1 + S + 2(E + 5))$, where E is the value of this register, f_s is the system clock frequency, and S is the value of the Auxiliary NCO 0 pulse width significand bit field.	0x0	R/W
		[3:0]	Auxiliary NCO 0 pulse width significand	Auxiliary NCO 0 pulse width significand. This 4-bit bit field allows the user to adjust the duration of the Auxiliary NCO pulse generator. The pulse width is determined by the following formula: Pulse width = $(96/f_s) \times (1 + S + 2(E + 5))$, where E is the value of this register, f_s is the system clock frequency, and S is the value of the Auxiliary NCO 0 pulse width exponent bit field.	0x0	R/W

AUXILIARY NCO 1 REGISTERS—REGISTER 0x2840 TO REGISTER 0x285E

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2840	Center frequency		•		A	uxiliary	NCO 1 c	enter frequency [7:0]		0x00	R/W
0x2841	Center frequency				Αι	uxiliary N	ICO 1 ce	nter frequency [15:8]		0x00	R/W
0x2842	Center frequency				Au	xiliary N	CO 1 ce	nter frequency [23:16]		0x00	R/W
0x2843	Center frequency				Au	xiliary N	CO 1 ce	nter frequency [31:24]		0x00	R/W
0x2844	Center frequency				Au	xiliary N	CO 1 ce	nter frequency [39:32]		0x00	R/W
0x2845	Center frequency				Au	xiliary N	CO 1 ce	nter frequency [47:40]		0x00	R/W
0x2846	Center frequency				Au	xiliary N	CO 1 ce	nter frequency [55:48]		0x00	R/W
0x2847	Center frequency				A	uxiliary	NCO 1 c	ffset frequency [7:0]		0x00	R/W
0x2848	Center frequency				A	uxiliary l	NCO 1 of	fset frequency [15:8]		0x00	R/W
0x2849	Center frequency				Au	xiliary N	ICO 1 of	fset frequency [23:16]		0x00	R/W
0x284A	Center frequency				Au	xiliary N	ICO 1 of	fset frequency [31:24]		0x00	R/W
0x284B	Tag ratio					Auxili	ary NCC	1 tag ratio [7:0]		0x00	R/W
0x284C	Tag ratio					Auxilia	ary NCO	1 tag ratio [15:8]		0x00	R/W
0x284D	Tag delta					Auxili	ary NCO	1 tag delta [7:0]		0x00	R/W
0x284E	Tag delta					Auxilia	ary NCO	1 tag delta [15:8]		0x00	R/W
0x284F	Type adjust			Rese	erved			Auxiliary NCO 1 cycle type	Auxiliary NCO 1 delta type	0x00	R/W

AD9545 Register Map Reference Manual

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2850	Delta rate limit					Auxiliary	NCO 1	delta rate limit [7:0]	·	0x00	R/W
0x2851	Delta rate limit				A	Auxiliary	NCO 1 d	elta rate limit [15:8]		0x00	R/W
0x2852	Delta rate limit				A	uxiliary	NCO 1 d	elta rate limit [23:16]		0x00	R/W
0x2853	Delta rate limit				А	uxiliary	NCO 1 d	elta rate limit [31:24]		0x00	R/W
0x2854	Delta adjust					Aux	iliary NO	O 1 delta [7:0]		0x00	R/W
0x2855	Delta adjust					Aux	liary NC	O 1 delta [15:8]		0x00	R/W
0x2856	Delta adjust					Auxi	iary NC) 1 delta [23:16]		0x00	R/W
0x2857	Delta adjust					Auxi	iary NC) 1 delta [31:24]		0x00	R/W
0x2858	Delta adjust					Auxi	iary NC) 1 delta [39:32]		0x00	R/W
0x2859	Cycle adjust					Auxiliary	/ NCO 1	cycle absolute [7:0]		0x00	R/W
0x285A	Cycle adjust				A	Auxiliary	NCO 1 d	ycle absolute [15:8]		0x00	R/W
0x285B	Cycle adjust				A	uxiliary	NCO 1 c	cle absolute [23:16]		0x00	R/W
0x285C	Cycle adjust				А	uxiliary	NCO 1 c	cle absolute [31:24]		0x00	R/W
0x285D	Cycle adjust				A	uxiliary	NCO 1 c	cle absolute [39:32]		0x00	R/W
0x285E	Pulse width	Auxili	iary NCC expo) 1 pulse onent	e width		Αι	xiliary NCO 1 pulse wid	th significand	0x00	R/W

Table 95. Auxiliary NCO 1 Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2840	Center frequency	[7:0]	Auxiliary NCO 1 center frequency [7:0]		Auxiliary NCO 1 center frequency. This 56-bit integer bit field contains the auxiliary NCO 1 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2841	Center frequency	[7:0]	Auxiliary NCO 1 center frequency [15:8]		Auxiliary NCO 1 center frequency. This 56-bit integer bit field contains the auxiliary NCO 1 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2842	Center frequency	[7:0]	Auxiliary NCO 1 center frequency [23:16]		Auxiliary NCO 1 center frequency. This 56-bit integer bit field contains the auxiliary NCO 1 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2843	Center frequency	[7:0]	Auxiliary NCO 1 center frequency [31:24]		Auxiliary NCO 1 center frequency. This 56-bit integer bit field contains the auxiliary NCO 1 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2844	Center frequency	[7:0]	Auxiliary NCO 1 center frequency [39:32]		Auxiliary NCO 1 center frequency. This 56-bit integer bit field contains the auxiliary NCO 1 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2845	Center frequency	[7:0]	Auxiliary NCO 1 center frequency [47:40]		Auxiliary NCO 1 center frequency. This 56-bit integer bit field contains the auxiliary NCO 1 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W
0x2846	Center frequency	[7:0]	Auxiliary NCO 1 center frequency [55:48]		Auxiliary NCO 1 center frequency. This 56-bit integer bit field contains the auxiliary NCO 1 center frequency. The units are in 2 Hz to 40 Hz. For example, program this bit field to 0x00010000000000 to achieve a 1 Hz center frequency. The maximum center frequency is approximately 65 kHz.	0x0	R/W

UG-1146	U	G-	1	1	46
----------------	---	----	---	---	----

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2847	Offset frequency	[7:0]	Auxiliary NCO 1 offset frequency [7:0]		Auxiliary NCO 1 offset frequency. This 32-bit unsigned integer bit field contains the auxiliary NCO 1 offset frequency. The units are in 2 Hz to 24 Hz. The upper 8 bits form the integer portion, and the lower 24 bits form the fractional portion. For example, program this bit field to 0x01000000 to achieve a 1 Hz center frequency. The maximum offset frequency is approximately 256 Hz.	0x0	R/W
0x2848	Offset frequency	[7:0]	Auxiliary NCO 1 offset frequency [15:8]		Auxiliary NCO 1 offset frequency. This 32-bit unsigned integer bit field contains the auxiliary NCO 1 offset frequency. The units are in 2 Hz to 24 Hz. The upper 8 bits form the integer portion, and the lower 24 bits form the fractional portion. For example, program this bit field to 0x01000000 to achieve a 1 Hz center frequency. The maximum offset frequency is approximately 256 Hz.	0x0	R/W
0x2849	Offset frequency	[7:0]	Auxiliary NCO 1 offset frequency [23:16]		Auxiliary NCO 1 offset frequency. This 32-bit unsigned integer bit field contains the auxiliary NCO 1 offset frequency. The units are in 2 Hz to 24 Hz. The upper 8 bits form the integer portion, and the lower 24 bits form the fractional portion. For example, program this bit field to 0x01000000 to achieve a 1 Hz center frequency. The maximum offset frequency is approximately 256 Hz.	0x0	R/W
0x284A	Offset frequency	[7:0]	Auxiliary NCO 1 offset frequency [31:24]		Auxiliary NCO 1 offset frequency. This 32-bit unsigned integer bit field contains the auxiliary NCO 1 offset frequency. The units are in 2 Hz to 24 Hz. The upper 8 bits form the integer portion, and the lower 24 bits form the fractional portion. For example, program this bit field to 0x01000000 to achieve a 1 Hz center frequency. The maximum offset frequency is approximately 256 Hz.	0x0	R/W
0x284B	Tag ratio	[7:0]	Auxiliary NCO 1 tag ratio [7:0]		Auxiliary NCO 1 tag ratio. This unsigned integer 16-bit bit field specifies the interval between tagged and untagged time stamps. The units are the period of the time stamp interval. A value of 0x0000 in this bit field disables the feature. A value of 0x0002 specifies that every third time stamp is tagged, for example.	0x0	R/W
0x284C	Tag ratio	[7:0]	Auxiliary NCO 1 tag ratio [15:8]		Auxiliary NCO 1 tag ratio. This unsigned integer 16-bit bit field specifies the interval between tagged and untagged time stamps. The units are the period of the time stamp interval. A value of 0x0000 in this bit field disables the feature. A value of 0x0002 specifies that every third time stamp is tagged, for example.	0x0	R/W
0x284D	Tag delta	[7:0]	Auxiliary NCO 1 tag delta [7:0]		Auxiliary NCO 1 tag delta. This autoclearing, signed integer 16-bit bit field shifts the phase of tagged time stamps. The units are the period of the time stamp interval.	0x0	R/W
0x284E	Tag delta	[7:0]	Auxiliary NCO 1 tag delta [15:8]		Auxiliary NCO 1 tag delta. This autoclearing, signed integer 16-bit bit field shifts the phase of tagged time stamps. The units are the period of the time stamp interval.	0x0	R/W
0x284F	Туре	[7:2]	Reserved		Reserved.	0x0	R
	adjust	1	Auxiliary NCO 1 cycle type	0	Auxiliary NCO 1 cycle type. This bit controls the operation of the auxiliary NCO 1 cycle bit field. Absolute value. The unsigned, 40-bit auxiliary NCO 1 cycle bit field directly replaces the integer portion of the auxiliary NCO 1 time bit field.	0x0	R/W
				1	Relative change. The signed, 40-bit auxiliary NCO 1 cycle bit field increments or decrements the integer portion of the auxiliary NCO 1 time bit field relative to its current value.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		0	Auxiliary NCO 1 delta type	0	Auxiliary NCO 1 delta type. This bit specifies the units when programming the size of the phase offset of the auxiliary NCO (using the auxiliary NCO 1 delta register). Delta T. The absolute time offset specified in units of picoseconds. Delta UI. The relative phase offset specified as a fraction of the auxiliary NCO period and with a total range of $-1/2$ UI to approximately $-1/2$ UI.	0x0	R/W
0x2850	Delta rate limit	[7:0]	Auxiliary NCO 1 delta rate limit [7:0]		Auxiliary NCO 1 delta rate limit. This unsigned, 32-bit bit field controls the slew rate limit of Auxiliary NCO 1 while phase slewing due to a phase offset change. The units are 2 UI to 36 UI. For example, for a slew limit of 1 μ s/s, the required value is 10 to 6/2 to 36, which equals 68,719 decimal (0x00010C6F). This feature is disabled when this bit field is set to 0x00000000.	0x0	R/W
0x2851	Delta rate limit	[7:0]	Auxiliary NCO 1 delta rate limit [15:8]		Auxiliary NCO 1 delta rate limit. This unsigned, 32-bit bit field controls the slew rate limit of Auxiliary NCO 1 while phase slewing due to a phase offset change. The units are 2 UI to 36 UI. For example, for a slew limit of 1 μ s/s, the required value is 10 to 6/2 to 36, which equals 68,719 decimal (0x00010C6F). This feature is disabled when this bit field is set to 0x00000000.	0x0	R/W
0x2852	Delta rate limit	[7:0]	Auxiliary NCO 1 delta rate limit [23:16]		Auxiliary NCO 1 delta rate limit. This unsigned, 32-bit bit field controls the slew rate limit of Auxiliary NCO 1 while phase slewing due to a phase offset change. The units are 2 UI to 36 UI. For example, for a slew limit of 1 μ s/s, the required value is 10 to 6/2 to 36, which equals 68,719 decimal (0x00010C6F). This feature is disabled when this bit field is set to 0x00000000.	0x0	R/W
0x2853	Delta rate limit	[7:0]	Auxiliary NCO 1 delta rate limit [31:24]		Auxiliary NCO 1 delta rate limit. This unsigned, 32-bit bit field controls the slew rate limit of Auxiliary NCO 1 while phase slewing due to a phase offset change. The units are 2 UI to 36 UI. For example, for a slew limit of 1 μ s/s, the required value is 10 to 6/2 to 36, which equals 68,719 decimal (0x00010C6F). This feature is disabled when this bit field is set to 0x00000000.	0x0	R/W
0x2854	Delta adjust	[7:0]	Auxiliary NCO 1 Delta [7:0]		Auxiliary NCO 1 delta. This signed, twos compliment, 40-bit integer bit field is the amount of phase shift of auxiliary NCO 1. The units of this bit field depend on the setting of the Auxiliary NCO 1 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta T [7:0]		Auxiliary NCO 1 Delta T. When the Auxiliary NCO 1 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 1.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta UI [7:0]		Auxiliary NCO 1 delta UI. When the Auxiliary NCO 1 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of Auxiliary NCO 1 relative to 360°. The allowable range is from -1/2 UI to approximately +1/2 UI.	0x0	R/W
0x2855	Delta adjust	[7:0]	Auxiliary NCO 1 delta [15:8]		Auxiliary NCO 1 delta. This signed, twos compliment, 40-bit integer bit field is the amount of phase shift of auxiliary NCO 1. The units of this bit field depend on the setting of the Auxiliary NCO 1 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta T [15:8]		Auxiliary NCO 1 delta T. When the Auxiliary NCO 1 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 1.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		[7:0]	Auxiliary NCO 1 delta UI [15:8]		Auxiliary NCO 1 delta UI. When the Auxiliary NCO 1 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of Auxiliary NCO 1 relative to 360°. The allowable range is from -1/2 UI to approximately +1/2 UI.	0x0	R/W
0x2856	Delta adjust	[7:0]	Auxiliary NCO 1 delta [23:16]		Auxiliary NCO 1 delta. This signed, twos compliment, 40-bit integer bit field is the amount of phase shift of Auxiliary NCO 1. The units of this bit field depend on the setting of the Auxiliary NCO 1 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta T [23:16]		Auxiliary NCO 1 delta T. When the Auxiliary NCO 1 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 1.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta UI [23:16]		Auxiliary NCO 1 delta UI. When the Auxiliary NCO 1 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of Auxiliary NCO 1 relative to 360°. The allowable range is from –1/2 UI to approximately +1/2 UI.	0x0	R/W
0x2857	Delta adjust	[7:0]	Auxiliary NCO 1 delta [31:24]		Auxiliary NCO 1 delta. This signed, twos compliment, 40- bit integer bit field is the amount of phase shift of auxiliary NCO 1. The units of this bit field depend on the setting of the Auxiliary NCO 1 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta T [31:24]		Auxiliary NCO 1 delta T. When the Auxiliary NCO 1 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 1.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta UI [31:24]		Auxiliary NCO 1 Delta UI. When the Auxiliary NCO 1 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of Auxiliary NCO 1 relative to 360°. The allowable range is from –1/2 UI to approximately +1/2 UI.	0x0	R/W
0x2858	Delta adjust	[7:0]	Auxiliary NCO 1 delta [39:32]		Auxiliary NCO 1 delta. This signed, twos compliment, 40- bit integer bit field is the amount of phase shift of Auxiliary NCO 1. The units of this bit field depend on the setting of the Auxiliary NCO 1 delta type register.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta T [39:32]		Auxiliary NCO 1 delta T. When the Auxiliary NCO 1 delta type bit is Logic 0, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in picoseconds) of Auxiliary NCO 1.	0x0	R/W
		[7:0]	Auxiliary NCO 1 delta UI [39:32]		Auxiliary NCO 1 delta UI. When the Auxiliary NCO 1 delta type bit is Logic 1, this signed, twos compliment, 40-bit integer bit field is the amount of phase shift (in unit intervals) of auxiliary NCO 1 relative to 360°. The allowable range is from $-1/2$ UI to approximately $+1/2$ UI.	0x0	R/W
0x2859	Cycle adjust	[7:0]	Auxiliary NCO 1 cycle absolute [7:0]		Auxiliary NCO 1 cycle absolute value. When the Auxiliary NCO 1 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 1 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 1 cycle relative change [7:0]		Auxiliary NCO 1 cycle relative change. When the Auxiliary NCO 1 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 1 time bit field relative to its current value.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x285A	Cycle adjust	[7:0]	Auxiliary NCO 1 cycle absolute [15:8]		Auxiliary NCO 1 cycle absolute value. When the Auxiliary NCO 1 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 1 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 1 cycle relative change [15:8]		Auxiliary NCO 1 cycle relative change. When the Auxiliary NCO 1 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 1 time bit field relative to its current value.	0x0	R/W
0x285B	Cycle adjust	[7:0]	Auxiliary NCO 1 cycle absolute [23:16]		Auxiliary NCO 1 cycle absolute value. When the Auxiliary NCO 1 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 1 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 1 cycle relative change [23:16]		Auxiliary NCO 1 cycle relative change. When the Auxiliary NCO 1 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 1 time bit field relative to its current value.	0x0	R/W
0x285C	Cycle adjust	[7:0]	Auxiliary NCO 1 cycle absolute [31:24]		Auxiliary NCO 1 cycle absolute value. When the Auxiliary NCO 1 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 1 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 1 cycle relative change [31:24]		Auxiliary NCO 1 cycle relative change. When the Auxiliary NCO 1 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 1 time bit field relative to its current value.	0x0	R/W
0x285D	Cycle adjust	[7:0]	Auxiliary NCO 1 cycle absolute [39:32]		Auxiliary NCO 1 cycle absolute value. When the Auxiliary NCO 1 cycle type bit is Logic 0, this unsigned, 40-bit bit field allows the user to update the integer portion of the Auxiliary NCO 1 time bit field directly.	0x0	R/W
		[7:0]	Auxiliary NCO 1 cycle relative change [39:32]		Auxiliary NCO 1 cycle relative change. When the Auxiliary NCO 1 cycle type bit is Logic 1, this signed, 40-bit bit field allows the user to increment or decrement the integer portion of the Auxiliary NCO 1 time bit field relative to its current value.	0x0	R/W
0x285E	Pulse width	[7:4]	Auxiliary NCO 1 pulse width exponent		Auxiliary NCO 1 pulse width exponent. This 4-bit bit field allows the user to adjust the duration of the auxiliary NCO pulse generator. The pulse width is determined by the following formula: Pulse width = $(96/f_s) \times (1 + S + 2(E + 5))$, where E is the value of this register, f_s is the system clock frequency, and S is the value of the Auxiliary NCO 1 pulse width significand bit field.	0x0	R/W
		[3:0]	Auxiliary NCO 1 pulse width significand		Auxiliary NCO 1 pulse width significand. This 4-bit bit field allows the user to adjust the duration of the Auxiliary NCO pulse generator. The pulse width is determined by the following formula: Pulse width = $(96/f_s) \times (1 + S + 2(E + 5))$, where E is the value of this register, f_s is the system clock frequency, and S is the value of the Auxiliary NCO 1 pulse width exponent bit field.	0x0	R/W

TEMPERATURE SENSOR REGISTERS—REGISTER 0x2900 TO REGISTER 0x2906

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2900	External temperature		-		-1		External temper	ature [7:0]		0x00	R/W
0x2901	External temperature						External tempera	ture [15:8]		0x00	R/W
0x2902	Temperature source		R	leserve	d		Select DPLL1 delay temperature compensation source	Select DPLL0 delay temperature compensation source	Select SYSCLK temperature compensation source	0x00	R/W
0x2903	Low temperature alarm		Low temperature threshold [7:0]						0x00	R/W	
0x2904	Low temperature alarm						Low temperature th	reshold [15:8]		0x00	R/W
0x2905	High temperature alarm						High temperature t	nreshold [7:0]		0x00	R/W
0x2906	High temperature alarm						High temperature th	reshold [15:8]		0x00	R/W

Table 97. Temperature Sensor Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
	External temperature	[7:0]	External temperature [7:0]		External temperature. This signed, 16-bit bit field is where the user inputs the temperature of a remote temperature sensor. Bits[6:0] contain the fractional part and Bits[14:7] contain the integer part. The value in this bit field is computed by multiplying the temperature (in degrees Celsius) by 128. This bit field is contained in two buffered registers, meaning that an input/output update is required after writing for the newly programmed value to take effect. For example, to enter a temperature of -15.6° C, T = $-15.6 \times 128 =$	0x0	R/W
					-1997 (decimal) = 0xF833.		
					To enter a temperature of 35.1° C, T = $35.1 \times 128 = 4493$ (decimal) = $0x118D$.		
0x2901	External temperature	[7:0]	External temperature [15:8]		External temperature. This signed, 16-bit bit field is where the user inputs the temperature of a remote temperature sensor. Bits[6:0] contain the fractional part and Bits[14:7] contain the integer part. The value in this bit field is computed by multiplying the temperature (in degrees Celsius) by 128. This bit field is contained in two buffered registers, meaning that an input/output update is required after writing for the newly programmed value to take effect. For example, to enter a temperature of -15.6° C, T = $-15.6 \times 128 = -1997$ (decimal) = 0xF833.	0x0	R/W
					To enter a temperature of 35.1° C, T = $35.1 \times 128 = 4493$ (decimal) = $0x118D$.		
0x2902	Temperature	[7:3]	Reserved		Reserved.	0x0	R
	source	2	Select DPLL1 delay temperature compensation source	0	DPLL1 delay compensation source. This bit allows the user to choose which temperature reading to use when compensating the temperature variation of the DPLL1 static phase offset. Use the internal temperature sensor.	0x0	R/W
				1	Use the external temperature bit field.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		1	Select DPLL0 delay temperature compensation source	0	DPLL0 delay compensation source. This bit allows the user to choose which temperature reading to use when compensating the temperature variation of the DPLL0 static phase offset. Use the internal temperature sensor. Use the external temperature bit field.	0x0	R/W
		0	Select SYSCLK temperature compensation source	0	SYSCLK temperature compensation source. This bit allows the user to choose which temperature reading to use when compensating the system clock frequency temperature variation. Use the internal temperature sensor. Use the external temperature bit field.	0x0	R/W
0x2903	Low temperature alarm	[7:0]	Low temperature threshold [7:0]		Low temperature threshold. This signed, 16-bit bit field contains the lower threshold of the internal temperature of the device before the temperature alarm is activated. Bits[6:0] contain the fractional part and Bits[14:7] contain the integer part. The value in this bit field is computed by multiplying the desired temperature setting (in degrees Celsius) by 128. This bit field is contained in two buffered registers, meaning that an input/output update is required after writing for the newly programmed value to take effect. The temperature sensor is intended to provide an indication of relative (but not necessarily absolute) temperature. For example, to enter a temperature of -15.6° C, T = $-15.6 \times 128 =$ -1997 (decimal) = 0xF833. To enter a temperature of 35.1° C, T = $35.1 \times 128 = 4493$ (decimal) = 0x118D.	0x0	R/W
0x2904	Low temperature alarm	[7:0]	Low temperature threshold [15:8]		Low Temperature threshold. This signed, 16-bit bit field contains the lower threshold of the internal temperature of the device before the temperature alarm is activated. Bits[6:0] contain the fractional part and Bits[14:7] contain the integer part. The value in this bit field is computed by multiplying the desired temperature setting (in degrees Celsius) by 128. This bit field is contained in two buffered registers, meaning that an input/output update is required after writing for the newly programmed value to take effect. The temperature sensor is intended to provide an indication of relative (but not necessarily absolute) temperature. For example, to enter a temperature of -15.6 °C, T = -15.6×128 = -1997 (decimal) = 0xF833. To enter a temperature of 35.1 °C, T = $35.1 \times 128 = 4493$ (decimal) =	0x0	R/W
0x2905	High temperature alarm	[7:0]	High temperature threshold [7:0]		Ox118D. High temperature threshold. This signed, 16-bit bit field contains the upper threshold of the internal temperature of the device before the temperature alarm is activated. Bits[6:0] contain the fractional part and Bits[14:7] contain the integer part. The value in this bit field is computed by multiplying the desired temperature setting (in degrees Celsius) by 128. This bit field is contained in two buffered registers, meaning that an input/output update is required after writing for the newly programmed value to take effect. The temperature sensor is intended to provide an indication of relative (but not necessarily absolute) temperature. For example, to enter a temperature of -15.6° C, T = -15.6×128 = -1997 (decimal) = 0xF833. To enter a temperature of 35.1° C, T = $35.1 \times 128 = 4493$ (decimal) = $0x118D$.		R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2906	High temperature alarm	[7:0]	High temperature threshold [15:8]		High temperature threshold. This signed, 16-bit bit field contains the upper threshold of the internal temperature of the device before the temperature alarm is activated. Bits[6:0] contain the fractional part and Bits[14:7] contain the integer part. The value in this bit field is computed by multiplying the desired temperature setting (in degrees Celsius) by 128. This bit field is contained in two buffered registers, meaning that an input/output update is required after writing for the newly programmed value to take effect. The temperature sensor is intended to provide an indication of relative (but not necessarily absolute) temperature.	0x0	R/W
					For example, to enter a temperature of -15.6 °C, T = -15.6×128 = -1997 (decimal) = 0xF833.		
					To enter a temperature of 35.1° C, T = $35.1 \times 128 = 4493$ (decimal) = $0x118D$.		

TDC AUXILIARY REGISTERS—REGISTER 0x2A00 TO REGISTER 0x2A16

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2A00	AUXTDC0 divide			U	Auxilia	ry 0 divide	I			0x00	R/W
0x2A01	AUXTDC0 Period 0				Auxiliary	0 period [7:0]				0x00	R/W
0x2A02	AUXTDC0 Period 1				Auxiliary () period [15:8	5]			0x00	R/W
0x2A03	AUXTDC0 Period 2				Auxiliary 0	period [23:10	6]			0x00	R/W
0x2A04	AUXTDC0 Period 3				Auxiliary 0	period [31:24	4]			0x00	R/W
0x2A05	AUXTDC0 Period 4				Auxiliary 0	period [39:32	2]			0x00	R/W
0x2A06	AUXTDC0 Period 5				Auxiliary 0	period [47:40	0]			0x00	R/W
0x2A07	AUXTDC0 Period 6		Auxiliary 0 period [55:48]							0x00	R/W
0x2A08	AUXTDC0 Period 7		Reserved Auxiliary 0 period [59:56]						0x00	R/W	
0x2A09	AUXTDC1 divide				Auxilia	ry 1 divide				0x00	R/W
0x2A0A	AUXTDC1 Period 0				Auxiliary	1 period [7:0]				0x00	R/W
0x2A0B	AUXTDC1 Period 1				Auxiliary 1	period [15:8	3]			0x00	R/W
0x2A0C	AUXTDC1 Period 2				Auxiliary 1	period [23:16	6]			0x00	R/W
0x2A0D	AUXTDC1 Period 3				Auxiliary 1	period [31:24	4]			0x00	R/W
0x2A0E	AUXTDC1 Period 4				Auxiliary 1	period [39:32	2]			0x00	R/W
0x2A0F	AUXTDC1 Period 5		Auxiliary 1 period [47:40]								R/W
0x2A10	AUXTDC1 Period 6		Auxiliary 1 period [55:48]								R/W
0x2A11	AUXTDC1 Period 7		Re	served			Auxiliary	1 period [59:	56]	0x00	R/W

Table 98. TDC_AUXILIARY Register Summary

AD9545 Register Map Reference Manual

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2A12	Time Stamp 0 Settings	Timebase Source 0	Reserved	Time Stamp Only Tags 0		Ti	me Stamp S	ource 0		0x06	R/W
0x2A13	Time Stamp 1 Settings	Timebase Source 1	Reserved	Time Stamp Only Tags 1		Tiı	me Stamp S	ource 1		0x07	R/W
0x2A14	Skew window		Rese	rved	1		Skew	window size		0x00	R/W
0x2A15	Skew reference source	Reserved		Skew reference tags only		Se	lect skew re	ference		0x00	R/W
0x2A16	Skew measurement source	Reserved		Skew measure tags only		Se	elect skew m	neasure		0x00	R/W

Table 99. TDC_AUXILIARY Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2A00	AUXTDC0 divide	[7:0]	Auxiliary 0 divide		AUXTDC0 divide ratio. This 8-bit bit field is the AUXTDC0 divide ratio, and allows the user to input a clock that is higher than the 200 kHz maximum TDC input frequency. The actual divide ratio is the programmed value plus 1. Therefore, programming this bit field to 0x00 results in a divide ratio of 1.	0x0	R/W
0x2A01	AUXTDC0 Period 0	[7:0]	Auxiliary 0 period [7:0]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC0 input period specified in attoseconds. For example, if the AUXTDC0 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC0 clock before it is divided by the Auxiliary 0 divider block.	0x0	R/W
0x2A02	AUXTDC0 Period 1	[7:0]	Auxiliary 0 period [15:8]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC0 input period specified in attoseconds. For example, if the AUXTDC0 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC0 clock before it is divided by the Auxiliary 0 divider block.	0x0	R/W
0x2A03	AUXTDC0 Period 2	[7:0]	Auxiliary 0 period [23:16]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC0 input period specified in attoseconds. For example, if the AUXTDC0 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC0 clock before it is divided by the Auxiliary 0 divider block.	0x0	R/W
0x2A04	AUXTDC0 Period 3	[7:0]	Auxiliary 0 period [31:24]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC0 input period specified in attoseconds. For example, if the AUXTDC0 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC0 clock before it is divided by the Auxiliary 0 divider block.	0x0	R/W
0x2A05	AUXTDC0 Period 4	[7:0]	Auxiliary 0 period [39:32]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC0 input period specified in attoseconds. For example, if the AUXTDC0 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC0 clock before it is divided by the Auxiliary 0 divider block.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2A06	AUXTDC0 Period 5		Auxiliary 0 period [47:40]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC0 input period specified in attoseconds. For example, if the AUXTDC0 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC0 clock before it is divided by the Auxiliary 0 divider block.	0x0	R/W
0x2A07	AUXTDC0 Period 6	[7:0]	Auxiliary 0 period [55:48]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC0 input period specified in attoseconds. For example, if the AUXTDC0 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC0 clock before it is divided by the Auxiliary 0 divider block.	0x0	R/W
0x2A08	AUXTDC0 Period 7	[7:4]	Reserved		Reserved.	0x0	R
			Auxiliary 0 period [59:56]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC0 input period specified in attoseconds. For example, if the AUXTDC0 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC0 clock before it is divided by the Auxiliary 0 divider block.	0x0	R/W
0x2A09	AUXTDC1 divide	[7:0]	Auxiliary 1 divide		AUXTDC1 divide ratio. This 8-bit bit field is the AUXTDC1 divide ratio, and allows the user to input a clock that is higher than the 200 kHz maximum TDC input frequency. The actual divide ratio is the programmed value plus 1. Therefore, programming this bit field to 0x00 results in a divide ratio of 1.	0x0	R/W
0x2A0A	AUXTDC1 Period 0	[7:0]	Auxiliary 1 period [7:0]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC1 input period specified in attoseconds. For example, if the AUXTDC1 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC1 clock before it is divided by the Auxiliary 1 divider block.	0x0	R/W
0x2A0B	AUXTDC1 Period 1	[7:0]	Auxiliary 1 period [15:8]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC1 input period specified in attoseconds. For example, if the AUXTDC1 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC1 clock before it is divided by the Auxiliary 1 divider block.	0x0	R/W
0x2A0C	AUXTDC1 Period 2	[7:0]	Auxiliary 1 period [23:16]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC1 input period specified in attoseconds. For example, if the AUXTDC1 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC1 clock before it is divided by the Auxiliary 1 divider block.	0x0	R/W
0x2A0D	AUXTDC1 Period 3	[7:0]	Auxiliary 1 period [31:24]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC1 input period specified in attoseconds. For example, if the AUXTDC1 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC1 clock before it is divided by the Auxiliary 1 divider block.	0x0	R/W
0x2A0E	AUXTDC1 Period 4	[7:0]	Auxiliary 1 period [39:32]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC1 input period specified in attoseconds. For example, if the AUXTDC1 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC1 clock before it is divided by the Auxiliary 1 divider block.	0x0	R/W
0x2A0F	AUXTDC1 Period 5	[7:0]	Auxiliary 1 period [47:40]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC1 input period specified in attoseconds. For example, if the AUXTDC1 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC1 clock before it is divided by the Auxiliary 1 divider block.	0x0	R/W

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2A10	AUXTDC1 Period 6	[7:0]	Auxiliary 1 period [55:48]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC1 input period specified in attoseconds. For example, if the AUXTDC1 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x 000 0071 AFD4 98D0. This is the input period of the AUXTDC1 clock before it is divided by the Auxiliary 1 divider block.	0x0	R/W
0x2A11	AUXTDC1						
	Period 7	[3:0]	Auxiliary 1 period [59:56]		AUXTDC0 input period. This 60-bit bit field contains the AUXTDC1 input period specified in attoseconds. For example, if the AUXTDC1 input clock is 2.048 MHz, the period is 488,281,250,000 as (1/(2.048 MHz)). The corresponding 60-bit hexadecimal value is 0x0000071AFD498D0, which is the input period of the AUXTDC1 clock before it is divided by the Auxiliary 1 divider block.	0x0	R/W
0x2A12	Timestamp 0 settings	7	Timebase Source 0	0	Timebase Source 0. This bit selects the reference time base for User Timestamp Processor 0. An increment of one user stamp corresponds to the period of the reference time base. Use Auxiliary NCO 0 as the reference time base for User Timestamp Processor 0. Use Auxiliary NCO 1 as the reference time base for User Timestamp Processor 0.	0x0	R/W
		6	Reserved		Reserved.		
		5	Timestamp Only Tags 0	0	Timestamp only tagged events (Timestamper 0). All rising edges detected by the selected TDC create a user		
				1	timestamp event on Timestamper 0. Only tagged rising edges detected by the selected TDC create a user timestamp event on Timestamper 0.		
0~2412	Timostamo 1		Timestamp Source 0	0 1 2 3 6 7 8 9 10	, , , , , , , , , , , , , , , , , , , ,	0.0	PAM
	Timestamp 1 settings	7	Timebase Source 1	0	Timebase Source 1. This bit selects the reference time base for User Timestamp Processor 1. An increment of one of user stamp corresponds to the period of the reference time base. Use Auxiliary NCO 0 as the reference time base for User Timestamp Processor 1. Use Auxiliary NCO 1 as the reference time base for User Timestamp Processor 1.	0x0	R/W
		6	Reserved		Reserved.		
		5	Timestamp Only Tags 1	0	timestamp event on Timestamper 1.		
				1	Only tagged rising edges detected by the selected TDC create a user timestamp event on Timestamper 1.		

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		[4:0]	Timestamp Source 1		Timestamp Source 1. This 5-bit bit field selects the TDC timestamp source for User Timestamp 0 processor.	0x7	R/W
				0	REFA.		
				1	REFAA.		
				2	REFB.		
				3	REFBB.		
				6	AUXTDC0 (default).		
				7	AUXTDC1.		
				8	AUXNCO0.		
				9	AUXNCO1.		
				10	Alternate between auxiliary TDCs (ping pong mode).		
0x2A14	Skew window	[7:4]	Reserved		Reserved.	0x0	R
		[3:0]	Skew		Skew measurement window size. This 4-bit bit field controls the	0x0	R/W
			window size		amount of averaging for both the skew offset and skew drift		
					measurements. The skew offset full window and skew drift full		
					window bits are Logic 1, and the specified number of averages are compiled for the skew offset and skew drift measurements,		
					respectively. The values in the table below are in the form of M/N,		
					where M is the number of averages for skew offset measurement,		
					and N is the number of averages for skew drift measurement.		
				0	2/2.		
				1	4/4.		
				10	8/8.		
				11	16/16.		
				100	32/16.		
				101	64/16.		
				110	128/16.		
				111	256/16.		
				1000	512/16.		
				1001	1024/16.		
				1010	2048/16.		
				1011	4096/16.		
				1100	8192/16.		
				1101	16384/16.		
				1110	32768/16.		
				1111	65536/16.		
0x2A15	Skew reference	[7:6]	Reserved		Reserved.	0x0	R
	source						
		5	Skew		Use tagged events only for skew reference.	0x0	R/W
			reference tags only	0	All rising edges detected by the selected TDC create a skew reference edge.		
				1	Only tagged rising edges detected by the selected TDC create a skew reference edge.		
		[4:0]	Select skew reference		Skew Reference Source. This 5-bit bit field selects the TDC source for skew measurement processor.	0x0	R/W
				0	REFA.		
				1	REFAA.		
				2	REFB.		
					REFBB.		
					AUXTDC0 (default).		
				7	AUXTDC1.		
				-	AUXNCO0.		
				-			
				8 9	AUXNCO0. AUXNCO1.		

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2A16	Skew measurement source	[7:6]	Reserved	ed Reserved. re 0 nly All rising edges detected by the selected TDC create a skew measurement edge. 1 Only tagged rising edges detected by the selected TDC create a skew measurement edge. skew Skew measurement source. This 5-bit bit field selects the TDC (time to digital converter) for the edge to be measured by skew measurement processor. The skew measurement processor	0x0	R	
		5	Skew		Use tagged events only for skew measurements.	0 0 0x0	R/W
			measure tags only	0			
				1	,	0 0 0x0	
		[4:0]	Select skew measure		(time to digital converter) for the edge to be measured by skew measurement processor. The skew measurement processor measures the time difference between the rising edge of the skew reference source to the rising edge of the skew measurement source. The result is stored in the skew offset and skew drift bit		R/W
				0			
				1	REFAA. REFB.		
				3	REFBB.		
				6	AUXTDC0 (default).		
				7	AUXTDC1.		
				8	AUXNCO0.		
				9	AUXNCO1.		

EEPROM REGISTERS—REGISTER 0x2E00 TO REGISTER 0x2E1E

Table 100. EEPROM Register Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x2E00	EEPROM options		1	Reserv	ved		Verify EEPROM CRC	EEPROM fast mode	EEPROM write enable	0x00	R/W
0x2E01	EEPROM condition		F	Reserved			EEPROM loa	d condition		0x00	R/W
0x2E02	EEPROM save				Rese	rved			EEPROM save	0x00	R/W
0x2E03	EEPROM load				Rese	rved			EEPROM load	0x00	R/W
0x2E10 to	EEPROM				EEF	ROM seque	nce		u.	0xFF	R/W
0x2E1E	sequence										

Table 101. EEPROM Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x2E00	EEPROM	[7:3]	Reserved		Reserved.	0x0	R
	options	2	Verify EEPROM CRC		Verify EEPROM cyclic redundancy check (CRC). Setting this autoclearing bit to Logic 1 immediately starts a register loading from the EEPROM into the device to verify the EEPROM contents, and requires the same amount of time as a load from EEPROM operation. The key difference between this commend and load from EEPROM is that the current AD9545 register settings are not overwritten using this command. An input/output update is not required.	0x0	R/W
		1	EEPROM fast mode		EEPROM I ² C fast mode. Logic 0: 100 kHz I ² C mode. Logic 1: fast I ² C (400 kHz) mode. These clock rates are the maximum internally generated SCL frequencies. The nominal frequency of the internally generated I ² C SCL clock is typically 30% slower than these values.	0x0	R/W
		0	EEPROM write enable		EEPROM write enable. This bit must be set to Logic 1 before performing a save to EEPROM operation. This bit is not autoclearing, and is in a live register. Live registers do not require an input/output update to take effect. Logic 0: writing to EEPROM disabled. Logic 1: writing to EEPROM enabled.	0x0	R/W
0x2E01		[7:4]	Reserved		Reserved.	0x0	R
	condition	[3:0]	EEPROM condition		EEPROM condition map. This four-bit bit field contains the EEPROM condition map, which allows conditional processing of EEPROM commands. Conditional processing allows users to store multiple configurations in the AD9545 EEPROM and select them at EEPROM loading time. Conditional processing is disabled by setting this bit field to 0x0 during an EEPROM write; this is called condition zero, and EEPROM instructions that are stored with condition zero are executed unconditionally during a load from EEPROM operation. Refer to the AD9545 data sheet for details on conditional EEPROM instructions.	0x0	R/W
0x2E02	EEPROM	[7:1]	Reserved		Reserved.	0x0	R
	save	0	EEPROM save		Save to EEPROM. Setting this autoclearing bit to Logic 1 immediately starts a register save to the EEPROM from the AD9545. The user must write a Logic 1 to the EEPROM write enable bit in this register prior to writing a Logic 1 to this bit. This bit is in a live register and an input/output update is not required after writing this bit.	0x0	R/W
0x2E03	EEPROM	[7:1]	Reserved		Reserved.	0x0	R
	load	0	EEPROM load		Load from EEPROM. Setting this autoclearing bit to Logic 1 immediately starts a register loading from the EEPROM into the device. An input/output update is not required.	0x0	R/W
0x2E10 to 0x2E1E	EEPROM sequence	[7:0]	EEPROM sequence		EEPROM storage sequence. This group of 15 registers contain the EEPROM storage sequence instructions for the AD9545 EEPROM controller. These instructions include operational codes (such as input/ output update e or APLL calibration), as well as the sequence of AD9545 register values that are to be stored in the EEPROM. Refer to the AD9545 data sheet for the list operational controls and programming sequence details.	0xFF	R/W

STATUS READBACK REGISTERS—REGISTER 0x3000 TO REGISTER 0x300A

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x3000	EEPROM status		Re	served		EEPROM CRC error	EEPROM fault	EEPROM load in progress	EEPROM save in progress	0x0X	R
0x3001	SYSCLK and PLL status	Res	served	PLL1 locked	PLL0 locked	Reserved	SYSCLK calibration busy	SYSCLK stable	SYSCLK locked	0xXX	R
0x3002	Miscellaneous status	Auxiliary NCO 1 delta overflow	Auxiliary NCO 1 delta slewing	Auxiliary NCO 0 delta overflow	Auxiliary NCO 0 delta slewing	Reserved	Auxiliary DPLL reference fault	Auxiliary DPLL lock detect	Temperature alarm	0xXX	R
0x3003	Temperature readback				Intern	al temperature	[7:0]			0xXX	R
0x3004	Temperature readback				Interna	al temperature [15:8]			0xXX	R
0x3005	REFA status	Res	served	REFA LOS	REFA valid	REFA fault	REFA excess jitter	REFA fast	REFA slow	0xXX	R
0x3006	REFAA status	Res	served	REFAA LOS	REFAA valid	REFAA fault	REFAA excess jitter	REFAA fast	REFAA slow	0xXX	R
0x3007	REFB status	Res	served	REFB LOS	REFB valid	REFB fault	REFB excess jitter	REFB fast	REFB slow	0xXX	R
0x3008	REFBB status	Res	served	REFBB LOS	REFBB valid	REFBB fault	REFBB excess jitter	REFBB fast	REFBB slow	0xXX	R
0x3009	DPLL0 active profile	Res	served	DPLL0 Profile 5 active	DPLL0 Profile 4 active	DPLL0 Profile 3 active	DPLL0 Profile 2 active	DPLL0 Profile 1 active	DPLL0 Profile 0 active	0xXX	R
0x300A	DPLL1 active profile	Res	served	DPLL1 Profile 5 active	DPLL1 Profile 4 active	DPLL1 Profile 3 active	DPLL1 Profile 2 active	DPLL1 Profile 1 active	DPLL1 Profile 0 active	0xXX	R

Table 102. Status Readback Register Summary

Table 103. Status Readback Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3000	EEPROM	[7:4]	Reserved		Reserved.	0x0	R
	status	3	EEPROM CRC error		EEPROM CRC error detected. A Logic 1 indicates a CRC error occurred during an EEPROM operation. This bit is in a live register, meaning an input/output update is not needed while polling this register. If an EEPROM fault is detected, this bit remains Logic 1 until the next EEPROM operation.	0x0	R
		2	EEPROM fault		EEPROM general fault detected. A Logic 1 indicates that a general EEPROM error occurred during an EEPROM operation. This bit is in a live register, meaning an input/output update is not needed while polling this register. If an EEPROM fault is detected, this bit remains Logic 1 until the next EEPROM operation.	0x0	R
		1	EEPROM load in progress		EEPROM load in progress. A Logic 1 indicates that a load from EEPROM operation is in progress. This bit is in a live register, meaning an input/output update is not needed while polling this register.		R
		0	EEPROM save in progress		EEPROM save in progress. A Logic 1 indicates that a save to EEPROM operation is in progress. This bit is in a live register, meaning that an input/output update is not needed while polling this register.	0x0	R
0x3001	SYSCLK and	[7:6]	Reserved		Reserved.	0x0	R
	PLL status	5	PLL1 locked		DPLL1 and APLL1 Locked. A Logic 1 indicates that both Channel 1 PLLs (DPLL1 and APLL0) are locked. This bit is the logical AND of system clock lock detect, APLL1 lock detect, DPLL1 frequency, and DPLL1 PLD. This bit is in a live register, meaning that an Input/output update is not needed prior to reading.	Prog	RP
		4	PLL0 locked		DPLL0 and APLL0 Locked. A Logic 1 indicates that both Channel 0 PLLs (DPLL0 and APLL0) are locked. This bit is the logical AND of system clock lock detect, APLL0 lock detect, DPLL0 frequency, and DPLL0 PLD. This bit is in a live register, meaning that an input/output update is not needed prior to reading.	0x0 0x0 0x0 0x0 Prog	RP

UG-	1	1	46
U U			

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		3	Reserved		Reserved.	0x0	R
		2	SYSCLK calibration busy		System clock calibration in progress. A Logic 1 indicates that the system clock VCO is calibrating. This status bit is in a live register, meaning that an input/output update is not required prior to reading.	Prog	RP
		1	SYSCLK stable		System clock stable. A Logic 1 indicates that the system clock PLL is stable, meaning that the system clock PLL has been locked for at least as long as the value programmed into the system clock stability timer bit field. This status bit is in a live register, meaning that an input/output update is not required prior to reading.	Prog	RP
		0	SYSCLK locked		System clock PLL locked. A Logic 1 indicates that the system clock PLL is locked. This status bit is in a live register, meaning that an input/output update is not required prior to reading.	Prog	RP
0x3002	Miscel- laneous status	7	Auxiliary NCO 1 delta overflow		Auxiliary NCO 1 delta overflow error. A Logic 1 indicates that an Auxiliary NCO 1 delta overflow occurred. If the Auxiliary NCO 1 delta type = 0, this error can occur if the user specifies an Auxiliary NCO 1 delta value that is greater than one Auxiliary NCO 1 period. If the Auxiliary NCO 1 delta type = 1, this error can occur if the user specifies an Auxiliary NCO 1 delta value with an absolute value greater than 1/2 of the Auxiliary NCO 1 period. This bit is in a buffered register, meaning that the user must issue an input/output update immediately prior to reading to ensure that the latest status is read.	Prog	RP
		6	Auxiliary NCO 1 delta slewing		Auxiliary NCO 1 delta slewing. A Logic 1 indicates that Auxiliary NCO 1 is phase slewing. This bit is in a buffered register, meaning that the user must issue an input/output update immediately prior to reading to ensure that the latest status is read.	Prog	RP
		5	Auxiliary NCO 0 delta overflow		Auxiliary NCO 0 delta overflow error. A Logic 1 indicates that an Auxiliary NCO 0 delta overflow occurred. If the Auxiliary NCO 0 delta type = 0, this error can occur if the user specifies an Auxiliary NCO 0 delta value that is greater than one Auxiliary NCO 0 period. If the Auxiliary NCO 0 delta type = 1, this error can occur if the user specifies an Auxiliary NCO 0 delta value with an absolute value greater than 1/2 of the Auxiliary NCO 0 period. This bit is in a buffered register, meaning that the user must issue an input/output update immediately prior to reading to ensure that the latest status is read.	Prog	RP
		4	Auxiliary NCO 0 delta slewing		Auxiliary NCO 0 delta slewing. A Logic 1 indicates that Auxiliary NCO 0 is phase slewing. This bit is in a buffered register, meaning that the user must issue an input/output update immediately prior to reading to ensure that the latest status is read.	Prog	RP
		3	Reserved		Reserved.	0x0	R
		2	Auxiliary DPLL reference fault		Auxiliary DPLL reference fault. This bit indicates an out of range reference fault of the auxiliary DPLL. Logic 0: auxiliary DPLL reference fault is not detected. Logic 1: auxiliary DPLL reference fault is detected.	Prog	RP
		1	Auxiliary DPLL lock detect		Auxiliary DPLL lock detect. This bit indicates the status of the auxiliary DPLL, which calculates an offset to compensate for any frequency error in the system clock PLL. Logic 0: auxiliary DPLL is not locked. Logic 1: auxiliary DPLL is locked.	Prog	RP
		0	Temperature alarm		Temperature alarm. A Logic 1 indicates that the temperature sensor detected a temperature that is outside of the range programmed into the high temperature threshold and low temperature threshold. This status bit is a buffered register, meaning that an input/output update is required prior to reading to read back the latest value.	Prog	RP

Addr.	Name	Bits	Bit Name	Settings		Reset	Access
0x3003	Temperature readback	[7:0]	Internal temperature [7:0]		Internal temperature. This signed, 16-bit bit field contains the internal temperature of the device. Bits[6:0] contain the fractional part and Bits[14:7] contain the integer part. The temperature reading is computed by multiplying the value in this bit field by 2^{-7} and is in degrees Celsius. The sensor samples at approximately 6.1 kHz. This bit field is contained in two buffered registers, meaning that an input/output update is required prior to reading to read back the latest value. The sensor is intended to provide an indication of relative (but not necessarily absolute) temperature. For example, if the internal temperature reads $0xF833$ (-1997 decimal), T = -1997 × $2^{-7\circ}C = -15.6^{\circ}C$.	Prog	RP
0x3004	Temperature readback		temperature [15:8]		Internal temperature. This signed, 16-bit bit field contains the internal temperature of the device. Bits[6:0] contain the fractional part and Bits[14:7] contain the integer part. The temperature reading is computed by multiplying the value in this bit field by 2^{-7} and is in degrees Celsius. The sensor samples at approximately 6.1 kHz. This bit field is contained in two buffered registers, meaning that an input/output update is required prior to reading to read back the latest value. The sensor is intended to provide an indication of relative (but not necessarily absolute) temperature. For example, if the internal temperature reads $0xF833$ (-1997 decimal), T = -1997 × $2^{-7\circ}$ C = -15.6° C.	Prog	RP
0x3005	REFA status	[7:6]	Reserved		Reserved.	0x0	R
		5	REFA LOS		REFA loss of signal (LOS). A Logic 1 indicates a REFA LOS. This bit is in a buffered register, meaning the user must issue an input/output update prior to reading to read back the latest value. The value of this bit can change dynamically, so instead of monitoring this bit, monitor the REFA fault bit in this register which remains high whenever REFA is faulted (due to any type of fault).	0x0	R
		4	REFA valid		REFA frequency valid. A Logic 1 indicates that the period of the REFA clock is within the range allowed by the REFA nominal period and REFA offset limit settings for at least as long as the REFA Validation timer setting. This status bit is in a buffered register, meaning an input/output update is needed prior to reading.	0x0	R
		3	REFA fault		REFA fault. A Logic 1 indicates that the REFA clock is either missing, has excess jitter, or its frequency is outside of the range allowed by its profile settings. It is the logical OR of the REFA LOS, REFA fast, REFA slow, and REFA excess jitter bits. This status bit is in a buffered register, meaning an input/output update is needed prior to reading.	0x0	R
		2	REFA excess jitter		Excess jitter detected on REFA. A Logic 1 indicates that the jitter of the REFA clock is higher than allowed by its profile settings as specified in the REFA jitter tolerance bit field. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.	0x0	R
		1	REFA fast		REFA frequency is above upper limit. A Logic 1 indicates that the frequency of the REFA clock is higher than allowed by its profile settings. This status bit is in a buffered register, meaning an input/output update is needed prior to reading. If the REFA clock is missing, the REFA fast and REFA slow bits in this register can both be Logic 1.	0x0	R
		0	REFA slow		REFA frequency is below lower limit. A Logic 1 indicates that the frequency of the REFA clock is lower than allowed by its profile settings. This status bit is in a buffered register, meaning that an Input/output update is needed prior to reading. If the REFA clock is missing, the REFA fast and REFA slow bits in this register can both be Logic 1.	0x0	R
0x3006	REFAA	[7:6]	Reserved		Reserved.	0x0	R
	status	5	REFAA LOS		REFAA LOS. A Logic 1 indicates a REFAA LOS. This bit is in a buffered register, meaning that the user must issue an input/output update prior to reading in order to read back the latest value. The value of this bit can change dynamically, so instead of monitoring this bit, the user should monitor the REFAA fault bit in this register which remains high whenever REFAA is faulted (due to any type of fault).	0x0	R

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		4	REFAA valid		REFAA Frequency Valid. A Logic 1 indicates that the period of the REFAA clock is within the range allowed by the REFAA nominal period and REFAA offset limit settings for at least as long as the REFAA validation timer setting. This status bit is in a buffered register, meaning an input/output update is needed prior to reading.	0x0	R
		3	REFAA fault		Reference AA fault. A Logic 1 indicates that the REFAA clock is either missing, has excess jitter, or its frequency is outside of the range allowed by its profile settings. It is the logical OR of the REFAA LOS, REFAA fast, REFAA slow, and REFAA excess jitter bits. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.	0x0	R
		2	REFAA excess jitter		Excess jitter detected on REFAA. A Logic 1 indicates that the jitter of the REFAA clock is higher than allowed by its profile settings as specified in the REFAA jitter tolerance bit field. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.	0x0	R
		1	REFAA fast		REFAA frequency is above upper limit. A Logic 1 indicates that the frequency of the REFAA clock is higher than allowed by its profile settings. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading. If the REFAA clock is missing, the REFAA fast and REFAA slow bits in this register can both be Logic 1.	0x0	R
		0	REFAA slow		REFAA frequency is below lower limit. A Logic 1 indicates the frequency of the REFAA clock is lower than allowed by its profile settings. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading. If the REFAA clock is missing, the REFAA fast and REFAA slow bits in this register can both be Logic 1.	0x0	R
0x3007	REFB status	[7:6]	Reserved		Reserved.	0x0	R
		5	REFB LOS		REFB LOS. A Logic 1 indicates a REFB LOS. This bit is in a buffered register, meaning that the user must issue an input/output update prior to reading to read back the latest value. The value of this bit can change dynamically, so instead of monitoring this bit, monitor the REFB fault bit in this register which remains high whenever REFB is faulted (due to any type of fault).	0x0	R
		4	REFB valid		REFB frequency valid. A Logic 1 indicates that the period of the REFB clock is within the range allowed by the REFB nominal period and REFB offset limit settings for at least as long as the REFB validation timer setting. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.	0x0	R
		3	REFB fault		REFB fault. A Logic 1 indicates that the REFB clock is either missing, has excess jitter, or its frequency is outside of the range allowed by its profile settings. It is the logical OR of the REFB LOS, REFB fast, REFB slow, and REFB excess jitter bits. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.	0x0	R
		2	REFB excess jitter		Excess jitter detected on REFB. A Logic 1 indicates that the jitter of the REFB clock is higher than allowed by its profile settings as specified in the REFB jitter tolerance bit field. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.		R
		1	REFB fast		REFB frequency is above upper limit. A Logic 1 indicates that the frequency of the REFB clock is higher than allowed by its profile settings. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading. If the REFB clock is missing, the REFB fast and REFB slow bits in this register can both be Logic 1.	0x0	R
		0	REFB slow		REFB frequency is below lower limit. A Logic 1 indicates the frequency of the REFB clock is lower than allowed by its profile settings. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading. If the REFB clock is missing, the REFB fast and REFB slow bits in this register can both be Logic 1.	0x0	R

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3008	REFBB status	[7:6]	Reserved		Reserved.	0x0	R
		5	REFBB LOS		REFBB LOS. A Logic 1 indicates a REFBB LOS. This bit is in a buffered register, meaning that the user must issue an input/output update prior to reading to read back the latest value. The value of this bit can change dynamically, so instead of monitoring this bit, monitor the REFB fault bit in this register which remains high whenever REFBB is faulted (due to any type of fault).	0x0	R
		4	REFBB valid		REFBB frequency valid. A Logic 1 indicates that the period of the REFBB clock is within the range allowed by the REFBB nominal period and REFBB offset limit settings for at least as long as the REFBB validation timer setting. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.	0x0	R
		3	REFBB fault		REFBB Fault. A Logic 1 indicates that the REFBB clock is either missing, has excess jitter, or its frequency is outside of the range allowed by its profile settings. It is the logical OR of the REFBB LOS, REFBB fast, REFBB slow, and REFBB excess jitter bits. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.		R
		2	REFBB excess jitter		Excess jitter detected on REFBB. A Logic 1 indicates that the jitter of the REFBB clock is higher than allowed by its profile settings as specified in the REFBB jitter tolerance bit field. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading.	0x0	R
		1	REFBB fast		REFBB frequency is above upper limit. A Logic 1 indicates that the frequency of the REFBB clock is higher than allowed by its profile settings. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading. If the REFBB clock is missing, the REFBB fast and REFBB slow bits in this register can both be Logic 1.	0x0	R
		0	REFBB slow		REFBB frequency is below lower limit. A Logic 1 indicates the frequency of the REFBB clock is lower than allowed by its profile settings. This status bit is in a buffered register, meaning that an input/output update is needed prior to reading. If the REFBB clock is missing, the REFBB fast and REFBB slow bits in this register can both be Logic 1.	0x0	R
0x3009	DPLLO		Reserved		Reserved.	0x0	R
	active profile	[5:0]	DPLLO		Active translation profile for DPLL0.	0x0	R
	prome		active profile		DPLL0 does not have an active translation profile.		
			prome		DPLL0 Translation Profile 0.0 is active.		
					DPLL0 Translation Profile 0.1 is active.		
					DPLL0 Translation Profile 0.2 is active.		
					DPLL0 Translation Profile 0.3 is active.		
					DPLL0 Translation Profile 0.4 is active.		
0x300A	DPLL1	[7.6]	Decenved	100000	DPLL0 Translation Profile 0.5 is active.	0x0	R
0X500A	active		Reserved DPLL1		Reserved. Active translation profile for DPLL1.	0x0 0x0	R
	profile	[5.0]	active	000000	DPLL1 does not have an active translation profile.	0.00	n
			profile		DPLL1 Translation Profile 1.0 is active.		
				DPLL1 Translation Profile 1.1 is active.			
					DPLL1 Translation Profile 1.1 is active. DPLL1 Translation Profile 1.2 is active.		
					DPLL1 Translation Profile 1.3 is active.		
					DPLL1 Translation Profile 1.3 is active. DPLL1 Translation Profile 1.4 is active.		
				010000		1	

IRQ MAP COMMON STATUS REGISTERS—REGISTER 0x300B TO REGISTER 0x300F

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x300B	SYSCLK	SYSCLK unlocked	SYSCLK stabilized	SYSCLK locked	SYSCLK calibration deactivated	SYSCLK calibration activated	Watchdog timeout occurred	EEPROM faulted	EEPROM completed	0x00	R
0x300C	Auxiliary DPLL	Rese	rved	Skew limit exceeded	Temperature warning occurred	Auxiliary DPLL unfaulted	Auxiliary DPLL faulted	Auxiliary DPLL unlocked	Auxiliary DPLL locked	0x00	R
0x300D	REFA	REFAA R divider resynced	REFAA validated	REFAA unfaulted	REFAA faulted	REFA R divider resynced	REFA validated	REFA unfaulted	REFA faulted	0x00	R
0x300E	REFB	REFBB R divider resynced	REFBB validated	REFBB unfaulted	REFBB faulted	REFB R divider resynced	REFB validated	REFB unfaulted	REFB faulted	0x00	R
0x300F	Timestamp		Reserved		Skew updated	Timestamp 1 event	Timestamp 0 event	Auxiliary NCO 1 event	Auxiliary NCO 0 event	0x00	R

Table 104. IRQ Map Common Status Registers Summary

Table 105. IRQ Map Common Status Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x300B	SYSCLK	7	SYSCLK unlocked		System clock unlocked. Read-only status of the SYSCLK unlocked IRQ.	0x0	R
		6	SYSCLK stabilized		System clock stabilized. Read-only status of the SYSCLK stable IRQ.	0x0	R
		5	SYSCLK locked		System clock locked. Read-only status of the SYSCLK locked IRQ.	0x0	R
		4	SYSCLK calibration deactivated		System clock calibration deactivated. Read-only status of the SYSCLK calibration inactive IRQ.	0x0	R
		3	SYSCLK calibration activated		System clock calibration activated. Read-only status of the SYSCLK calibration active IRQ.	0x0	R
		2	Watchdog timeout occurred		Watchdog timeout occurred. Read-only status of the watchdog timer timeout IRQ.	0x0	R
		1	EEPROM faulted		EEPROM faulted. Read-only status of the EEPROM fault IRQ.	0x0	R
		0	EEPROM completed		EEPROM operation complete. Read-only status of the EEPROM operation complete IRQ.	0x0	R
0x300C	Auxiliary	[7:6]	Reserved		Reserved.	0x0	R
	DPLL	5	Skew limit exceeded		Skew limit exceeded. Read-only status of the reference input skew measurement limit exceeded IRQ.	0x0	R
		4	Temperature warning occurred		Temperature range warning occurred.	0x0	R
		3	Auxiliary DPLL unfaulted		Closed-loop SYSCLK compensation DPLL unfaulted. Read-only status of the auxiliary DPLL unfault IRQ.	0x0	R
		2	Auxiliary DPLL faulted		Closed-loop SYSCLK compensation DPLL faulted. Read- only status of the auxiliary DPLL fault IRQ.	0x0	R
		1	Auxiliary DPLL unlocked		Closed-loop SYSCLK compensation DPLL unlocked. Read-only status of the auxiliary DPLL unlock IRQ.	0x0	R
		0	Auxiliary DPLL locked		Closed-loop SYSCLK compensation DPLL locked. Read- only status of the auxiliary DPLL lock IRQ.	0x0	R
0x300D	REFA	7	REFAA R divider resynced		REFAA R divider resynchronized. Read-only status of the REFAA R divider resynced IRQ.	0x0	R
		6	REFAA validated		REFAA validated. Read-only status of the REFAA valid IRQ.	0x0	R
		5	REFAA unfaulted		REFAA unfaulted. Read-only status of the REFAA unfaulted IRQ.	0x0	R
		4	REFAA fault		REFAA faulted. Read-only status of the REFAA faulted IRQ.	0x0	R

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
		3	REFA R divider resynced		REFA R divider resynchronized. Read-only status of the REFA R divider resynced IRQ.	0x0	R
		2	REFA validated		REFA validated. Read-only status of the REFA valid IRQ.	0x0	R
		1	REFA unfaulted		REFA unfaulted. Read-only status of the REFA unfaulted IRQ.	0x0	R
		0	REFA faulted		REFA faulted. Read-only status of the REFA faulted IRQ.	0x0	R
0x300E	REFB	7	REFBB R divider resynced		REFBB R divider resynchronized. Read-only status of the REFBB R divider resynced IRQ.	0x0	R
		6	REFBB validated		REFBB validated. Read-only status of the REFBB valid IRQ.	0x0	R
		5	REFBB unfaulted		REFBB unfaulted. Read-only status of the REFBB unfaulted IRQ.	0x0	R
		4	REFBB faulted		REFBB faulted. Read-only status of the REFBB faulted IRQ.	0x0	R
		3	REFB R divider resynced		REFB R divider resynchronized. Read-only status of the REFB R divider resynced IRQ.	0x0	R
		2	REFB validated		REFB validated. Read-only status of the REFB valid IRQ.	0x0	R
		1	REFB unfaulted		REFB unfaulted. Read-only status of the REFB unfaulted IRQ.	0x0	R
		0	REFB faulted		REFB faulted. Read-only status of the REFB faulted IRQ.	0x0	R
0x300F	Timestamp	[7:5]	Reserved		Reserved.	0x0	R
		4	Skew updated		Skew measurement updated. Read-only status of the ref input skew measurement updated IRQ.	0x0	R
		3	Timestamp 1 event		Timestamp 1 time code available. Read-only status of the Timestamp 1 event IRQ.	0x0	R
		2	Timestamp 0 event		Timestamp 0 time code available. Read-only status of the Timestamp 0 event IRQ.	0x0	R
		1	Auxiliary NCO 1 event		Auxiliary NCO 1 event. Read-only status of the Auxiliary NCO 1 event IRQ.	0x0	R
		0	Auxiliary NCO 0 event		Auxiliary NCO 0 event. Read-only status of the Auxiliary NCO 0 event IRQ.	0x0	R

IRQ MAP DPLL0 STATUS REGISTERS—REGISTER 0x3010 TO REGISTER 0x3014

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x3010	Lock	DPLL0 frequency clamp deactivated	DPLL0 frequency clamp activated	DPLL0 phase slew limiter deactivated	DPLL0 phase slew limiter activated	DPLL0 frequency unlocked	DPLL0 frequency locked	DPLL0 phase unlocked	DPLL0 phase locked	0x00	R
0x3011	State	DPLL0 reference switched	DPLL0 freerun entered	DPLL0 holdover entered	DPLL0 hitless entered	DPLL0 hitless exited	DPLL0 history updated	Reserved	DPLL0 phase step detected	0x00	R
0x3012	Fast acqui- sition		Reserved		DPLL0 N- divider resynced	DPLL0 fast acquisition completed	DPLL0 fast acquisition started	Res	erved	0x00	R
0x3013	Active profile	Reser	ved	DPLL0 Profile 5 activated	DPLL0 Profile 4 activated	DPLL0 Profile 3 activated	DPLL0 Profile 2 activated	DPLL0 Profile 1 activated	DPLL0 Profile 0 activated	0x00	R
0x3014	APLL		Reserved		DPLL0 distribution synced	APLL0 unlocked	APLL0 locked	APLL0 calibration completed	APLL0 calibration started	0x00	R

Table 106. IRQ Map DPLL0 Status Register Summary

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3010	Lock	7	DPLL0 frequency clamp deactivated		Frequency clamp deactivated. Read-only status of IRQ for DPLL0 frequency clamp inactive.	0x0	R
		6	DPLL0 frequency clamp activated		Frequency clamp activated. Read-only status of IRQ for DPLL0 frequency clamp active.	0x0	R
		5	DPLL0 phase slew limiter deactivated		Phase slew limiter deactivated. Read-only status of IRQ for DPLL0 phase slew limiter deactivated.	0x0	R
		4	DPLL0 phase slew limiter activated		Phase slew limiter activated. Read-only status of IRQ for DPLL0 phase slew limiter activated.	0x0	R
		3	DPLL0 frequency unlocked		Frequency unlocked. Read-only status of IRQ for DPLL0 FLD (lock to unlock transition).	0x0	R
		2	DPLL0 frequency locked		Frequency locked. Read-only status of IRQ for DPLL0 FLD (unlock to lock transition).	0x0	R
		1	DPLL0 phase unlocked		Phase unlocked. Read-only status of IRQ for DPLL0 PLD (lock to unlock transition).	0x0	R
		0	DPLL0 phase locked		Phase locked. Read-only status of IRQ for DPLL0 PLD (unlock to lock transition).	0x0	R
0x3011	State	7	DPLL0 reference switched		Reference switching. Read-only status of IRQ for DPLL0 reference input switching.	0x0	R
		6	DPLL0 freerun entered		Freerun mode entered. Read-only status of IRQ for DPLL0 freerun mode entered.	0x0	R
		5	DPLL0 holdover entered		Holdover mode entered. Read-only status of IRQ for DPLL0 holdover mode entered.	0x0	R
		4	DPLL0 hitless entered		Hitless mode entered. Read-only status of IRQ for DPLL0 hitless mode entered.	0x0	R
		3	DPLL0 hitless exited		Hitless mode exited. Read-only status of IRQ for DPLL0 hitless mode exited.	0x0	R
		2	DPLL0 history updated		Holdover history updated. Read-only status of IRQ for DPLL0 tuning word holdover history updated.	0x0	R
		1	Reserved		Reserved.	0x0	R
		0	DPLL0 phase step detected		Phase step detected. Read-only status of IRQ for DPLL0 reference input phase step detected.	0x0	R
0x3012	Fast	[7:5]	Reserved		Reserved.	0x0	R
	acquisition	4	DPLL0 N-divider resynced		N-divider resynchronized. Read-only status of IRQ for DPLL0 N-divider resynced.	0x0	R
		3	DPLL0 fast acquisition completed		Fast acquisition completed. Read-only status of IRQ for DPLL0 fast acquisition complete.	0x0	R
		2	DPLL0 fast acquisition started		Fast acquisition started. Read-only status of IRQ for DPLL0 fast acquisition started.	0x0	R
		[1:0]	Reserved		Reserved.	0x0	R
0x3013		[7:6]	Reserved		Reserved.	0x0	R
	profile	5	DPLL0 Profile 5 activated		Profile 5 activated. Read-only status of IRQ for DPLL0 Profile 5 activated.	0x0	R
		4	DPLL0 Profile 4 activated		Profile 4 activated. Read-only status of IRQ for DPLL0 Profile 4 activated.	0x0	R
		3	DPLL0 Profile 3 activated		Profile 3 activated. Read-only status of IRQ for DPLL0 Profile 3 activated.	0x0	R
		2	DPLL0 Profile 2 activated		Profile 2 activated. Read-only status of IRQ for DPLL0 Profile 2 activated.	0x0	R
		1	DPLL0 Profile 1 activated		Profile 1 activated. Read-only status of IRQ for DPLL0 Profile 1 activated.	0x0	R
		0	DPLL0 Profile 0 activated		Profile 0 activated. Read-only status of IRQ for DPLL0 Profile 0 activated.	0x0	R

Table 107. IRQ Map DPLL0 Status Register Details

AD9545 Register Map Reference Manual

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3014	APLL	[7:5]	Reserved		Reserved.	0x0	R
		4	DPLL0 distribution synced		Clock distribution synced. Read-only status of IRQ for DPLL0 clock distribution synced.	0x0	R
		3	APLL0 unlocked		Unlock detect. Read-only status of IRQ for APLL0 lock detect (lock to unlock transition).	0x0	R
		2	APLL0 locked		Lock detect. Read-only status of IRQ for APLL0 lock detect (unlock to lock transition).	0x0	R
		1	APLL0 calibration completed		Calibration completed. Read-only status of IRQ for APLL0 calibration complete.	0x0	R
		0	APLL0 calibration started		Calibration started. Read-only status of IRQ for APLL0 calibration start.	0x0	R

IRQ MAP DPLL1 STATUS REGISTERS—REGISTER 0x3015 TO REGISTER 0x3019

Table 108. IRQ Map DPLL1 Status Registers Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x3015	Lock	DPLL1 frequency clamp deactivated	DPLL1 frequency clamp activated	DPLL1 phase slew limiter deactivated	DPLL1 phase slew limiter activated	DPLL1 frequency unlocked	DPLL1 frequency locked	DPLL1 phase unlocked	DPLL1 phase locked	0x00	R
0x3016	State	DPLL1 reference switched	DPLL1 freerun entered	DPLL1 holdover entered	DPLL1 hitless entered	DPLL1 hitless exited	DPLL1 history updated	Reserved	DPLL1 phase step detected	0x00	R
0x3017	Fast acqui- sition		Reserved		DPLL1 N- divider resynced	DPLL1 fast acquisition complete	DPLL1 fast acquisition started	Rese	rved	0x00	R
0x3018	Active profile	Reser	ved	DPLL1 Profile 5 activated	DPLL1 Profile 4 activated	DPLL1 Profile 3 activated	DPLL1 Profile 2 activated	DPLL1 Profile 1 activated	DPLL1 Profile 0 activated	0x00	R
0x3019	APLL		Reserved		DPLL1 distribution synced	APLL1 unlocked	APLL1 locked	APLL1 calibration completed	APLL1 calibration started	0x00	R

Table 109. IRQ Map DPLL1 Status Registers Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3015	Lock	7	DPLL1 frequency clamp deactivated		Frequency clamp deactivated. Read-only status of IRQ for DPLL1 frequency clamp inactive.	0x0	R
		6	DPLL1 frequency clamp activated		Frequency clamp activated. Read-only status of IRQ for DPLL1 frequency clamp active.	0x0	R
		5	DPLL1 phase slew limiter deactivated		Phase slew limiter deactivated. Read-only status of IRQ for DPLL1 phase slew limiter deactivated.	0x0	R
		4	DPLL1 phase slew limiter activated		Phase slew limiter activated. Read-only status of IRQ for DPLL1 phase slew limiter activated.	0x0	R
		3	DPLL1 frequency unlocked		Frequency unlocked. Read-only status of IRQ for DPLL1 FLD (lock to unlock transition).	0x0	R
		2	DPLL1 frequency locked		Frequency locked. Read-only status of IRQ for DPLL1 FLD (unlock to lock transition).	0x0	R
		1	DPLL1 phase unlocked		Phase unlocked. Read-only status of IRQ for DPLL1 PLD (lock to unlock transition).	0x0	R
		0	DPLL1 phase locked		Phase locked. Read-only status of IRQ for DPLL1 PLD (unlock to lock transition).	0x0	R

UG-11	46
-------	----

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3016	State	7	DPLL1 reference switched		Reference switched. Read-only status of IRQ for DPLL1 reference input switching.	0x0	R
		6	DPLL1 freerun entered		Freerun mode entered. Read-only status of IRQ for DPLL1 freerun mode entered.	0x0	R
		5	DPLL1 holdover entered		Holdover mode entered. Read-only status of IRQ for DPLL1 holdover mode entered.	0x0	R
		4	DPLL1 hitless entered		Hitless mode entered. Read-only status of IRQ for DPLL1 hitless mode entered.	0x0	R
		3	DPLL1 hitless exited		Hitless mode exited. Read-only status of IRQ for DPLL1 hitless mode exited.	0x0	R
		2	DPLL1 history updated		Holdover history updated. Read-only status of IRQ for DPLL1 tuning word holdover history updated.	0x0	R
		1	Reserved		Reserved.	0x0	R
		0	DPLL1 phase step detected		Phase step detected. Read-only status of IRQ for DPLL1 reference input phase step detected	0x0	R
0x3017	Fast	[7:5]	Reserved		Reserved.	0x0	R
acquisitic	acquisition	4	DPLL1 N-divider resynced		N-divider resynchronized. Read-only status of IRQ for DPLL1 N-divider resynchronization.	0x0	R
		3	DPLL1 fast acquisition completed		Fast acquisition completed. Read-only status of IRQ for DPLL1 fast acquisition complete.	0x0	R
		2	DPLL1 fast acquisition started		Fast acquisition started. Read-only status of IRQ for DPLL1 fast acquisition started.	0x0	R
		[1:0]	Reserved		Reserved.	0x0	R
0x3018	Active	[7:6]	Reserved		Reserved.	0x0	R
	profile	5	DPLL1 Profile 5 activated		Profile 5 activated. Read-only status of IRQ for DPLL1 Profile 5 activated.	0x0	R
		4	DPLL1 Profile 4 activated		Profile 4 activated. Read-only status of IRQ for DPLL1 Profile 4 activated.	0x0	R
		3	DPLL1 Profile 3 activated		Profile 3 activated. Read-only status of IRQ for DPLL1 Profile 3 activated.	0x0	R
		2	DPLL1 Profile 2 activated		Profile 2 activated. Read-only status of IRQ for DPLL1 Profile 2 activated.	0x0	R
		1	DPLL1 Profile 1 activated		Profile 1 activated. Read-only status of IRQ for DPLL1 Profile 1 activated.	0x0	R
		0	DPLL1 Profile 0 activated		Profile 0 activated. Read-only status of IRQ for DPLL1 Profile 0 activated.	0x0	R
0x3019	APLL	[7:5]	Reserved		Reserved.	0x0	R
		4	DPLL1 distribution synced		Clock distribution synchronized. Read-only status of IRQ for DPLL1 clock distribution synchronized.	0x0	R
		3	APLL1 unlocked		Unlock detect. Read-only status of IRQ for APLL1 lock detect (lock to unlock transition).	0x0	R
		2	APLL1 locked		Lock detect. Read-only status of IRQ for APLL1 lock detect (unlock to lock transition).	0x0	R
		1	APLL1 calibration completed		Calibration completed. Read-only status of IRQ for APLL1 calibration complete.	0x0	R
		0	APLL1 calibration started		Calibration started. Read-only status of IRQ for APLL1 calibration start.	0x0	R

STATUS READBACK PLL0 REGISTERS—REGISTER 0x3100 TO REGISTER 0x310E

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x3100	DPLL0 lock status	Reserv	red	APLL0 calibration done	APLL0 calibration busy	APLL0 lock	DPLL0 frequency lock	DPLL0 phase lock	Channel 0 all lock	0xXX	R
0x3101	DPLL0 Operation	Reserved		DPLL0 active	profile	DPLL0 active	DPLL0 reference switch	DPLL0 holdover	DPLL0 freerun	0xXX	R
0x3102	DPLL0 State	Reserv	ed	DPLL0 FACQ done	DPLL0 FACQ active	Reserved	DPLL0 phase slew limit	DPLL0 frequency clamped	DPLL0 history available	0xXX	R
0x3103	DPLL0 Tuning Word History 0				DPLL0 tunin	g word histo	ory [7:0]			0xXX	R
0x3104	DPLL0 Tuning Word History 1				DPLL0 tuning	g word histo	ry [15:8]			0xXX	R
0x3105	DPLL0 Tuning Word History 2				DPLL0 tuning	word histor	ry [23:16]			0xXX	R
0x3106	DPLL0 Tuning Word History 3				DPLL0 tuning	word histor	y [31:24]			0xXX	R
0x3107	DPLL0 Tuning Word History 4		DPLL0 tuning word history [39:32]					0xXX	R		
0x3108	DPLL0 Tuning Word History 5	Reserv	/ed		DPL	L0 tuning w	ord history [4:	5:40]		0xXX	R
0x3109	DPLL0 PLD Tub 0				DPLLO	PLD tub [7:0	0]			0xXX	R
0x310A	DPLL0 PLD Tub 1			Reserved			DPLL0 PL	.D tub [11:8]		0x0X	R
0x310B	DPLL0 FLD Tub 0				DPLLO	FLD tub[7:0)]			0xXX	R
0x310C	DPLL0 FLD Tub 1			Reserved			DPLL0 FL	.D tub [11:8]		0x0X	R
0x310D	DPLL0 distribution phase slew active	Reserved				DPLL0 phas	se slew active			0xXX	R
0x310E	DPLL0 distribution phase slew error	Reserved				DPLL0 phase	e control erro	r		0xXX	R

Table 110. STATUS_READBACK_PLL_0 Register Summary

Addr	Name	Bits	Bit Name	Settings [Description	Reset	Access
0x3100	DPLL0 lock status	[7:6]	Reserved	F	Reserved.	0x0	R
		5	APLL0 calibration done	A a a	APLLO calibration complete. This read-only bit is Logic 1 when APLLO calibration is complete. This bit remains Logic 1 until another APLLO calibration is issued. All of the bits in this register are live, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP
		4	APLL0 calibration busy		APLLO calibration in progress. This read-only bit is Logic 1 when APLLO calibration is in progress. All of the bits in this register are ive, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP
		3	APLL0 lock	l A	APLL0 lock. This read-only bit is Logic 1 when APLL0 is locked. All of the bits in this register are live, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP
		2	DPLL0 frequency lock	i r	DPLL0 frequency lock. This read-only bit is Logic 1 when DPLL0 s frequency locked. All of the bits in this register are live, meaning that their status is dynamically updated with needing an input/output update before reading.	Prog	RP
		1	DPLL0 phase lock	۲ t	DPLL0 phase lock. This read-only bit is Logic 1 when DPLL0 is ohase locked. All of the bits in this register are live, meaning heir status is dynamically updated without needing an nput/output update before reading.	Prog	RP
		0	Channel 0 all lock	L a	Channel 0 all lock. This read-only bit is the logical AND of the APLL0 lock and the DPLL0 phase lock bits in this register. It is Logic 1 when both PLLs are locked. All of the bits in this register are live, meaning their status is dynamically updated without meeding an input/output update before reading.	Prog	RP
0x3101	DPLL0	7	Reserved	F	Reserved.	0x0	R
	operation	[6:4]	DPLL0 active profile	4 ,	DPLL0 Active Profile. This 3-bit bit field contains the active profile for DPLL0. If DPLL0 is not active, this bit field contains the ast active profile. An input/output update is needed mmediately before reading this register to read its latest value.	Prog	RP
		3	DPLL0 active	t	DPLL0 active. This read-only bit is Logic 1 when DPLL0 is actively racking an input reference. An input/output update is needed mmediately before reading this register to read its latest value.	Prog	RP
		2	DPLL0 reference switch	ע נ	DPLL0 input reference switching. This read-only bit is Logic 1 when DPLL0 is switching input references. An input/output update is needed immediately before reading this register to read ts latest value.	Prog	RP
		1	DPLL0 holdover	0	DPLL0 is in holdover mode. This read-only bit is Logic 1 when DPLL0 is in holdover mode. An input/output update is needed mmediately before reading this register to read its latest value.	Prog	RP
		0	DPLL0 freerun	0	DPLL0 is in freerun mode. This read-only bit is Logic 1 when DPLL0 is in freerun mode. An input/output update is needed mmediately before reading this register to read its latest value.	Prog	RP
0x3102	DPLL0 state	[7:6]	Reserved	F	Reserved.	0x0	R
		5	DPLL0 FACQ done	t k	DPLL0 fast acquisition done. This read-only bit is Logic 1 when the DPLL0 fast acquisition is completed is complete. It is cleared by writing Logic 1 to the clear DPLL0 fast acquisition (FACQ) done bit. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		4	DPLL0 FACQ active	t	DPLL0 fast acquisition active. This read-only bit is Logic 1 when the DPLL0 fast acquisition logic is active. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP

Table 111. STATUS_READBACK_PLL_0 Register Details

Addr	Name	Bits	Bit Name	Settings	Description	Reset	Access
		3	Reserved		Reserved.	Prog	RP
		2	DPLL0 phase slew limit		DPLL0 phase slew limiter active. This read-only bit is Logic 1 when the DPLL0 phase slew limiter is active. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		1	DPLL0 frequency clamped		DPLL0 frequency clamp is active. This read-only bit is Logic 1 when the DPLL0 frequency clamp is active. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		0	DPLL0 history available		DPLL0 history available. This read-only bit is Logic 1 when the DPLL0 holdover history is available. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3103	DPLL0 Tuning Word History 0	[7:0]	DPLL0 tuning word history [7:0]		DPLL0 tuning word history. This 46-bit bit field contains the DPLL0 tuning word history that is used while DPLL0 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3104	DPLL0 Tuning Word History 1	[7:0]	DPLL0 tuning word history [15:8]		DPLL0 tuning word history. This 46-bit bit field contains the DPLL0 tuning word history that is used while DPLL0 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3105	DPLL0 Tuning Word History 2	[7:0]	DPLL0 tuning word history [23:16]		DPLL0 tuning word history. This 46-bit bit field contains the DPLL0 tuning word history that is used while DPLL0 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3106	DPLL0 Tuning Word History 3	[7:0]	DPLL0 tuning word history [31:24]		DPLL0 tuning word history. This 46-bit bit field contains the DPLL0 tuning word history that is used while DPLL0 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3107	DPLL0 Tuning Word History 4	[7:0]	DPLL0 tuning word history [39:32]		DPLL0 tuning word history. This 46-bit bit field contains the DPLL0 tuning word history that is used while DPLL0 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3108	DPLL0 Tuning	[7:6]	Reserved		Reserved.	0x0	R
	Word History 5	[5:0]	DPLL0 tuning word history [45:40]		DPLL0 tuning word history. This 46-bit bit field contains the DPLL0 tuning word history that is used while DPLL0 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3109	DPLL0 PLD Tub 0	[7:0]	DPLL0 PLD tub [7:0]		DPLL0 PLD tub level. This 12-bit bit field contains the DPLL0 PLD tub level. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x310A		[7:4]	Reserved		Reserved.	0x0	R
	Tub 1	[3:0]	DPLL0 PLD tub [11:8]		DPLL0 PLD tub level. This 12-bit bit field contains the DPLL0 PLD tub level. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x310B	DPLL0 FLD Tub 0	[7:0]	DPLL0 FLD tub [7:0]		DPLL0 FLD tub level. This 12-bit bit field contains the DPLL0 FLD tub level. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x310C	DPLL0 FLD	[7:4]	Reserved		Reserved.	0x0	R
	Tub 1	[3:0]	DPLL0 FLD tub [11:8]		DPLL0 FLD tub level. This 12-bit bit field contains the DPLL0 FLD tub level. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x310D	DPLL0		Reserved		Reserved.	0x0	R
	distribution phase slew active	[5:0]	DPLL0 phase slew active		DPLL0 phase slewing active. This 6-bit (for Channel 0) or 4-bit (Channel 1) bit field contains read-only bits that are Logic 1 when phase slewing is active on the DPLL0 Q0x Dividers, where x is A, AA, B, BB, C, and CC (the C and CC dividers are on Channel 0 only). An input/output update is needed immediately before reading this register to read its latest value. The bit mapping is as follows:	Prog	RP

Addr	Name	Bits	Bit Name	Settings	Description	Reset	Access
		0			Bit 0: this bit is Logic 1 when phase slewing is active on Divider Q0A		
		1			Bit 1: this bit is Logic 1 when phase slewing is active on Divider Q0AA		
		2			Bit 2: this bit is Logic 1 when phase slewing is active on Divider Q0B		
		3			Bit 3: this bit is Logic 1 when phase slewing is active on Divider Q0B		
		4			Bit 4: this bit is Logic 1 when phase slewing is active on Divider QOC (Channel 0 only)		
		5			Bit 5: this bit is Logic 1 when phase slewing is active on Divider Q0C (Channel 0 only)		
0x310E	DPLL0	[7:6]	Reserved		Reserved.	0x0	R
	distribution phase slew error	[5:0]	DPLL0 phase control error		DPLL0 phase control error. This 6-bit (for Channel 0) or 4-bit (Channel 1) bit field contains read-only bits that are Logic 1 when phase slewing is active on the DPLL0 Q0x Dividers, where x is A, AA, B, BB, C, and CC (the C and CC dividers are on Channel 0 only). An input/output update is needed immediately before reading this register to read its latest value. The bit mapping is as follows:	Prog	RP
		0			Bit 0: this bit is Logic 1 when phase slewing is active on Divider Q0A		
		1			Bit 1: this bit is Logic 1 when phase slewing is active on Divider Q0AA		
		2			Bit 2: this bit is Logic 1 when phase slewing is active on Divider Q0B		
		3			Bit 3: this bit is Logic 1 when phase slewing is active on Divider Q0B		
		4			Bit 4: this bit is Logic 1 when phase slewing is active on Divider QOC (Channel 0 only)		
		5			Bit 5: this bit is Logic 1 when phase slewing is active on Divider QOC (Channel 0 only)		

STATUS READBACK PLL1 REGISTERS—REGISTER 0x3200 TO REGISTER 0x320E

Table 112. STATUS_READBACK_PLL_1 Register Summary

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x3200	DPLL1 lock status	Reserv	ved	APLL1 calibration done	APLL1 calibration busy	APLL1 lock	DPLL1 frequency lock	DPLL1 phase lock	Channel 1 all lock	0xXX	R
0x3201	DPLL1 operation	Reserved	Reserved D		DPLL1 active profile		DPLL1 reference switch	DPLL1 holdover	DPLL1 freerun	0xXX	R
0x3202	DPLL1 state	Reser	Reserved		DPLL1 FACQ active	Reserved	DPLL1 phase slew limit	DPLL1 frequency clamped	DPLL1 history available	0xXX	R
0x3203	DPLL1 Tuning Word History 0					g word history	0xXX	R			
0x3204	DPLL1 Tuning Word History 1				DPLL1 tunin	g word history	[15:8]			0xXX	R
0x3205	DPLL1 Tuning Word History 2		DPLL1 tuning word history [23:16]							0xXX	R
0x3206	DPLL1 Tuning Word History 3				DPLL1 tuning	word history [31:24]			0xXX	R

AD9545 Register Map Reference Manual

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x3207	DPLL1 Tuning Word History 4		I		DPLL1 tun	ing word histor	y [39:32]			0xXX	R
0x3208	DPLL1 Tuning Word History 5	Rese	erved			DPLL1 tuning	word history [45:40]		0xXX	R
0x3209	DPLL1 PLD Tub 0				DPL	L1 PLD Tub [7:	0]			0xXX	R
0x320A	DPLL1 PLD Tub 1			Reserved			DPLL1 PLD Tub [11:8]				R
0x320B	DPLL1 FLD Tub 0					L1 FLD Tub [7:	0xXX	R			
0x320C	DPLL1 FLD Tub 1		Reserved				DPLL1 FLD Tub [11:8]				R
0x320D	DPLL1 distribution phase slew active			Reserved			DPLL1 p	hase slew activ	e	0x0X	R
0x320E	DPLL1 distribution phase slew error			Reserved			DPLL1 ph	ase control err	or	0x0X	R

Table 113. STATUS_READBACK_PLL_1 Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3200	DPLL1 lock status	[7:6]	Reserved		Reserved.	0x0	R
		5	APLL1 calibration done		APLL1 calibration complete. This read-only bit is Logic 1 when APLL1 calibration is complete. This bit remains Logic 1 until another APLL1 calibration is issued. All of the bits in this register are live, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP
		4	APLL1 calibration busy		APLL1 calibration in progress. This read-only bit is Logic 1 when APLL1 calibration is in progress. All of the bits in this register are live, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP
		3	APLL1 lock		APLL1 lock. This read-only bit is Logic 1 when APLL1 is locked. All of the bits in this register are live, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP
		2	DPLL1 frequency lock		DPLL1 frequency lock. This read-only bit is Logic 1 when DPLL1 is frequency locked. All of the bits in this register are live, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP
		1	DPLL1 phase lock		DPLL1 phase lock. This read-only bit is Logic 1 when DPLL1 is phase locked. All of the bits in this register are live, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP
		0	Channel 1 all lock		Channel 1 all lock. This read-only bit is the logical AND of the APLL1 lock and the DPLL1 phase lock bits in this register. It is Logic 1 when both PLLs are locked. All of the bits in this register are live, meaning their status is dynamically updated without needing an input/output update before reading.	Prog	RP

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3201	DPLL1 operation	7	Reserved		Reserved.	0x0	R
		[6:4]	DPLL1 active profile		DPLL1 active profile. This 3-bit bit field contains the active profile for DPLL1. If DPLL1 is not active, this bit field contains the last active profile. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		3	DPLL1 active		DPLL1 active. This read-only bit is Logic 1 when DPLL1 is actively tracking an input reference. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		2	DPLL1 reference switch		DPLL1 input reference switching. This read-only bit is Logic 1 when DPLL1 is switching input references. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		1	DPLL1 holdover		DPLL1 is in holdover mode. This read-only bit is Logic 1 when DPLL1 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		0	DPLL1 freerun		DPLL1 is in freerun mode. This read-only bit is Logic 1 when DPLL1 is in freerun mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3202	DPLL1 state	[7:6]	Reserved		Reserved.	0x0	R
		5	DPLL1 FACQ done		DPLL1 fast acquisition done. This read-only bit is Logic 1 when the DPLL1 fast acquisition is completed is complete. It is cleared by writing Logic 1 to the clear DPLL1 FACQ done bit. An input/ output update is needed immediately before reading this register to read its latest value.	Prog	RP
		4	DPLL1 FACQ active		DPLL1 fast acquisition active. This read-only bit is Logic 1 when the DPLL1 fast acquisition logic is active. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		3	Reserved		Reserved.	Prog	RP
		2	DPLL1 phase slew limit		DPLL1 phase slew limiter active. This read-only bit is Logic 1 when the DPLL1 phase slew limiter is active. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		1	DPLL1 frequency clamped		DPLL1 frequency clamp is active. This read-only bit is Logic 1 when the DPLL1 frequency clamp is active. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
		0	DPLL1 turning world history		DPLL1 history available. This read-only bit is Logic 1 when the DPLL0 holdover history is available. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3203	DPLL1 Tuning Word History 0	[7:0]	DPLL1 turning world history [7:0]		DPLL1 tuning word history. This 46-bit bit field contains the DPLL1 tuning word history that is used while DPLL1 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3204	DPLL1 Tuning Word History 1	[7:0]	DPLL1 turning world history [15:8]		DPLL1 tuning word history. This 46-bit bit field contains the DPLL1 tuning word history that is used while DPLL1 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3205	DPLL1 Tuning Word History 2	[7:0]	DPLL1 turning world history [23:16]		DPLL1 tuning word history. This 46-bit bit field contains the DPLL1 tuning word history that is used while DPLL1 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3206	DPLL1 Tuning Word History 3	[7:0]	DPLL1 turning world history [31:24]		DPLL1 tuning word history. This 46-bit bit field contains the DPLL1 tuning word history that is used while DPLL1 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3207	DPLL1 Tuning Word History 4	[7:0]	DPLL1 turning world history [39:32]		DPLL1 tuning word history. This 46-bit bit field contains the DPLL1 tuning word history that is used while DPLL1 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3208	DPLL1 Tuning Word History 5	[7:6]	Reserved		Reserved.	0x0	R
		[5:0]	DPLL1 turning world history [45:40]		DPLL1 tuning word history. This 46-bit bit field contains the DPLL1 tuning word history that is used while DPLL1 is in holdover mode. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x3209	DPLL1 PLD Tub 0	[7:0]	DPLL1 PLD tub [7:0]		DPLL1 PLD tub level. This 12-bit bit field contains the DPLL1 PLD tub level. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x320A	DPLL1 PLD	[7:4]	Reserved		Reserved.	0x0	R
	Tub 1	[3:0]	DPLL1 PLD tub [11:8]		DPLL1 PLD tub level. This 12-bit bit field contains the DPLL1 PLD tub level. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x320B	DPLL1 FLD Tub 0	[7:0]	DPLL1 FLD tub [7:0]		DPLL1 FLD tub level. This 12-bit bit field contains the DPLL1 PLD tub level. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x320C	DPLL1 FLD	[7:4]	Reserved		Reserved.	0x0	R
	Tub 1	[3:0]	DPLL1 FLD tub [11:8]		DPLL1 FLD tub level. This 12-bit bit field contains the DPLL1 PLD tub level. An input/output update is needed immediately before reading this register to read its latest value.	Prog	RP
0x320D	DPLL1	[7:4]	Reserved		Reserved.	0x0	R
	distribution phase slew active	[5:0]	DPLL1 phase slew active		DPLL1 phase slewing active. This 6-bit (for Channel 0) or 4-bit (Channel 1) bit field contains read-only bits that are Logic 1 when phase slewing is active on the DPLL1 Q1x Dividers, where x is A, AA, B, BB, C, and CC (the C and CC dividers are on Channel 0 only). An input/output update is needed immediately before reading this register to read its latest value. The bit mapping is as follows:	Prog	RP
				1	Bit 0: this bit is Logic 1 when phase slewing is active on Divider Q1A. Bit 1: this bit is Logic 1 when phase slewing is active on		
				2	Divider Q1AA. Bit 2: this bit is Logic 1 when phase slewing is active on Divider Q1B.		
					Bit 3: this bit is Logic 1 when phase slewing is active on Divider Q18.		
					Bit 4: this bit is Logic 1 when phase slewing is active on Divider Q1C (Channel 0 only).		
				5	Bit 5: this bit is Logic 1 when phase slewing is active on Divider Q1C (Channel 0 only).		
0x320E		[7:4]	Reserved		Reserved.	0x0	R
	distribution phase slew error	[3:0]	DPLL1 phase control error		DPLL1 phase control error. This 6-bit (for Channel 0) or 4-bit (Channel 1) bit field contains read-only bits that are Logic 1 when phase slewing is active on the DPLL1 Q1x Dividers, where x is A, AA, B, BB, C, and CC (the C and CC dividers are on Channel 0 only). An input/output update is needed immediately before reading this register to read its latest value. The bit mapping is as follows:	Prog	RP
				0 1	Bit 0: this bit is Logic 1 when phase slewing is active on Divider Q1A. Bit 1: this bit is Logic 1 when phase slewing is active on Divider Q1AA.		
					Bit 2: this bit is Logic 1 when phase slewing is active on Divider Q1B.		
				3	Bit 3: this bit is Logic 1 when phase slewing is active on Divider Q1B.		

AUXILIARY TDC READ REGISTERS—REGISTER 0x3A00 TO REGISTER 0x3A3B

Register	Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Reset	RW
0x3A00	NCO 0 Time 0	Auxiliary NCO 0 time clock [7:0]	0xXX	R
0x3A01	NCO 0 Time 1	Auxiliary NCO 0 time clock [15:8]	0xXX	R
0x3A02	NCO 0 Time 2	Auxiliary NCO 0 time clock [23:16]	0xXX	R
0x3A03	NCO 0 Time 3	Auxiliary NCO 0 time clock [31:24]	0xXX	R
0x3A04	NCO 0 Time 4	Auxiliary NCO 0 time clock [39:32]	0xXX	R
0x3A05	NCO 0 Time 5	Auxiliary NCO 0 time clock [47:40]	0xXX	R
0x3A06	NCO 0 Time 6	Auxiliary NCO 0 time clock [55:48]	0xXX	R
0x3A07	NCO 0 Time 7	Auxiliary NCO 0 time clock [63:56]	0xXX	R
0x3A08	NCO 0 Time 8	Auxiliary NCO 0 time clock [71:64]	0xXX	R
0x3A09	NCO 0 Time 9	Auxiliary NCO 0 time clock [79:72]	0xXX	R
0x3A0A	NCO 1 Time 0	Auxiliary NCO 1 time clock [7:0]	0xXX	R
0x3A0B	NCO 1 Time 1	Auxiliary NCO 1 time clock [15:8]	0xXX	R
0x3A0C	NCO 1 Time 2	Auxiliary NCO 1 time clock [23:16]	0xXX	R
0x3A0D	NCO 1 Time 3	Auxiliary NCO 1 time clock [31:24]	0xXX	R
0x3A0E	NCO 1 Time 4	Auxiliary NCO 1 time clock [39:32]	0xXX	R
0x3A0F	NCO 1 Time 5	Auxiliary NCO 1 time clock [47:40]	0xXX	R
0x3A10	NCO 1 Time 6	Auxiliary NCO 1 time clock [55:48]	0xXX	R
0x3A11	NCO 1 Time 7	Auxiliary NCO 1 time clock [63:56]	0xXX	R
0x3A12	NCO 1 Time 8	Auxiliary NCO 1 time clock [71:64]	0xXX	R
0x3A13	NCO 1 Time 9	Auxiliary NCO 1 time clock [79:72]	0xXX	R
0x3A14	Time Stamp 0 Event Time 0	Event 0 time [7:0]	0xXX	R
0x3A15	Time Stamp 0 Event Time 1	Event 0 time [15:8]	0xXX	R
0x3A16	Time Stamp 0 Event Time 2	Event 0 time [23:16]	0xXX	R
0x3A17	Time Stamp 0 Event Time 3	Event 0 time [31:24]	0xXX	R
0x3A18	Time Stamp 0 Event Time 4	Event 0 time [39:32]	0xXX	R
0x3A19	Time Stamp 0 Event Time 5	Event 0 time [47:40]	0xXX	R
0x3A1A	Time Stamp 0 Event Time 6	Event 0 time [55:48]	0xXX	R
0x3A1B	Time Stamp 0 Event Time 7	Event 0 time [63:56]	0xXX	R
0x3A1C	Time Stamp 0 Event Time 8	Event 0 time [71:64]	0xXX	R
0x3A1D	Time Stamp 0 Event Time 9	Event 0 time [79:72]	0xXX	R
0x3A1E	Time Stamp 0 Event Time 10	User Time Stamp 0 missed count	0xXX	R
0x3A1F	Time Stamp 0 Event Time 11	Reserved User Time Stamp 0 low resolution	0x0X	R
0x3A20	Time Stamp 1 Event Time 0	Event 1 time [7:0]	0xXX	R
0x3A21	Time Stamp 1 Event Time 1	Event 1 time [15:8]	0xXX	R
0x3A22	Time Stamp 1 Event Time 2	Event 1 time [23:16]	0xXX	R
0x3A23	Time Stamp 1 Event Time 3	Event 1 time [31:24]	0xXX	R

AD9545 Register Map Reference Manual

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x3A24	Time Stamp 1			Ever	it 1 time	[39:32]				0xXX	R
	Event Time 4										
0x3A25	Time Stamp 1			Ever	it 1 time	[47:40]				0xXX	R
	Event Time 5										-
0x3A26	Time Stamp 1 Event Time 6			Ever	it 1 time	[55:48]				0xXX	R
0x3A27	Time Stamp 1			Evor	it 1 time	[62.56]				0xXX	R
0727	Event Time 7			Lvei		[03.30]				0,,,,	n
0x3A28	Time Stamp 1			Ever	it 1 time	[71:64]				0xXX	R
	Event Time 8										
0x3A29	Time Stamp 1			Ever	it 1 time	[79:72]				0xXX	R
	Event Time 9										
0x3A2A	Time Stamp 1		U	ser Time S	Stamp 1	missed	count			0xXX	R
	Event Time 10										-
0x3A2B	Time Stamp 1 Event Time 11			Reserved					User Time Stamp 1 low resolution	0x0X	R
0x3A2C	Skew Offset 0			Ske	ew offse	t [7:0]				0xXX	R
0x3A2D	Skew Offset 1			Ske	w offset	[15:8]				0xXX	R
0x3A2E	Skew Offset 2			Skev	<i>w</i> offset	[23:16]				0xXX	R
0x3A2F	Skew Offset 3			Skev	w offset	[31:24]				0xXX	R
0x3A30	Skew Offset 4			Skev	w offset	[39:32]				0xXX	R
0x3A31	Skew Offset 5			Skev	w offset	[47:40]				0xXX	R
0x3A32	Skew Offset 6			Skev	w offset	[55:48]				0xXX	R
0x3A33	Skew Offset 7	Skew offset full window	Reserved			Sk	ew offse	et [61:56	5]	0xXX	R
0x3A34	Skew Drift 0			Sk	ew drift	[7:0]				0xXX	R
0x3A35	Skew Drift 1			Sk	ew drift	[15:8]				0xXX	R
0x3A36	Skew Drift 2			Ske	w drift [23:16]				0xXX	R
0x3A37	Skew Drift 3			Ske	w drift [31:24]				0xXX	R
0x3A38	Skew Drift 4			Ske	w drift [39:32]				0xXX	R
0x3A39	Skew Drift 5			Ske	w drift [47:40]				0xXX	R
0x3A3A	Skew Drift 6			Ske	w drift [55:48]				0xXX	R
0x3A3B	Skew Drift 7	Skew drift full window	Reserved			SI	kew drif	t [61:56]		0xXX	R

Table 115. TDC_AUXILIARY_READ Register Details

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3A00	NCO 0 Time 0	[7:0]	Auxiliary NCO 0 time clock [7:0]		Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A01	NCO 0 Time 1	[7:0]	Auxiliary NCO 0 time clock [15:8]		Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A02	NCO 0 Time 2	[7:0]	Auxiliary NCO 0 time clock [23:16]		Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP

clock [31:24]

Settings Description

Bits Bit Name

[7:0] Auxiliary NCO 0 time

Addr.

0x3A03

Name NCO 0

Time 3

,	e Manual	UG-1146			
	Description	Reset	Access		
	Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP		
	Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events	Prog	RP		

			clock [31:24]	was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.		
0x3A04	NCO 0 Time 4	[7:0]	Auxiliary NCO 0 time clock [39:32]	Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A05	NCO 0 Time 5	[7:0]	Auxiliary NCO 0 time clock [47:40]	Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A06	NCO 0 Time 6	[7:0]	Auxiliary NCO 0 time clock [55:48]	Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A07	NCO 0 Time 7	[7:0]	Auxiliary NCO 0 time clock [63:56]	Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A08	NCO 0 Time 8	[7:0]	Auxiliary NCO 0 time clock [71:64]	Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A09	NCO 0 Time 9	[7:0]	Auxiliary NCO 0 time clock [79:72]	Auxiliary NCO 0 time clock. This 80-bit read-only bit field contains the value of the NCO 0 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A0A	NCO 1 Time 0	[7:0]	Auxiliary NCO 1 time clock [7:0]	Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A0B	NCO 1 Time 1	[7:0]	Auxiliary NCO 1 time clock [15:8]	Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A0C	NCO 1 Time 2	[7:0]	Auxiliary NCO 1 time clock [23:16]	Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP

Addr.	Name	Bits	Bit Name	Settings		Reset	Access
0x3A0D	Time 3		Auxiliary NCO 1 time clock [31:24]		Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A0E	NCO 1 Time 4	[7:0]	Auxiliary NCO 1 time clock [39:32]		Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A0F	NCO 1 Time 5	[7:0]	Auxiliary NCO 1 time clock [47:40]		Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A10	NCO 1 Time 6	[7:0]	Auxiliary NCO 1 time clock [55:48]		Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A11	NCO 1 Time 7	[7:0]	Auxiliary NCO 1 time clock [63:56]		Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A12	NCO 1 Time 8	[7:0]	Auxiliary NCO 1 time clock [71:64]		Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A13	NCO 1 Time 9	[7:0]	Auxiliary NCO 1 time clock k[79:72]		Auxiliary NCO 1 time clock. This 80-bit read-only bit field contains the value of the NCO 1 time clock at the time the last input/output update was latched by the digital logic. It is useful in two ways: the user can compare the relative phases of NCO 0 and NCO 1. In addition, the integer portion of this bit field can determined how many NCO events occur in a given time interval.	Prog	RP
0x3A14	Time Stamp 0 Event Time 0	[7:0]	Event 0 Time [7:0]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A15	Time Stamp 0 Event Time 1	[7:0]	Event 0 Time [15:8]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A16	Time Stamp 0 Event Time 2	[7:0]	Event 0 Time [23:16]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A17	Time Stamp 0 Event Time 3	[7:0]	Event 0 Time [31:24]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3A18	Time Stamp 0 Event Time 4	[7:0]	Event 0 time [39:32]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A19	Time Stamp 0 Event Time 5	[7:0]	Event 0 time [47:40]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A1A	Time Stamp 0 Event Time 6	[7:0]	Event 0 time [55:48]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A1B	Time Stamp 0 Event Time 7	[7:0]	Event 0 time [63:56]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A1C	Time Stamp 0 Event Time 8	[7:0]	Event 0 time [71:64]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A1D	Time Stamp 0 Event Time 9	[7:0]	Event 0 time [79:72]		User Time Stamp Event 0 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A1E	Time Stamp 0 Event Time 10	[7:0]	User Time Stamp 0 missed count		User Time Stamp 0 missed count. This unsigned 8-bit bit field contains the number of user timestamps that have been lost in User Time Stamp 0. There are two ways to lose a user time stamp: Two user time stamps can arrive with no intervening input/output update. In that case, the user time stamp in the active register space is overwritten. Or two user time stamps arrive with an input/output update after each stamp, but the first user time stamp is not read before issuing another input/output update. In that case, the user time stamp in the active register space is overwritten.	Prog	RP
0x3A1F	Time Stamp 0 Event Time 11	[7:1] 0	Reserved User Time Stamp 0 low resolution		Reserved. User Time Stamp 0 low resolution flag. This bit is Logic 1 if the User Time Stamp 0 processor detects an event edge that is outside of the expected event period. Discard the associated user time stamp if this occurs.	0x0 Prog	R RP
0x3A20	Time Stamp 1 Event Time 0	[7:0]	Event 1 time [7:0]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A21	Time Stamp 1 Event Time 1	[7:0]	Event 1 time [15:8]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A22	Time Stamp 1 Event Time 2	[7:0]	Event 1 time [23:16]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A23	Time Stamp 1 Event Time 3	[7:0]	Event 1 time [31:24]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A24	Time Stamp 1 Event Time 4	[7:0]	Event 1 time [39:32]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A25	Time Stamp 1 Event Time 5	[7:0]	Event 1 time [47:40]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3A26	Time Stamp 1 Event Time 6	[7:0]	Event 1 time [55:48]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A27	Time Stamp 1 Event Time 7	[7:0]	Event 1 time [63:56]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A28	Time Stamp 1 Event Time 8	[7:0]	Event 1 time [71:64]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A29	Time Stamp 1 Event Time 9	[7:0]	Event 1 time [79:72]		User Time Stamp Event 1 time. This 80-bit read-only bit field contains the User Time Stamp 0 event time.	Prog	RP
0x3A2A	Time Stamp 1 Event Time 10	[7:0]	User Time Stamp 1 missed count		User Time Stamp 1 missed count. This unsigned 8-bit bit field contains the number of user timestamps that have been lost in User Time Stamp 1. There are two ways to lose a user time stamp: Two user time stamps can arrive with no intervening input/output update. In that case, the user time stamp in the active register space is overwritten. Or two user time stamps arrive with an input/output update after each stamp, but the first user time stamp is not read before issuing another input/output update. In that case, the user time stamp in the active register space is overwritten.	Prog	RP
0x3A2B		[7:1]	Reserved		Reserved.	0x0	R
	Stamp 1 Event Time 11	0	User Time Stamp 1 low resolution		User Time Stamp 1 low resolution flag. This bit is Logic 1 if the User Time Stamp 1 processor detects an event edge that is outside of the expected event period. Discard the associated user time stamp if this occurs.	Prog	RP
0x3A2C	Skew Offset 0	[7:0]	Skew offset [7:0]		Skew offset. This signed, 62-bit bit field contains the result of a skew offset measurement between the rising edge of the skew reference source to the rising edge of the skew measurement source. If the skew offset calculation is fully averaged, The skew offset full window bit is Logic 1: The value in this bit field must be multiplied by 2 ⁻¹⁶ and the result is the measured skew in units of picoseconds. For example, a skew offset of 0x 3FFF FFF8 A673 24B5 equals $-31,567,174,475$ decimal. Therefore, $-31,567,174,475 \times 2^{-16} = -481676.8$ ps (approximately), meaning the skew measurement edge leads the skew reference edge by ~482 ns.	Prog	RP
0x3A2D	Skew Offset 1	[7:0]	Skew offset [15:8]		Skew offset. This signed, 62-bit bit field contains the result of a skew offset measurement between the rising edge of the skew reference source to the rising edge of the skew measurement source. If the skew offset calculation is fully averaged, The skew offset full window bit is Logic 1: The value in this bit field must be multiplied by 2 ⁻¹⁶ and the result is the measured skew in units of picoseconds. For example, a skew offset of 0x 3FFF FFF8 A673 24B5 equals –31,567,174,475 decimal. Therefore, –31,567,174,475 × 2 ⁻¹⁶ = –481676.8 ps (approximately), meaning the skew measurement edge leads the skew reference edge by ~482 ns.	Prog	RP
0x3A2E	Skew Offset 2	[7:0]	Skew offset [23:16]		Skew offset. This signed, 62-bit bit field contains the result of a skew offset measurement between the rising edge of the skew reference source to the rising edge of the skew measurement source. If the skew offset calculation is fully averaged, The skew offset full window bit is Logic 1: The value in this bit field must be multiplied by 2 ⁻¹⁶ and the result is the measured skew in units of picoseconds. For example, a skew offset of 0x 3FFF FFF8 A673 24B5 equals –31,567,174,475 decimal. Therefore, –31,567,174,475 × 2 ⁻¹⁶ = –481676.8 ps (approximately), meaning the skew measurement edge leads the skew reference edge by ~482 ns.	Prog	RP

UG	-1	1	46
U U			10

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3A2F	Skew Offset 3	[7:0]	Skew offset [31:24]		Skew offset. This signed, 62-bit bit field contains the result of a skew offset measurement between the rising edge of the skew reference source to the rising edge of the skew measurement source. If the skew offset calculation is fully averaged, The skew offset full window bit is Logic 1: The value in this bit field must be multiplied by 2 ⁻¹⁶ and the result is the measured skew in units of picoseconds. For example, a skew offset of 0x 3FFF FFF8 A673 24B5 equals -31,567,174,475 decimal. Therefore, -31,567,174,475 × 2 ⁻¹⁶ = -481676.8 ps (approximately), meaning the skew measurement edge leads the skew reference edge by ~482 ns.	Prog	RP
0x3A30	Skew Offset 4	[7:0]	Skew offset [39:32]		Skew offset. This signed, 62-bit bit field contains the result of a skew offset measurement between the rising edge of the skew reference source to the rising edge of the skew measurement source. If the skew offset calculation is fully averaged, The skew offset full window bit is Logic 1: The value in this bit field must be multiplied by 2 ⁻¹⁶ and the result is the measured skew in units of picoseconds. For example, a skew offset of 0x 3FFF FFF8 A673 24B5 equals -31,567,174,475 decimal. Therefore, -31,567,174,475 × 2 ⁻¹⁶ = -481676.8 ps (approximately), meaning the skew measurement edge leads the skew reference edge by ~482 ns.	Prog	RP
0x3A31	Skew Offset 5	[7:0]	Skew offset [47:40]		Skew offset. This signed, 62-bit bit field contains the result of a skew offset measurement between the rising edge of the skew reference source to the rising edge of the skew measurement source. If the skew offset calculation is fully averaged, The skew offset full window bit is Logic 1: The value in this bit field must be multiplied by 2 ⁻¹⁶ and the result is the measured skew in units of picoseconds. For example, a skew offset of 0x 3FFF FFF8 A673 24B5 equals –31,567,174,475 decimal. Therefore, –31,567,174,475 × 2 ⁻¹⁶ = –481676.8 ps (approximately), meaning the skew measurement edge leads the skew reference edge by ~482 ns.	Prog	RP
0x3A32	Skew Offset 6	[7:0]	Skew offset [55:48]		Skew offset. This signed, 62-bit bit field contains the result of a skew offset measurement between the rising edge of the skew reference source to the rising edge of the skew measurement source. If the skew offset calculation is fully averaged, The skew offset full window bit is Logic 1: The value in this bit field must be multiplied by 2 ⁻¹⁶ and the result is the measured skew in units of picoseconds. For example, a skew offset of 0x 3FFF FFF8 A673 24B5 equals –31,567,174,475 decimal. Therefore, –31,567,174,475 × 2 ⁻¹⁶ = –481676.8 ps (approximately), meaning the skew measurement edge leads the skew reference edge by ~482 ns.	Prog	RP
0x3A33	Skew Offset 7	7	Skew offset full window		Skew offset over full window. This bit is Logic 1 when the skew offset calculation is fully averaged over the window size determined by the skew window size bit field. It is Logic 0 if this condition is been met. There is an additional diagnostic bit associated with this measurement; the skew limit exceeded IRQ activates if the limits of the skew measurement processor are exceeded.	Prog	RP
		6	Reserved		Reserved.	0x0	R
		[5:0]	Skew offset [61:56]		Skew offset. This signed, 62-bit bit field contains the result of a skew offset measurement between the rising edge of the skew reference source to the rising edge of the skew measurement source. If the skew offset calculation is fully averaged, The skew offset full window bit is Logic 1: The value in this bit field must be multiplied by 2^{-16} and the result is the measured skew in units of picoseconds. For example, a skew offset of 0x 3FFF FFF8 A673 24B5 equals $-31,567,174,475$ decimal. Therefore, $-31,567,174,475 \times 2^{-16} = -481676.8$ ps (approximately), meaning the skew measurement edge leads the skew reference edge by \sim 482 ns.	Prog	RP

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3A34	Skew Drift 0	[7:0]	Skew drift [7:0]		Skew drift. This signed, 62-bit bit field contains the result of a skew drift measurement between the successive periods of the skew reference source. Skew drift is a measure of the rate at which the unaveraged skew offset varies cycle by cycle. The value in this bit field must be multiplied by 2^{-16} and the result is in picoseconds per unit interval. The unit interval is the period of the reference source. For example, assume that the reference source has a frequency of 100 Hz, and a skew drift of 0x 3FFF FFF8 A673 24B5 ($-31,567,174,475$ decimal) is read. Then, $-31,567,174,475 \times 2^{-16} = -481676.8$ ps (approximately). Because the reference period is 10 ms, this result indicates the reference measurement period is decreasing 482 ns every 10 ms relative to the reference source period, implying a frequency offset of -48.2 ppm. If the skew drift calculation is fully averaged, The skew drift over full window bit is Logic 1.	Prog	RP
0x3A35	Skew Drift 1	[7:0]	Skew drift [15:8]		Skew drift. This signed, 62-bit bit field contains the result of a skew drift measurement between the successive periods of the skew reference source. Skew drift is a measure of the rate at which the unaveraged skew offset varies cycle by cycle. The value in this bit field must be multiplied by 2^{-16} and the result is in picoseconds per unit interval. The unit interval is the period of the reference source. For example, assume that the reference source has a frequency of 100 Hz, and a skew drift of 0x 3FFF FFF8 A673 24B5 (-31,567,174,475 decimal) is read. Then, $-31,567,174,475 \times 2^{-16} = -481676.8$ ps (approximately). Because the reference period is 10 ms, this result indicates the reference measurement period is decreasing 482 ns every 10 ms relative to the reference source period, implying a frequency offset of -48.2 ppm. If the skew drift calculation is fully averaged, The skew drift over full window bit is Logic 1.	Prog	RP
0x3A36	Skew Drift 2	[7:0]	Skew drift [23:16]		Skew drift. This signed, 62-bit bit field contains the result of a skew drift measurement between the successive periods of the skew reference source. Skew drift is a measure of the rate at which the unaveraged skew offset varies cycle by cycle. The value in this bit field must be multiplied by 2^{-16} and the result is in picoseconds per unit interval. The unit interval is the period of the reference source. For example, assume that the reference source has a frequency of 100 Hz, and a skew drift of 0x 3FFF FFF8 A673 24B5 (-31,567,174,475 decimal) is read. Then, -31,567,174,475 $\times 2^{-16} = -481676.8$ ps (approximately). Because the reference period is 10 ms, this result indicates the reference measurement period is decreasing 482 ns every 10 ms relative to the reference source period, implying a frequency offset of -48.2 ppm. If the skew drift calculation is fully averaged, The skew drift over full window bit is Logic 1.	Prog	RP
0x3A37	Skew Drift 3	[7:0]	Skew drift [31:24]		Skew drift. This signed, 62-bit bit field contains the result of a skew drift measurement between the successive periods of the skew reference source. Skew drift is a measure of the rate at which the unaveraged skew offset varies cycle by cycle. The value in this bit field must be multiplied by 2^{-16} and the result is in picoseconds per unit interval. The unit interval is the period of the reference source. For example, assume that the reference source has a frequency of 100 Hz, and a skew drift of 0x 3FFF FFF8 A673 24B5 ($-31,567,174,475$ decimal) is read. Then, $-31,567,174,475 \times 2^{-16} = -481676.8$ ps (approximately). Because the reference period is 10 ms, this result indicates the reference measurement period is decreasing 482 ns every 10 ms relative to the reference source period, implying a frequency offset of -48.2 ppm. If the skew drift calculation is fully averaged, The skew drift over full window bit is Logic 1.	Prog	RP

Addr.	Name	Bits	Bit Name	Settings	Description	Reset	Access
0x3A38	Skew Drift 4		Skew drift [39:32]		Skew drift. This signed, 62-bit bit field contains the result of a skew drift measurement between the successive periods of the skew reference source. Skew drift is a measure of the rate at which the unaveraged skew offset varies cycle by cycle. The value in this bit field must be multiplied by 2^{-16} and the result is in picoseconds per unit interval. The unit interval is the period of the reference source. For example, assume that the reference source has a frequency of 100 Hz, and a skew drift of 0x 3FFF FFF8 A673 24B5 (-31,567,174,475 decimal) is read. Then, -31,567,174,475 x $2^{-16} = -481676.8$ ps (approximately). Because the reference period is 10 ms, this result indicates the reference measurement period is decreasing 482 ns every 10 ms relative to the reference source period, implying a frequency offset of -48.2 ppm. If the skew drift calculation is fully averaged, The skew drift over full window bit is Logic 1.	Prog	RP
0x3A39	Skew Drift 5	[7:0]	Skew drift [47:40]		Skew drift. This signed, 62-bit bit field contains the result of a skew drift measurement between the successive periods of the skew reference source. Skew drift is a measure of the rate at which the unaveraged skew offset varies cycle by cycle. The value in this bit field must be multiplied by 2^{-16} and the result is in picoseconds per unit interval. The unit interval is the period of the reference source. For example, assume that the reference source has a frequency of 100 Hz, and a skew drift of 0x 3FFF FFF8 A673 24B5 (-31,567,174,475 decimal) is read. Then, $-31,567,174,475 \times 2^{-16} = -481676.8$ ps (approximately). Because the reference period is 10 ms, this result indicates the reference measurement period is decreasing 482 ns every 10 ms relative to the reference source period, implying a frequency offset of -48.2 ppm. If the skew drift calculation is fully averaged, The skew drift over full window bit is Logic 1.	Prog	RP
0x3A3A	Skew Drift 6	[7:0]	Skew drift [55:48]		Skew drift. This signed, 62-bit bit field contains the result of a skew drift measurement between the successive periods of the skew reference source. Skew drift is a measure of the rate at which the unaveraged skew offset varies cycle by cycle. The value in this bit field must be multiplied by 2^{-16} and the result is in picoseconds per unit interval. The unit interval is the period of the reference source. For example, assume that the reference source has a frequency of 100 Hz, and a skew drift of 0x 3FFF FFF8 A673 24B5 (-31,567,174,475 decimal) is read. Then, $-31,567,174,475 \times 2^{-16} = -481676.8$ ps (approximately). Because the reference period is 10 ms, this result indicates the reference measurement period is decreasing 482 ns every 10 ms relative to the reference source period, implying a frequency offset of -48.2 ppm. If the skew drift calculation is fully averaged, The skew drift over full window bit is Logic 1.	Prog	RP
0x3A3B	Skew Drift 7	7	Skew drift full window		Skew drift over full window. This bit is Logic 1 when the skew drift calculation is fully averaged over the window size determined by the skew window size bit field. It is Logic 0 if this condition is been met. there is an additional diagnostic bit associated with this measurement; The skew limit exceeded IRQ activates if the limits of the skew measurement processor is exceeded.	Prog	RP
		6 [5:0]	Reserved Skew drift [61:56]		Reserved. Skew drift. This signed, 62-bit bit field contains the result of a skew drift measurement between the successive periods of the skew reference source. Skew drift is a measure of the rate at which the unaveraged skew offset varies cycle by cycle. The value in this bit field must be multiplied by 2^{-16} and the result is in picoseconds per unit interval. The unit interval is the period of the reference source. For example, assume that the reference source has a frequency of 100 Hz, and a skew drift of 0x 3FFF FFF8 A673 24B5 ($-31,567,174,475$ decimal) is read. Then, $-31,567,174,475 \times 2^{-16} = -481676.8$ ps (approximately). Because the reference period is 10 ms, this result indicates the reference measurement period is decreasing 482 ns every 10 ms relative to the reference source period, implying a frequency offset of -48.2 ppm. If the skew drift calculation is fully averaged, The skew drift over full window bit is Logic 1.	0x0 Prog	R RP

NOTES

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. Information contained within this document is subject to change without notice. Software or hardware provided by Analog Devices may not be disassembled, decompiled or reverse engineered. Analog Devices' standard terms and conditions for products purchased from Analog Devices can be found at: http://www.analog.com/en/content/analog_devices_terms_and_conditions/fca.html

©2017–2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. UG15965-0-11/18(B)

www.analog.com

Rev. B | Page 154 of 154