FEATURES

170 MSPS Update Rate
TTL/High Speed CMOS-Compatible Inputs
Wideband SFDR: 66 dB @ $2 \mathrm{MHz} / 50 \mathrm{~dB}$ @ 65 MHz
Pin-Compatible, Lower Cost Replacement for Industry Standard AD9721 DAC
Low Power: 439 mW @ 170 MSPS
Fast Settling: 3.8 ns to $1 / 2$ LSB

GENERAL DESCRIPTION

The AD9731 is a 10 -bit, 170 MSPS, bipolar D/A converter that is optimized to provide high dynamic performance, yet offer lower power dissipation and more economical pricing than afforded by previous bipolar high performance DAC solutions. The AD9731 was designed primarily for demanding communications systems applications where wideband spurious-free dynamic range (SFDR) requirements are strenuous and could previously only be met by using a high performance DAC such as the industry-standard AD9721. The proliferation of digital communications into base station and high volume subscriber-end markets has created a demand for excellent DAC performance delivered at reduced levels of power dissipation and cost. The AD9731 is the answer to that demand.

FUNCTIONAL BLOCK DIAGRAM

Optimized for direct digital synthesis (DDS) waveformineconstruction, the AD9731 provides 50 dB of wideband armonic suppression over a dc-to- 65 MHz analog output bandwidth. This signal bandwidth addresses the transmit spectrum in many of the emerging digital communications applications where signal purity is critical. Narrowband, the AD9731 provides an SFDR of greater than 79 dB . This excellent wideband and narrowband ac performance, coupled with a lower pricing structure, make the AD9731 the optimum high performance DAC value.
The AD9731 is packaged in 28-lead SOIC (same footprint as the industry-standard AD9721) and super space-saving 28-lead SSOP; both are specified to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700

AD9731-SPECIFICATIONS
$\left(+V_{S}=+5 \mathrm{~V},-V_{S}=-5.2 \mathrm{~V}, \mathrm{CLOCK}=125 \mathrm{MHz}, \mathrm{R}_{\text {SET }}=1.96 \mathrm{k} \Omega\right.$ for $20.4 \mathrm{~mA} \mathrm{I}_{\mathrm{OUT}}$, $\mathrm{V}_{\mathrm{REF}}=-1.25 \mathrm{~V}$, unless otherwise noted.)

Parameter	Temp	Test Level	Min	Typ	Max	Unit
RESOLUTION			10			Bits
MAX CONVERSION RATE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	IV	170			MHz
DC ACCURACY Differential Nonlinearity Integral Nonlinearity	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { VI } \\ & \text { I } \\ & \text { VI } \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.35 \\ & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.5 \\ & 1 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
INITIAL OFFSET ERROR Zero-Scale Offset Error	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Full } \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { VI } \\ & \text { I } \\ & \text { VI } \\ & \text { V } \end{aligned}$		$\begin{aligned} & 35 \\ & 40 \\ & 2.5 \\ & 2.5 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 70 \\ & 100 \\ & 5 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ \% FS \% FS $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
REEERENCE/CDN/TROLAMP IntconalReference Vgtrage ${ }^{2}$ internal Referen\&e Vpltage Drif Internal Reference Output Cur e Amplifier Input Impedtace Amplifier Bandwidth			$\begin{aligned} & -1.35 \\ & -50 \end{aligned}$	$\begin{aligned} & -1.25 \\ & 100 \\ & \\ & \frac{50}{2.5} \end{aligned}$	$\begin{aligned} & -1.15 \\ & +500 \end{aligned}$	V $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $\mathrm{k} \Omega$ MHz
REFERENCE INPUT ${ }^{4}$ Reference Input Impedance Reference Multiplying Bandwidth ${ }^{5}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$			$\frac{7.6}{75}$		$\stackrel{\mathrm{k} \Omega}{\mathrm{Mr}}$
OUTPUT PERFORMANCE Output Current ${ }^{4,6}$ Output Compliance Output Resistance Output Capacitance Voltage Settling Time to $1 / 2 \mathrm{LSB}\left(\mathrm{t}_{\mathrm{ST}}\right)^{7}$ Propagation Delay ($\left.\mathrm{t}_{\mathrm{PD}}\right)^{8}$ Glitch Impulse ${ }^{9}$ Output Slew Rate ${ }^{10}$ Output Rise Time ${ }^{10}$ Output Fall Time ${ }^{10}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	V IV V V V V V V V V	-1.5	5 3.8 2.9 4.1 400 1 1	+3	mA V Ω pF ns ns pVs V/ $\mu \mathrm{s}$ ns ns
DIGITAL INPUTS						
Input Capacitance	Full	IV		2		pF
Logic " 1 " Voltage	Full	VI	2.0			V
Logic "0" Voltage	Full	VI			0.8	V
Logic "1" Current	$25^{\circ} \mathrm{C}$	VI		8	50	$\mu \mathrm{A}$
Logic "0" Current	$25^{\circ} \mathrm{C}$	VI		30	100	$\mu \mathrm{A}$
Data Setup Time ($\left.\mathrm{ts}_{\text {S }}\right)^{11}$	$25^{\circ} \mathrm{C}$	IV	2			ns
	Full	IV	2.5			ns
Data Hold Time ($\left.\mathrm{t}_{\mathrm{H}}\right)^{12}$	$25^{\circ} \mathrm{C}$	IV	1.0	0.1		ns
	Full	IV	1.0	0.1		ns
Clock Pulsewidth Low ($\mathrm{pw}_{\text {MIN }}$)	$25^{\circ} \mathrm{C}$	IV	2			ns
Clock Pulsewidth High ($\mathrm{pw}_{\text {MAX }}$)	$25^{\circ} \mathrm{C}$	IV	2			ns
SFDR PERFORMANCE (Wideband) ${ }^{13}$						
$\mathrm{A}_{\text {OUT }}=0 \mathrm{dBFS}$						
$2 \mathrm{MHz} \mathrm{f}_{\text {OUT }}$	$25^{\circ} \mathrm{C}$	V		66		dB
$10 \mathrm{MHz} \mathrm{f}_{\text {OUT }}$	$25^{\circ} \mathrm{C}$	V		62		dB
$20 \mathrm{MHz} \mathrm{f}_{\text {OUT }}$	$25^{\circ} \mathrm{C}$	V		61		dB
$40 \mathrm{MHz} \mathrm{f}_{\text {OUT }}$	$25^{\circ} \mathrm{C}$	V		55		dB
65 MHz f fut $($ Clock $=170 \mathrm{MHz})$	$25^{\circ} \mathrm{C}$	V		50		dB
70 MHz f fout $($ Clock $=170 \mathrm{MHz})$	$25^{\circ} \mathrm{C}$	V		47		dB

SPECIFICATIONS

ANALOG OUTPUT

Figure 1. Timing Diagrams

ABSOLUTE MAXIMUM RATINGS*

Analog Output	$-\mathrm{V}_{\mathrm{S}}$ to $+\mathrm{V}_{\text {S }}$
$+\mathrm{V}_{\text {S }}$	$+6 \mathrm{~V}$
Digital Inputs	-0.7 V to $+\mathrm{V}_{\mathrm{S}}$
- $\mathrm{V}_{\text {S }}$	-7 V
Analog Output Current	30 mA
Control Amplifier Input Voltage Range	0 V to -4V
Reference Input Voltage Range	0 V to $-\mathrm{V}_{\mathrm{S}}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Internal Reference Output Current	$500 \mu \mathrm{~A}$
Lead Temperature (10 sec Soldering)	$300^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Control Amplifier Output Current	$\pm 2.5 \mathrm{~m}$

EXPLANATION OF TEST LEVELS

Test Level	Definition
I	100% production tested
II	The parameter is 100% production tested at $25^{\circ} \mathrm{C}$; sampled at temperature production.
III	Sample tested only Parameter is guaranteed by design and characterization testing.
IV	Parameter is a typical value only. V
VIl devices are 100% production tested at $25^{\circ} \mathrm{C} ;$	
guaranteed by design and characterization testing	
for industrial temperature range devices.	

*Stresses above those listed under Absolute Maximum Ratings may cause permapent dymage the device. Thisis a stress rating only; functional operation of the devige at these of any othe conditions above those indicated in the operational sectons of this specifiqatio is not implied. Exposureta absolute maximum rating conditions for e etended

PIN FUNCTION DESCRIPTIONS

PIN CONFIGURATION

fPC 1. Merrowbend SFDR (Clock $=170 \mathrm{MHz}$) vs.

TPC 2. Narrowband SFDR (Clock $=125 \mathrm{MHz}$) vs. $f_{\text {OUT }}$ Frequency

TPC 3. Wideband SFDR, $f_{C L K}=50 \mathrm{MSPS}$

TPC 6. SINAD, $A_{\text {OUT }}=0 \mathrm{dBFS}$

TPC 8. Typical Differential Nonlinearity Performance (DNL)

TPC 9. Typical Integral Nonlinearity Performance (INL)

TPC 10. Wideband SFDR 2 MHz fout; 125 MHz Clock

TPC 11. Wideband SFDR 10 MHz fout; 125 MHz Clock

TPC 12. Wideband SFDR $20 \mathrm{MHz} f_{\text {OUT }} ;$ 125 MHz Clock

TPC 14. Wideband SFDR $65 \mathrm{MHz} f_{\text {OUt; }} 170 \mathrm{MHz}$ Clock

TPC 15. Wideband SFDR $70 \mathrm{MHz} f_{\text {OUT }}$; 170 MHz Clock

TPC 16. Wideband Intermodulation Distortion F1 = $800 \mathrm{kHz} ;$ F2 = $900 \mathrm{kHz} ; 125 \mathrm{MHz}$ Clock; Span $=2 \mathrm{MHz}$

TPC 17. Wideband Intermodulation Distortion F1 = 800 kHz F2 = $900 \mathrm{kHz} ; 125 \mathrm{MHz}$ Clock; Span $=62.5 \mathrm{MHz}$

THEORY AND APPLICATIONS

The AD9731 high speed digital-to-analog converter utilizes most significant bit decoding and segmentation techniques to reduce glitch impulse and deliver high dynamic performance on lower power consumption than previous bipolar DAC technologies.
The design is based on four main subsections: the decoder/ driver circuits, the edge-triggered data register, the switch network, and the control amplifier. An internal band gap reference is included to allow operation of the device with minimum external support components.

Digital Inputs/Timing

The AD9731 has TTL/high speed CMOS-compatible single-ended inputfor data inputs and clock. The switching threshold is 1.5 V .
In tredecoder/driyer section, the three MSBs are decoded to even "thermpmefer code ipes. An equalizing delay is included for the seyen east sionificant bjets and clock signals. This delay minimizes data skew and data setup and pold times at the the onister inyts. Reard regiter is resins edge triggered and used to synchemize data to the curent suitchas by applying a pulse with proper data nold and homes as show the timing diagram. Although the $A D 731$ is designed to provide isolation of the digital inputs to the analog output, somecoupling of digital transitions is inevitable. Digital feedthrough can be minimized by forming a low pass filter at the digital input by using a resistor in series with the capacitance of each digital input. This common high speed DAC application technique has the effect of isolating digital input noise from the analog output.

Input Clock and Data Timing Relationship

SINAD in a DAC is dependent on the relationship between the position of the clock edges and the point in time at which the input data changes. The AD9731 is rising edge triggered, and so exhibits SINAD sensitivity when the data transition is close to this edge. In general, the goal when applying the AD 9731 is to make the data transition close to the falling clock edge. This becomes more important as the sample rate increases. Figure 2 shows the relationship of SINAD to clock placement from the AD9731 and a competitive part, both sampling at 125 MSPS. The AD9731 has excellent performance as far as the narrowness of the "window" in which it is sensitive to SINAD.

Figure 2. SINAD vs. Clock Placement; $f_{\text {CLK }}=125$ MSPS, $f_{\text {OUT }}=20 \mathrm{MHz}$

References

The internal band gap reference, control amplifier, and reference input are pinned out to provide maximum user flexibility in configuring the reference circuitry for the AD9731. When using the internal reference, REF OUT ($\operatorname{Pin} 25$) should be connected to CONTROL AMP IN (Pin 26). CONTROL AMP OUT (Pin 24) should be connected to REF IN (Pin 23). A $0.1 \mu \mathrm{~F}$ ceramic capacitor connected from Pin 23 to Analog - V_{S} (Pin 22) improves settling time by decoupling switching noise from the current sink baseline. A reference current cell provides feedback to the control amplifier by sinking current through $\mathrm{R}_{\text {SET }}$ (Pin 17).
Full-scale current is determined by CONTROL AMP IN and $\mathrm{R}_{\mathrm{SET}}$ according to the following equation:

$$
I_{O U T}(\mathrm{FS})=32\left(C O N T R O L A M P I N / R_{S E T}\right)
$$

The internal reference is nominally -1.25 V with a tolerance of $\pm 8 \%$ and typical drift over temperature of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. If greater accuracy or temperature stability is required, an external reference can be used. The AD589 reference features $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.
Tyoudes of multiplying operation are possible with the AP9731. Signals with bandwidths up to 2.5 MHz and input spaings from -0.6 N to -1.2 V can be applied to the CONTROL MDP IN pin as shoy n in Figufe 3 . Because the control amplifier 1 s internally compensated, the $0.1 \mu \mathrm{~F}$ capattor discussed abdve can be reduced to maximize the martiphting banawidth. Howerneri shoul be nond that dutphtsentify tmint

Figure 3. Low Frequency Multiplying Circuit

The REFERENCE IN pin can also be driven directly for wider bandwidth multiplying operation. The analog signal for this mode of operation must have a signal swing in the range of -3.3 V to -4.25 V . This can be implemented by capacitively coupling into REFERENCE IN a signal with a dc bias of -3.3 V (I $\mathrm{I}_{\text {OUT }} \approx$ 22.5 mA) to -4.25 V ($\mathrm{I}_{\text {OUT }} \approx 3 \mathrm{~mA}$), as shown in Figure 4, or by dividing REFERENCE IN with a low impedance op amp whose signal swing is limited to the stated range.
NOTE: When using an external reference, the external reference voltage must be applied prior to applying $-\mathrm{V}_{\mathrm{S}}$.
 $\mathrm{I}_{\text {Out }}$ and $\mathrm{I}_{\text {OUTB }}$. The design of the AD 9731 is based on statistical current source matching, which provides a 10-bit linearity without trim. Current is steered to either $\mathrm{I}_{\mathrm{OUT}}$ or $\mathrm{I}_{\mathrm{OUTB}}$ in proportion to the digital input word. The sum of the two currents is always equal to the full-scale output current minus 1 LSB. The current can be converted to a voltage by resistive loading as shown in the block diagram. Both $\mathrm{I}_{\text {OUt }}$ and $\mathrm{I}_{\text {OUtB }}$ should be equally loaded for best overall performance. The voltage that is developed is the product of the output current and the value of the load resistor.

An operational amplifier can also be used to perform the I-to-V conversion of the DAC output. Figure 5 shows an example of a circuit that uses the AD9631, a high speed, current feedback amplifier. The resistor values in Figure 5 provide a 4.096 V swing, centered at ground, at the output of the AD9631 amplifier.
 suited for direet digal synthesis (DDS) and other vaveform synthesis applications. The ADG731 evaluation board provides a platform for analyzing performance under optimun lafout conditions. The AD9731 also provides a reference fo high speed circuit board layout techniques.

Figure 6. PCB Evaluation Board Schematic

OUTLINE DIMENSIONS

28-Lead Standard Small Outline Package [SOIC]
Wide Body
(R-28)
Dimensions shown in millimeters and (inches)

Revision History

Location Page
5/03-Data Sheet changed from REV. A to REV. B.
Renumbered Figures and TPCsUniversal
Changes to SPECIFICATIONS 2
Changes to ORDERING GUIDE 4
Updated TPCs 1, 2, 7, 10-15 6
Added TPCs 3, 4, 5, 6 6
Added Input Clock and Data Timing Relationship section and Figure 2 9
Updated Figure 5 10
Updated OUTLINE DIMENSIONS 12

