FEATURES

300 MHz Small Signal Bandwidth
200 MHz Large Signal BW (4 V p-p)
High Slew Rate: 2200 V/ $\mu \mathrm{s}$
Low Distortion: -60 dB @ 20 MHz
Fast Settling: 15 ns to 0.01\%
$2.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Spectral Noise Density
± 3 V Supply Operation

The AD9624 is one of a family of very high speed andwide bandwidth amplifiers utilizing a voltage feedback architecture. These amplifiers define a new level of performance for voltage feedback amplifiers, especially in the categories of large signal bandwidth, slew rate, settling, low distortion, and low noise.
Proprietary design architectures have resulted in an amplifier family that combines the most attractive attributes of both current feedback and voltage feedback amplifiers. The AD9624 exhibits extraordinarily accurate and fast pulse response characteristics (8 ns settling to 0.1%) as well as extremely wide small and large signal bandwidth previously found only in current feedback amplifiers. When combined with balanced high impedance inputs and low input noise current more common to voltage feedback architectures, the AD9624 offers performance not previously available in a monolithic operational amplifier.
*Protected by U.S. Patent $5,150,074$ and others pending.

CONNECTION DIAGRAM

\# OPTIONALCAPACITOR CB CONNECTED HERE DECREASES SETTLING TIME (SEE TEXT).

Of her members of the AD962X amplifier family are the
A D9 $21(\mathrm{G}=+1$, AD9622 ($\mathrm{G}=+2$), and the AD9623 ($G=+4$). A sepprato data sheot is awailable from Analog Devices for each model. Each generic device tras been designed for a different minimum statle gain settirg, a bowng users flexibility in aptimizink systema performance Dynamfic perfarmande specifieations suchas slew rate, sett/ing/time, and distortion vary from model to medel. The table below summafizes key performance attributes for the AH962X famply and qan pe usectar a selection guide.
The AD9624 is offered in industrial and military temperathre ranges. Industrial versions are available in plastic DIP, SOIC, and cerdip; MIL versions are packaged in cerdips.

PRODUCT HIGHLIGHTS

1. Wide Large Signal Bandwidth
2. High Slew Rate
3. Fast Settling
4. Low Distortion
5. Output Short-Circuit Protected
6. Low Intermodulation Distortion of High Frequencies

Parameter	AD9621	AD9622	AD9623	AD9624	Units
Minimum Stable Gain	+1	+2	+4	+6	$\mathrm{~V} / \mathrm{V}$
Harmonic Distortion (20 MHz)	-52	-66	-64	-66	dB
Large Signal Bandwidth (4 V p-p)	130	160	190	200	MHz
SSBW (0.5 V p-p)	350	220	270	300	MHz
Slew Rate	1200	1500	2100	2200	$\mathrm{~V} / \mu \mathrm{s}$
Rise/Fall Time (0.5 V Step)	2.4	1.7	1.6	1.5	ns
Settling Time (to $0.1 \% / 0.01 \%)$	$7 / 11$	$8 / 14$	$8 / 14$	$8 / 14$	ns
Input Noise (0.1 MHz - 200 MHz)	80	49	36	32	$\mu \mathrm{~V}$ rms

REV. 0

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD9624-SPECIFICATIONS

NOTES

${ }^{1}$ Measured at $\mathrm{A}_{\mathrm{V}}=21$.
${ }^{2}$ Measured with a $0.001 \mu \mathrm{~F} \mathrm{C}_{\mathrm{B}}$ capacitor connected across Pins 1 and 8.
Specifications subject to change without notice.

ORDERING GUIDE

Mode1	Temperature Range	Package Description	Package Option
AD9624AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic DIP	N-8
AD9624AQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Cerdip	Q-8
AD9624AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin SOIC	R-8
AD9624SQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Pin Cerdip	Q-8

EXPLANATION OF TEST LEVELS

Test Level

I - 100% production tested.
II - 100% production tested at $+25^{\circ} \mathrm{C}$, and sample tested at specified temperatures. AC testing of "A" grade devices done on sample basis.
III - Sample tested only.
IV - Parameter is guaranteed by design and characterization testing.
V - Parameter is a typical value only.
VI - All devices are 100% production tested at $+25^{\circ} \mathrm{C} .100 \%$ production tested at temperature extremes for extended temperature devices; sample tested at temperature extremes for commercial/industrial devices.

THEORY OF OPERATION

The AD9624 is a wide bandwidth voltage feedback amplifier that is guaranteed for minimum gain stability of +6 . Since its open-loop frequency response follows the conventional $6 \mathrm{~dB} /$ octave roll-off, its gain bandwidth product is basically constant. Increasing its closed-loop gain results in a corresponding decrease in small signal bandwidth. The AD9624 typically maintains a 60 degree unity loop gain phase margin with $\mathrm{R}_{\mathrm{F}} \cong 510 \Omega$. This high margin minimizes the effects of signal and noise peaking.

Feedback Resistor Choice

At minimum stable gain (+6), the AD9624 provides optimum dynamic performance with $\mathrm{R}_{\mathrm{F}}=510 \Omega$. When using this value and following the high speed layout guidelines, a shunt capacitor $\left(\mathrm{C}_{\mathrm{F}}\right)$ should not be required. This value for R_{F} provides the best combination of wide bandwidth, low peaking, and distortion.
However, if improved gain flatness is desired, a shunt capacitor $\left(\mathrm{C}_{\mathrm{F}}\right)$ will provide extra phase margin. This reduces both overshoot and peaking with only a slight reduction of bandwidth.

As an example, if the amplifier exhibits (worst case) peaking of 1.2 dB with $\mathrm{R}_{\mathrm{G}} \| \mathrm{R}_{\mathrm{F}}=85 \Omega\left(\mathrm{~A}_{\mathrm{V}}=6\right)$, then using a C_{F} of $\approx 0.5 \mathrm{pF}$ (two 1 p capacitors in series) across R_{F} will reduce this peak/ng to 0 dB . In qditition, oqushoot, noise, and settling time (<0 01\%) will aso improve. Phil comes at the expense of slightly decreased closed-tan bandw/dthytue the the $R_{F} \times C_{F}$ If the equis alent iffurt capacitance sreafly exce dds source drive or tong input traces to the amplifier), then addyd shunt capacitance $\left(\mathrm{C}_{\mathrm{F}}\right)$ witl be ne\&ess ry to maintain stabitity at
minimum gain.
As a rule of thumb, if the product of $R_{F} \| R_{G} \times C_{I} \leq 302 \times 1 / 0^{-12}$ seconds, then C_{F} is not required (for maximum bandwidth applications) and the amplifier's phase margin will maintain about 60°. Generally, this should be the case.

Pulse Response

Unlike a traditional voltage feedback amplifier in which slew speed is usually dictated by its front end dc quiescent current and gain bandwidth product, the AD9624 provides "on demand" transconductance current that increases proportionally to the input "step" signal amplitude. This results in slew speeds ($2000 \mathrm{~V} / \mu \mathrm{s}$) comparable to wideband current feedback designs. This, combined with relatively low input noise current $(2.5 \mathrm{pA} / \sqrt{\mathrm{Hz}})$, gives the AD9624 the best attributes of both voltage and current feedback amplifiers.

Chip Layout

Figure 2. Inverting Gain Connection Diagram

Figure 3. Noninverting Gain Connection Diagram

Diam

Bootstrap Capacitor (C_{B})
In most applications, the C_{B} capacitor should net be requlred. Under certain conditions, it can be used to further enhance settling time performance.
The C_{B} capacitor $(0.001 \mu \mathrm{~F})$ connects to the internal high impedance nodes of the amplifier. Using this capacitor will reduce the large signal (4 V) step output settling time by 3 ns to 5 ns for 0.05% or greater accuracy. For settling accuracy less than 0.05% or for smaller step sizes, its effect will be less apparent.
Under heavy slew conditions, this capacitor forces the internal signal (initial step) amplitude to be controlled by the "on" (slewed) transistor, preventing its complement from completely turning off. This allows for faster settling time of these (internal) nodes and also the output.
In the frequency domain, total (high frequency) distortion will be approximately the same with or without C_{B}. Typically, the 3rd harmonic will be greater than the 2 nd without C_{B}. This will be reversed with C_{B} in place.

APPLICATIONS

The AD9624 is a voltage feedback amplifier and is well suited for such applications as active filters, and log amplifiers. The device's wide bandwidth (190 MHz), phase margin $\left(65^{\circ}\right)$, low noise current ($2.5 \mathrm{pA} / \sqrt{\mathrm{Hz}}$), and slew rate ($2000 \mathrm{~V} / \mu \mathrm{s}$) give higher performance capabilities to these applications over previous voltage feedback designs.
Its settling time of 15 ns to 0.01% and 8 ns to 0.1%, and its low harmonic distortion make it a good for choice for ADC signal amplification. With superb linearity at relatively high signal frequencies, it is an ideal driver for ADCs up to 14 bits.

Typical Performance ${ }_{\left(R_{1}=100\right.} \Omega ; A_{V}=+8$, unless otherwise noted $-A D 9624$

Figure 4. Open-Loop Gain and

Figure 7. Harmonic Distortion vs. Frequency

Figure 10. Frequency Response
vs. $R_{\text {LOAD }}$

Figure 13. Input Spectral Noise Density

Figure 5. Inverting Frequency Response

Figure 6. Noninverting Frequency Response

Figure 8. Intermodulation Distortion (IMD)

Figure 11. Third Order Intercept

Figure 14. Output Level and Supply Current vs. Supply Voltage

Figure 15. Settling Time vs. Capacitive Load

Figure 16. Large Signal Pulse Response

Figure 17. Small Signal Pulse Response

Figure 18. Settling Time vs. Noninverting Gain

Plastic SOIC (Suffix R)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

