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INTRODUCTION
There is a wealth of information available on the topic of 
phase noise, its characteristics1, how it can be measured2, 
and how it affects system performance3. It is well known 
that phase noise in oscillators and clocks becomes one 
of the limiting degradations in modern radio systems. 
However, most of the traditional analyses concentrate 
on degradations to sine wave signals in single carrier 
radio systems. The effects of phase noise on multicarrier 
receivers, wideband systems, or digital radios are very 
rarely discussed. This application note will address 
some of the rarely discussed issues related to phase 
noise in sampled data systems. It will focus primarily 
on multicarrier radios, wideband signals, and under-
sampled radio architectures.

PHASE JITTER IN SAMPLED DATA SYSTEMS
The easiest way to calculate the SNR degradations 
incurred by phase noise in a sampled data system is to 
convert phase noise to phase jitter. This is most easily 
accomplished by recognizing that a time delay is the 
same as a phase delay at a given frequency. Extending 
this concept and writing it in terms of noise power yields 
Equation 1.
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where phase noise in rms radians

phase jitter in rms onds

clock frequency in radians

      (1)

That is, for a given jitter error, a higher frequency signal 
will have more phase error. The term σθ  is the total 
integrated phase noise of the clock4 and defi nes the 
clock SNR by

SNRclk ( )dB( )dB = ( )– log10 ( )2( )( )σ( )( )θ( )                                         (2)

Thus, Equation 1 relates the total integrated phase noise, 
or clock SNR, to the total jitter in the clock. Phase noise 
and clock jitter are two different ways to look at the same 
phenomenon.
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Traditional sampled data SNR analyses use Figure 1 as 
an aid to determine how noise on a clock generates an 
error in the sampled data. From this it is seen that
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From this it is seen that the noise power is a function of 
the jitter power and the power in the signal derivative. 

The SNR of a signal sampled with a jittery clock is 
defi ned as 
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For example, in a single sine wave,
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Using Equation 3,
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This is the standard SNR equation for a single sine wave 
sampled by a clock with jitter and can be found in many 
publications5. Intuitively what is happening is that higher 
frequency signals have larger slew rates. This results 
in larger voltage changes as the sample time changes. 
It should be remembered that quantization noise and 
thermal noise must also be added to this to obtain the 
total noise out of a data converter.

Extending this to a multicarrier signal is a simple matter. 
Using the same procedure as before with out defi ned as out defi ned as out

a summation of n equal amplitude sine waves,
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This is relative to the entire signal, νout . When referenced 
to only one of the carriers, the SNR becomes
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Compared to the single carrier case, Equation 4b, the 
denominator has n more frequency terms. The SNR on 
a per carrier basis (i.e., dBc) has been degraded by 
approximately 10 log(n). However, in a data converter 
each carrier may need to be reduced by 10 log(n) to 
20 log(n), depending on signal statistics, in order to keep 
from clipping the quantizer. This, in effect, raises the 
quantization and thermal noise fl oor by up to 20 log(n). 
Thus, jitter may contribute less to the overall SNR than 
in the single carrier case. Quantization and thermal noise 
may become more dominant.

Many modern radio systems don’t use narrow-band 
carriers. Modulated data often occupies a fairly wide 
spectrum. In order to determine how click jitter effects 
the SNR for such systems, it is convenient to assume 
the data has zero mean and a fl at spectrum uniformly 
distributed between fLfLf  and fHfHf , fLfLf  < fHfHf  as shown in Figure 2. H as shown in Figure 2. H

When squared and integrated over its bandwidth, the 
total signal power σout

2  is obtained.
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fHfL
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Figure 2.

One form of Parseval’s theorem states that the power 
of a signal in the time domain equals the power of the 
signal in the frequency domain. That is,
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where is the power spectral density inWatt Hz

In addition, using the differentiation theorem of the Fourier 
transform, which states that the Fourier transform of a 
derivative is just the Fourier transform of the original 
function multiplied by iω , as shown below,

ℑ ( )[ ] = ℑ ( )[ ]ν ω ν' t i t

and combining this with Parseval’s theorem, it is seen 
that the power in ’(t ) is the same as the power in ig
(), as described below,
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Using Equation 3,
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This is the SNR resulting from a fl at, wideband signal 
between fLfLf  and fHfHf  being sampled by a clock with jitH being sampled by a clock with jitH ter 
σ t . As a sanity check, setting fLfLf  = fHfHf  = H = H fOfOf  (i.e., all the O (i.e., all the O

power resides in a single frequency term fOfOf ) results in 
the same expression as Equation 4b for the single fre-
quency case.

An alternative expression is obtained by letting fLfLf  = 
fOfOf –BW /2 and fHfHf  = H = H fOfOf +BW /2. For this case the expression 
becomes

SNR

f
BW

sig

t Oft Of

=
+




t O


t Ot Ot O






t O


t Ot O


t O










1

4
12

2 2 2
2

π σ2 2π σ2 2

,
                                    

                                                               f                                                               f +                                                               +
                                                               

 
                                                               

4                                                               4π σ                                                               π σ                     (6)

for a flat signal centered at having bandwidthf Bhavingf Bhaving bandwidthf Bbandwidth WOf BOf B .

Again, as a sanity check, when BW =0 the result matches 
the single carrier case in Equation 4b.

A consequence of all this math is that as long as fOfOf >10BW, BW, BW
the bandwidth of the signal can probably be neglected. 
Treating the modulated signal as a single carrier will give 
virtually equal results. However, if this is not true, then 
using the single carrier approximation will give results 
that are too optimistic.

This entire discussion has focused on sampled data 
systems, but the effects of aliasing have not been men-
tioned. All of the equations derived above assume there 
is no aliasing. The bandwidth of the jitter is considered 
to fall entirely (and conveniently) into a single Nyquist 
zone. If the jitter is bad enough, and the signal close 
enough to a Nyquist edge, the noise caused by jitter can 
alias back in band, degrading SNR even further. This ef-
fect is illustrated in Figure 3. A similar problem exists 
with clock feedthrough. If the signal is close to the clock, 
phase noise from the clock can directly leak to the output, 
degrading the noise fl oor.

SNR
DEGRADATION

SIGNAL
SIGNAL
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fSIGfSIGf fALIASfALIASffs/fs/f 2s/2s/

Figure 3.

PHASE NOISE IN SAMPLED DATA SYSTEMS
In addition, nowhere in the preceding discussion did the 
spectrum of the clock phase noise come into play. All 
that was considered was the total jitter (in rms seconds) 
which was calculated from the total integrated phase 
noise using Equation 1. To see how the phase noise spec-
trum of the clock affects the sampled data spectrum, 
it is most convenient to use a single sine wave signal. 
Combining Equation 1 with 4a yields Equation 7a.
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Using Equation 2, this can be written as
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The SNR of the resulting sampled signal is the same as 
the SNR of the clock but scaled by the clock and signal 
frequency ratio. As the signal frequency gets higher, 
the SNR degrades in a 20 log fashion. This illustrates 
why undersampled systems (i.e., one in which the 
signal frequency occupies one of the higher Nyquist 
bands) require clocks with much better phase jitter than 
baseband systems. In fact, performance in IF-sampling 
digital radio architectures are often limited by clock 
phase noise, not data converter performance.

Although not apparent from Equation 7b, the spectral 
shape of the clock phase noise is superimposed on the 
sampled data, as illustrated in Figure 3. This can intui-
tively be seen by modeling the sampling process with 
a mixer. As shown in Figure 4, when a clock with phase 
noise  is applied to a mixer, the output contains two 
mixing products, each of which contains the full phase 
noise  of the clock. Although this simplistic model does 
not show the scaling factor described in Equation 7, it 
is useful to show how the phase spectrum of the clock 
shows up on the resulting signal.

R coR coR s(fsigfsigf t)t)t
VoutVoutV = 1/2[RV sin((RV sin((RV fclfclf kclkcl  + k + k fsigfsigf )sig)sig t + t + t (f ))f ))f

+ RV sin((RV sin((RV fclfclf kclkcl  – k – k fsigfsigf )sig)sig t + t + t (f ))]f ))]f

V sin(fclfclf kclkcl t +(f ))

Figure 4.

This can easily be tested by phase modulating a clock 
and feeding it into an ADC. By applying different signal 
frequencies, Equation 7 can also be verifi ed. An AD9430 
ADC was clocked at 61.44 MHz with a clock phase modu-
lated such that the fi rst sidebands were –60dBc. Figures 
5a, 5b, and 5c show the results of the experiment.

Figure 5a shows the results with a 3.84 MHz input. The 
clock modulation components can be seen as the two 
small spurs clustered close to the signal fundamental. 
According to Equation 7, the clock modulation spurs 
should be –60 – 20 log(61.44/3.86) = –84 dBc. The results 
in Figure 5a are quite close to this number.

Figure 5b shows the results with a 65.28 MHz input. This 
is in the 3rd Nyquist zone. The FFT shows the baseband 
alias in the same location as the 3.84 MHz signal in 
Figure 5a (i.e., 65.28 MHz – 61.44 MHz = 3.84 MHz). Here 
fclk ~ fsig and the –60 dBc clock spurs can readily be seen 
superimposed on the signal, also at –60 dBc. This is to 
be expected according to Equation 7b.
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Figure 5c shows the results with a 124.72 MHz input 
in the 5th Nyquist zone. This frequency is about twice 
that of Figure 5b and according to Equation 7 the spurs 
should increase about 6 dB, which is what is seen.
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Figure 5a.
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Figure 5b.
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Figure 5c.

Thus, it appears the clock spectrum does indeed appear 
around the sampled signal with a scaling factor described 
by Equation 7. However, so far, all of the preceding dis-
cussions have not differentiated between ADCs and 
DACs. Do DACs exhibit the same characteristic seen by 
ADCs? A similar experiment was run on an AD9744 DAC 
using a 61.44 MHz clock phase modulated to give –40 dBc 
sidebands, generating an 11 MHz sine wave. The results 
over fi ve Nyquist bands are shown in Figure 6.
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Figure 6.

The Sinc function inherent in DAC outputs can clearly be 
seen. But what is happening with the clock spurs? These are 
clearly seen at each of the output images but the amplitudes 
don’t increase as they did with the ADC. Relative to full scale, 
the spur amplitudes remain constant.

There are several ways to look at this. When viewed in 
dBc, as the signal frequency goes up, the modulation 
spurs get worse in the same manner as described by 
Equation 7b. The Sinc function applies to both the signal 
amplitude and the induced clock phase noise. Calculat-
ing the spur amplitude relative to each carrier (i.e., in 
dBc), Equation 7b is a good description.

Alternatively, the Sinc characteristic is defi ned as
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The amplitude of the noise is given by the reciprocal of 
Equation 7a.
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That is, the noise is directly proportional to clock phase 

REV. 0



–5–

AN-741

noise and signal frequency. Squaring the Sinc function 
(because power spectral densities are being examined) power spectral densities are being examined) power
and multiplying these two to get a composite noise 
transfer function out of the DAC yields

N
S

f

f
sig

clk=
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σ

π

πθ
2

2

2

sin

The periodic nature of the nulls caused by the sinusoid 
still exist. However, the denominator of the Sinc function 
is what causes the roll-off at higher frequencies. This 
attenuation has been exactly cancelled by the increas-
ing phase noise at higher frequencies described by 
Equation 7b. Thus, the phase noise out of a DAC will not 
grow at higher frequencies.

APPLICATION TO SYSTEM DEBUGGING
Besides the obvious issues revolving around design-
ing systems to minimize signal degradations, there 
are several other consequences to these results worth 
mentioning. These are related to fi nding the source of 
mystery spurs and noise. For instance, if the noise fl oor 
rises at the DAC output, it is most likely not caused by 
clock phase noise. It may be digital coupling into the 
output circuitry.

If a spur exists in a sampled signal, a good test to see if it 
comes from the clock is to change the signal amplitude. 
Analog distortion terms will change at twice (2nd order 
distortion) or three times (3rd order distortion) the rate 
of the signal amplitude change. Spurs due to nonlinear-
ity in the quantizer may not change at all, or if they do 
change, they will change unpredictably, when the signal 
amplitude changes. On the other hand, spurs due to the 
clock will change dB for dB with the signal.

When trying to identify the source of a spur in a sampled 
data signal, look not only at the explicit spur frequency, 
which could be caused by a signal directly coupling into 
the output, but also at the frequency offset from the 

signal. For example, if a spur is 10MHz away from the 
carrier, look to see if there is a 10MHz oscillator some-
where in the system. If so, this frequency is most likely 
leaking in through the clock.

SUMMARY
This application note examined the relationship between 
phase noise and jitter, deriving the SNR degradations 
that occur when a signal is sampled by a clock with 
jitter. The results were extended to multicarrier and 
wideband modulated data systems. Clock phase noise 
spectral issues were then dealt with, examining the 
resulting spectrum at the output of ADCs and DACs. 
Finally, the results are applied to debugging a system 
that may have unusual spurs that would otherwise be 
unaccounted for.

NOTES
1W. P. Robins, Phase Noise in Signal Sources (London: Phase Noise in Signal Sources (London: Phase Noise in Signal Sources
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