AN-912

Driving a Center-Tapped Transformer with a Balanced Current-Output DAC

by Ken Gentile

The use of a center-tapped transformer as the output interface for a balanced current-output DAC offers several benefits. First, transformer coupling offers dc isolation between the DAC output and the final load. It can also aid in the rejection of common-mode signals present at the DAC output. Furthermore, transformer coupling can mitigate the even harmonics that result from an imbalance between the DAC outputs. Finally, all transformers have a limited bandwidth, which can be used to advantage for suppressing the Nyquist images that typically appear in a DAC output spectrum.

The goal of this application note is two-fold. The first goal is to provide an explanation of the functionality of a balanced output in the context of a current-output DAC. The second goal is to provide formulas that relate the transformer turns ratio (N), the transformer load (R_{L}), the DAC load resistors (R_{o}), and the maximum DAC output current ($\mathrm{I}_{\mathrm{max}}$).

BALANCED CURRENT-OUTPUT DAC

Balanced current-output DACs come in two varieties: those with current source outputs and those with current sink outputs. DACs with current source outputs always inject current into the external load, while DACs with current sink outputs always draw current from the external load. In both cases, the DAC output consists of two pins: a normal pin and a complementary pin. The arrows that indicate direction of current flow in the diagrams that follow assume conventional current flow (that is, current flows from a positive potential toward a negative potential).

Note that Figure 1 assumes that the DAC is of the current sourcing variety. In the case of a current sinking DAC, the direction of I_{A} and I_{B} is reversed. Also, a connection to $V_{\text {SUPPLI }}$ should replace the ground connections at the transformer center tap and the Ro resistors.

In this application note, the current flowing through the normal and complementary pins is referred to as I_{A} and I_{B}, respectively. The maximum current that the DAC can deliver is denoted as $\mathrm{I}_{\mathrm{MAX}}$ and represents the upper limit for both I_{A} and I_{B}. The exact value of I_{A} (or I_{B}) depends on the digital code present at the DAC input. The behavior of I_{A} and I_{B} is such that when the digital code is zero, then $\mathrm{I}_{\mathrm{A}}=0$ and $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{MAx}}$. Conversely, when the digital code is full scale, then $\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{MAX}}$ and $\mathrm{I}_{\mathrm{B}}=0$. For intermediate digital codes, the two output currents are between zero and $\mathrm{I}_{\mathrm{MAX}}$, but are balanced such that $\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\text {MAX }}$ at all times. Thus, I_{A} and I_{B} can be expressed as

$$
\begin{align*}
& I_{A}=\alpha I_{M A X} \tag{1}\\
& I_{B}=(1-\alpha) I_{M A X}
\end{align*}
$$

where α is the fractional digital code value, that is, the input digital code value to the DAC divided by the full-scale code value.

For example, given a 10 -bit DAC with an input code of 200 and an $\mathrm{I}_{\text {MAX }}$ value of 10 mA , then $\alpha=200 / 1023$ (where 1023 is the full-scale code value given by $2^{10}-1$). This yields $\mathrm{I}_{\mathrm{A}} \approx 1.955 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{B}} \approx 8.045 \mathrm{~mA}$. Also, notice that I_{B} can be expressed in terms of I_{A} as $I_{B}=I_{M A X}-I_{A}$.

Figure 1. A Balanced Current-Output DAC with Transformer Coupling

AN-912

TABLE OF CONTENTS

Balanced Current-Output DAC... 1
DC Analysis... 3
AC Analysis .. 3
Impedance Matching... 5
Example Calculations... 6
Reduction of Even Harmonics 6
Conclusion. 6
Appendix A 7
Appendix B 8

DC ANALYSIS

With an understanding of the operation of a balanced currentoutput DAC, a dc analysis of a center-tapped transformer coupled to the DAC output can now be examined. Figure 1 simplifies to the dc equivalent circuit shown in Figure 2, by replacing the DAC with two current sources (one for the normal output and the other for the complementary output). The magnitude of the current delivered by each source is code dependent, as indicated by Equation 1. The current sources have arrows that indicate the direction of current flow. It is assumed that the DAC outputs are of the current source variety. The arrows would be reversed for the current sink variety. In Figure 2, the center-tap connection is redrawn to clearly show that the DAC output circuits are independent current loops (note that the transformer polarity dots have been reoriented to maintain functional equality with Figure 1).

Figure 2. DC Equivalent Model
Typically, the resistance of the transformer windings is much less than the resistance of the DAC termination resistors (R_{o}). In most applications, this low winding resistance implies that the vast majority of the dc current associated with I_{A} (or I_{B}) flows through the transformer windings instead of through the termination resistors. Thus, the dc power rating for the DAC termination resistors is practically nil.
In general, consider a simple magnetic circuit consisting of a single winding with an arbitrary number of turns of wire (N) wrapped on the winding and a static current (I) flowing through the wire. The current flowing in the wire creates a magnetic flux (Φ) concentrated within the winding core that is proportional to the product of the number of wire turns and the current flowing through the wire (that is, $\Phi=\mathrm{kNI}$, where k is the constant of proportionality). In the case of the tapped transformer, which has two primary windings, the magnetic flux in the core is the sum of the contributions of each winding (that is, $\Phi=\mathrm{k}\left(\mathrm{N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}\right)$. Given that this analysis is based on a center-tapped transformer, the number of turns in each primary winding is the same (that is, $\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}}$), which means that the magnetic flux can be expressed as $\Phi=\mathrm{kN}\left(\mathrm{I}_{A}+\mathrm{I}_{\mathrm{B}}\right)$. Thus, the total magnetic flux in the transformer core is proportional to the sum of the primary currents.
It is important to note in Figure 2 that I_{A} flows into the primary winding that is marked with a dot, while I_{B} flows into the primary winding that is opposite the dot. The placement of the
dots indicates that the magnetic flux produced by I_{A} is opposed to the magnetic flux produced by I_{B}. The orientation of the dots implies that $\Phi=\mathrm{kN}\left(\mathrm{I}_{\mathrm{A}}-\mathrm{I}_{\mathrm{B}}\right)$, instead of $\mathrm{kN}\left(\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}\right)$ as previously stated, for the configuration shown in Figure 1 and Figure 2. Therefore, for the particular center-tapped configuration shown in Figure 1 and Figure 2, the net magnetic flux is proportional to the difference between I_{A} and I_{B} rather than the sum. This is a consequence of the physical connection between the complementary current source and the lower primary winding.

Combining this result with Equation 1, the magnetic flux in the transformer core can be expressed as $\Phi=\mathrm{kNI}_{\max }(2 \alpha-1)$. The importance of this result is that for the special case of $\alpha=1 / 2$ (that is, the middle DAC code), the magnetic flux in the core is 0 , whereas any other DAC code results in a build-up of static magnetic flux in the core. The significance of this fact is made apparent in the AC Analysis section that follows.

AC ANALYSIS

For ac analysis, consider the specific case in which a DAC generates a sinusoidal output signal. In such a case, a time series of digital codes drives the DAC and produces an output current that varies in sinusoidal fashion. The range of the digital input codes is split such that the lower half of the codes (0 to $1 / 2$ full scale) generates the lower half of the sinusoid and the upper half of the codes ($1 / 2$ full scale to full scale) generates the upper half of the sinusoid. The average value of the DAC-generated sinusoid, therefore, is $1 / 2$ full scale. The peak amplitude of the sinusoid is also $1 / 2$ full scale, since this is the amount by which the signal can swing from the midpoint to either zero or full scale.

The sinusoidal current waveform at the normal output of the DAC can be expressed as

$$
\begin{equation*}
I_{A}=\frac{1}{2} I_{M A X}+\frac{1}{2} I_{M A X} \sin (\theta) \tag{2}
\end{equation*}
$$

where θ represents the instantaneous phase of the sinusoid.
Similarly, because of the relationship between I_{A} and I_{B}, the current waveform at the complementary output of the DAC can be expressed as

$$
\begin{equation*}
I_{B}=\frac{1}{2} I_{M A X}-\frac{1}{2} I_{M A X} \sin (\theta) \tag{3}
\end{equation*}
$$

Inspection of Equation 2 and Equation 3 indicates that I_{A} and I_{B} are both centered at $1 / 2 I_{\text {MAX }}$. That is, $1_{2} I_{\text {MAX }}$ is the dc term of the sinusoidal waveform. Furthermore, when the magnitude of sine function increases, then I_{A} increases, whereas I_{B} decreases equally. Notice, too, that the sum of the normal and complementary output currents is always $\mathrm{I}_{\mathrm{MAX}}$ (that is, $\mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{MAX}}$, as mentioned previously in the Balanced Current-Output DAC section). Such is the nature of a balanced output signal.

Note that Equation 2 and Equation 3 ignore the quantized nature of the sinusoidal DAC output current.

This result has interesting consequences when the DAC is driven by a digital sinusoidal generator like a direct digital synthesizer (DDS), for instance, that can be programmed to deliver either a sine signal or a cosine signal. When a sine signal is generated, Equation 2 and Equation 3 apply directly. When a cosine signal is generated, Equation 2 and Equation 3 become, respectively,

$$
I_{A}=\frac{1}{2} I_{M A X}+\frac{1}{2} I_{M A X} \cos (\theta)
$$

and

$$
I_{B}=\frac{1}{2} I_{M A X}-\frac{1}{2} I_{M A X} \cos (\theta)
$$

Given the special case of $\theta=0$, the sine case yields $I_{A}=1 / 2 I_{\text {MAX }}$ and $\mathrm{I}_{B}=1 / 2 \mathrm{I}_{\text {MAX }}$, whereas the cosine case yields $\mathrm{I}_{A}=\mathrm{I}_{\text {MAX }}$ and $\mathrm{I}_{B}=0$. In the DC Analysis section, it was shown that $\Phi=\mathrm{kN}\left(\mathrm{I}_{\mathrm{A}}-\mathrm{I}_{\mathrm{B}}\right)$. Thus, if the digital generator stalls at $\theta=0$, the transformer core carries no magnetic flux for the sine case and $\mathrm{kNI}_{\text {MAX }}$ for the cosine case. The implication is that if the digital generator is stalled at $\theta=0$, and is then switched from sine to cosine (or vice versa), the magnetic flux in the core jumps from 0 to $\mathrm{kNI}_{\text {MAX }}$ (or vice versa). This results in a voltage spike across all of the transformer windings due to the nearly infinite rate of change of flux in the transformer core.
The previous paragraphs explore the transient behavior of the transformer when switching between sine and cosine waveforms. To explore the steady state behavior of the transformer in the context of ac analysis, it is necessary to understand how a transformer behaves under the stimulus of a sinusoidal signal. This is covered in the appendices. Appendix A describes the basic ac behavior of an ideal transformer, while Appendix B builds on Appendix A to show the ac operation of a tapped transformer.

Figure 3 is the ac equivalent model assuming an ideal, centertapped transformer. Also given in Equation 4 to Equation 7 is a list of the pertinent equations that relate the various circuit parameters. Both the diagram and the equations are a result of the concepts described in Appendix B.

Figure 3. AC Equivalent Model Using a Center-Tapped Transformer

$$
\begin{align*}
& Z_{N O R M}=Z_{C O M P}=\frac{R_{O} R_{L}}{2 R_{L}+4 R_{O} N^{2}} \tag{4}\\
& Z_{S}=2 N^{2} R_{O} \tag{5}\\
& v_{N O R M}=v_{C O M P}=\left(\frac{\sqrt{2} I_{M A X}}{8}\right)\left(\frac{R_{O} R_{L}}{R_{L}+2 R_{O} N^{2}}\right) \tag{6}\\
& v_{S}=\left(\frac{\sqrt{2} I_{M A X}}{2}\right)\left(\frac{N R_{O} R_{L}}{R_{L}+2 R_{O} N^{2}}\right) \tag{7}
\end{align*}
$$

Equation 4 through Equation 7 can be used to predict the impedance seen by each DAC output ($\mathrm{Z}_{\text {NORM }}$ and $\mathrm{Z}_{\text {СомP }}$), the voltage generated by each of the DAC current sources ($\mathrm{v}_{\text {Norm }}$ and $v_{\text {COmp }}$), the impedance presented at the transformer secondary $\left(\mathrm{Z}_{\mathrm{s}}\right)$, and the voltage across the secondary $\left(\mathrm{v}_{\mathrm{s}}\right)$. It is important for the reader to understand that vnorm and vcomp do not represent the voltage that appears across each primary winding, but rather the voltage produced by each current source (I_{A} or I_{B}) as it flows through the reflected impedance of the associated primary winding ($\mathrm{Z}_{\text {NORM }}$ or $\mathrm{Z}_{\text {COMP }}$).

The actual voltage that appears across each primary winding is referred to as v_{A} for the upper primary winding and v_{B} for the lower. The value of v_{A} and v_{B} can be derived from v_{s} and the associated turns ratio between the secondary and each primary winding. Thus, v_{A} and v_{B} can be expressed as

$$
v_{A}=v_{B}=v_{S}\left(\frac{\frac{1}{2}}{N}\right)=\left(\frac{\sqrt{2} I_{M A X}}{4}\right)\left(\frac{R_{O} R_{L}}{R_{L}+2 R_{O} N^{2}}\right)
$$

Note that v_{A} and v_{B} are twice as large as $\mathrm{v}_{\text {norm }}$ and $\mathrm{v}_{\text {comp. }}$. What is the reason for the discrepancy? The answer lies in the fact that the two primary windings interact with each other. Consider Figure 4 where a switch has been added to provide a means to disconnect the normal DAC output pin from the circuit.

Figure 4. Balanced Current-Output DAC with Isolation Switch
If the switch is open (see Figure 5), there is effectively no change from an impedance point of view, because the current source internal to the DAC exhibits a very high impedance (ideally infinite). Thus, the complementary output drives the same load regardless of the state of the switch. The voltage at the complementary output (vсомр) is that given by Equation 6. However, the upper and lower primary windings are mutually coupled with a turns ratio of $1: 1$. This causes a voltage of the same magnitude to also appear at the upper primary winding (as shown in Figure 5).

Figure 5. Isolated DAC output
The importance of this fact cannot be overstressed. With the normal output of the DAC completely disconnected, there is still a voltage present (vсомp) across the upper DAC termination resistor (R_{o}). Its presence is due to the mutual coupling of the
two primary windings and the voltage produced by the complementary DAC output driving its associated load ($\mathrm{Z}_{\text {сомр }}$).
With the switch closed as in Figure 4, the current generated by the normal DAC output produces a voltage across its equivalent load $\left(Z_{\text {NORM }}\right)$. The magnitude of this voltage is $v_{\text {NORM }}$ and is the same as vсомр. By superposition, this signal sums with the signal produced by the complementary output, that is $\mathrm{V}_{\mathrm{A}}=\mathrm{v}_{\text {NORM }}+\mathrm{v}_{\text {Comp }}$. But $\mathrm{v}_{\text {NORM }}=\mathrm{V}_{\text {COMP }}$, so $\mathrm{v}_{\mathrm{A}}=2 \mathrm{~V}_{\text {NORM }}$, which is why v_{A} is twice as large as $\mathrm{v}_{\text {norm. }}$ Likewise, v_{B} is twice as large as vcomp.
This yields another pair of equations useful for analyzing the center-tapped circuit:

$$
\begin{equation*}
v_{A}=2 v_{\text {NORM }} \text { and } v_{B}=2 v_{\text {COMP }} \tag{8}
\end{equation*}
$$

IMPEDANCE MATCHING

In many applications, it is desirable that Z_{S} be equal to R_{L}. This is especially true when a reconstruction filter is inserted between the secondary and the load, as shown in Figure 6.

Figure 6. DAC with Reconstruction Filter
Generally, the filter is designed to accommodate equal source and load impedances, which implies that $\mathrm{Z}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}$. Equation 32 in Appendix B shows that $Z_{s}=2 N^{2} R_{0}$. If it is desired that $Z_{s}=R_{L}$, then R_{L} can be substituted for Z_{S}. Solving for R_{o} yields

$$
\begin{equation*}
R_{O}=\frac{R_{L}}{2 N^{2}} \tag{9}
\end{equation*}
$$

With this choice of Ro, Equation 4 through Equation 7 can be simplified as follows:

$$
\begin{align*}
& \left.Z_{\text {NORM }}\right|_{Z_{S}=R_{L}}=\left.Z_{\text {COMP }}\right|_{Z_{S}=R_{L}}=\frac{R_{L}}{8 N^{2}} \tag{10}\\
& Z_{S}=R_{L} \tag{11}\\
& \left.v_{\text {NORM }}\right|_{Z_{S}=R_{L}}=\left.v_{\text {COMP }}\right|_{Z_{S}=R_{L}}=\frac{\sqrt{2} I_{M A X} R_{L}}{32 N^{2}} \tag{12}\\
& \left.v_{S}\right|_{Z_{S}=R_{L}}=\frac{\sqrt{2} I_{M A X} R_{L}}{8 N} \tag{13}
\end{align*}
$$

Also, Equation 8 can be rewritten for the special case of $Z_{S}=R_{L}$ as

$$
\begin{equation*}
\left.v_{A}\right|_{Z_{S}=R_{L}}=\left.v_{B}\right|_{Z_{S}=R_{L}}=\frac{\sqrt{2} I_{M A X} R_{L}}{16 N^{2}} \tag{14}
\end{equation*}
$$

Furthermore, the power delivered to the load is a function of vs, so Equation 7 can be used to express the power delivered to the load as

$$
\begin{equation*}
P_{L}=\frac{v_{S}{ }^{2}}{R_{L}}=\frac{R_{L}}{2}\left(\frac{I_{M A X} R_{O} N}{R_{L}+2 R_{O} N^{2}}\right)^{2} \tag{15}
\end{equation*}
$$

In the case of impedance matching (that is, $\mathrm{Z}_{s}=\mathrm{R}_{\mathrm{L}}$, which implies R_{o}, as given in Equation 9), the P_{L} equation reduces to

$$
\begin{equation*}
\left.P_{L}\right|_{Z_{S}=R_{L}}=\frac{R_{L}}{2}\left(\frac{I_{M A X}}{4 N}\right)^{2} \tag{16}
\end{equation*}
$$

Equation 16 defines the power delivered to the load for the impedance matched case and Equation 15 for the general case. It is interesting to compare Equation 15 and Equation 16 and to consider the effect on P_{L} in Equation 15 when R_{O} is varied. Recall that there is only one particular value of R_{0} that provides impedance matching; namely, $\mathrm{R}_{\mathrm{O}}=\mathrm{R}_{\mathrm{L}} /\left(2 \mathrm{~N}^{2}\right)$. If, however, impedance matching is not a requirement, then there is the freedom to choose any arbitrary value for Ro. By rewriting Equation 15 in a slightly different form (as shown in Equation 17), the effect on P_{L} due to varying Ro becomes apparent. In this form, it is evident that a decrease in Ro results in a decrease in the squared term, and vice versa.

$$
\begin{equation*}
P_{L}=\frac{R_{L}}{2}\left(\frac{I_{M A X} N}{\frac{R_{L}}{R_{O}}+2 N^{2}}\right)^{2} \tag{17}
\end{equation*}
$$

In fact, P_{L} is at a minimum when $\mathrm{R}_{\mathrm{o}}=0$ (that is, $\mathrm{P}_{\mathrm{L}}=0$, as expected) and at a maximum when $\mathrm{R}_{\mathrm{o}}=\infty$. For the latter,

$$
\begin{equation*}
P_{L_{M A X}}=\lim _{R_{O} \rightarrow \infty}\left\{\frac{R_{L}}{2}\left(\frac{I_{M A X} N}{\frac{R_{L}}{R_{O}}+2 N^{2}}\right)^{2}\right\}=\frac{R_{L}}{2}\left(\frac{I_{M A X}}{2 N}\right)^{2} \tag{18}
\end{equation*}
$$

Comparison of Equation 16 and Equation 18 indicates that four times more power $(+6 \mathrm{~dB})$ is delivered to the load when $\mathrm{R}_{\mathrm{O}}=\infty$ as compared to the impedance matched case.

EXAMPLE CALCULATIONS

Here, the previous formulas are used to determine the component values for two different transformer applications. In Example 1, a transformer with a 1:1 turns ratio $(\mathrm{N}=1)$ is employed, while in Example 2, a transformer with a 1:2 turns ratio $(\mathrm{N}=2)$ is employed. Both examples use $\mathrm{I}_{\mathrm{MAX}}=20 \mathrm{~mA}$, $\mathrm{R}_{\mathrm{L}}=50 \Omega$, and assume that impedance matching is employed (that is, $\mathrm{Z}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}$).

Example 1: $I_{M A X}=20 \mathrm{~mA}, R_{L}=50 \Omega$, and $N=1$

From Equation 9,
$\mathrm{R}_{\mathrm{o}}=25 \Omega$ (the value of the two DAC termination resistors)
From Equation 10,
$\mathrm{Z}_{\text {NORM }}=\mathrm{Z}_{\text {COMP }}=6.25 \Omega$ (the load driven by each DAC output pin)
From Equation 14, $\mathrm{v}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=88.39 \mathrm{mV} \mathrm{rms}$ (the voltage across each primary)
From Equation 13,

$$
\mathrm{v}_{\mathrm{s}}=176.8 \mathrm{mV} \text { rms (the voltage across the secondary) }
$$

From Equation 16,

$$
\mathrm{P}_{\mathrm{L}}=0.625 \mathrm{~mW} \text { (the power in the load) }
$$

Example 2: $I_{M A X}=20 \mathrm{~mA}, R_{L}=50 \Omega$, and $N=2$

From Equation 9,
$\mathrm{R}_{\mathrm{o}}=6.25 \Omega$ (the value of the two DAC termination resistors)
From Equation 10,
$Z_{\text {NORM }}=Z_{\text {COMP }}=1.5625 \Omega$ (the load driven by each DAC output pin)
From Equation 14, $\mathrm{v}_{\mathrm{A}}=\mathrm{v}_{\mathrm{B}}=22.10 \mathrm{mV}$ rms (the voltage across each primary)
From Equation 13,

$$
\mathrm{vs}=88.39 \mathrm{mV} \mathrm{rms} \text { (the voltage across the secondary) }
$$

From Equation 16,
$\mathrm{P}_{\mathrm{L}}=0.156 \mathrm{~mW}$ (the power in the load)

REDUCTION OF EVEN HARMONICS

The degree of dc balance between the normal and complementary DAC current sources has a direct impact on the magnitude of even harmonics in the DAC output spectrum. Using a transformer as the output coupling mechanism for the DAC effectively masks any dc imbalance in the DAC outputs. This results in a significant reduction of even harmonics when the spectrum is observed at the output of the transformer.
Transformer coupling can also mask the effects of a dynamic imbalance between the DAC outputs. However, the ability of the transformer to mask an ac imbalance depends on the inherent longitudinal balance of the transformer. Transformers with a high degree of longitudinal balance require that the manufacturer pay special attention to the physical design of the transformer. The most common factor limiting the longitudinal balance of a transformer is parasitic capacitive coupling within the windings. The transformer must be designed in such a way that the parasitic capacitance is evenly distributed relative to the external contacts of the windings.

CONCLUSION

A center-tapped transformer can be used to advantage as the coupling element for a balanced current-output DAC. Formulas have been presented to determine the load ($\mathrm{Z}_{\text {Nовм }}$ and $\mathrm{Z}_{\text {Сомр }}$) and voltage (v_{A} and v_{B}) at each DAC output pin, the voltage (v_{s}) across the load $\left(\mathrm{R}_{\mathrm{L}}\right)$, and the power $\left(\mathrm{P}_{\mathrm{L}}\right)$ delivered to the load $\left(\mathrm{R}_{\mathrm{L}}\right)$. Furthermore, the relationship between the DAC termination resistors (R_{o}), the load resistance $\left(\mathrm{R}_{\mathrm{L}}\right)$, and the transformer turns ratio (N) was defined.

APPENDIX A
 Transformer Basics

The basic behavior of a transformer is governed by its turns ratio (or winding ratio). The turns ratio, N , is the ratio of the number of turns of wire in the secondary windings $\left(\mathrm{N}_{\mathrm{s}}\right)$ to the number of turns of wire in the primary windings $\left(\mathrm{N}_{\mathrm{P}}\right)$; that is, $\mathrm{N}=\mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{P}}$. The turns ratio is often denoted on schematics by two colon-separated numbers (for example, 3:5). An example appears in Figure 7 in which an arbitrary turns ratio of $A: B$ is shown. This leads to the relationship $N=N_{s} / N_{P}=B / A$.

Figure 7. Basic Transformer
In Figure 8, a transformer is shown with its primary winding driven by a voltage source of $\mathrm{V}_{\text {SRC }}$ (volts rms) that has a series resistance of $\mathrm{R}_{\text {SRC }}$ (ohms). The secondary is terminated with an arbitrary resistance of $\mathrm{R}_{\text {TERM. }}$. When a transformer is driven by an ac signal, the ratio of the voltage across the secondary winding to the voltage across the primary winding is the same as the turns ratio; that is, $v_{s} / v_{P}=N$. This gives rise to the concept of voltage transformation. That is, the primary voltage is transformed to a secondary voltage (or vice versa) based on the turns ratio.

Figure 8. Transformer Driven by an AC Source
Furthermore, conservation of energy requires that the power exhibited in the primary winding must equal the power appearing in the load of the secondary winding ($\mathrm{R}_{\text {TERM }}$). Alternatively, the power exhibited in the secondary winding must equal the power appearing in the load of the primary winding ($\mathrm{R}_{\text {SRC }}$). This knowledge makes it possible to treat $\mathrm{R}_{\text {TERM }}$ as though it appears in the primary circuit as Z_{P} (that is, the secondary impedance is transformed to an equivalent primary impedance). On the other hand, $\mathrm{R}_{\text {SRC }}$ can be treated as though it appears in the secondary circuit as Z_{s}, (that is, the primary impedance is transformed to an equivalent secondary impedance). This property of impedance transformation is related to the turns ratio and is expressed as: $\mathrm{Z}_{\mathrm{P}}=\left(1 / \mathrm{N}^{2}\right) \mathrm{R}_{\text {TERM }}$ and $\mathrm{Z}_{\mathrm{S}}=\left(\mathrm{N}^{2}\right) \mathrm{R}_{\text {SRC }}$. The concept of impedance transformation is demonstrated by the equivalent circuits shown in Figure 9.
Note that when selecting a transformer, the reader should be aware that some manufacturers specify the impedance transformation ratio rather than the turns ratio. The turns ratio (N) is found by taking the square root of the impedance transformation ratio.

Figure 9. Transformed Impedance

APPENDIX B

A Balanced Current-Output DAC Driving a Tapped Transformer

Figure 10 shows the general case for a DAC coupled to a tapped transformer. For completeness, the two primary windings are not assumed to be symmetrical (that is, the primary tap does not split the primary winding into two equal halves) and the two DAC termination resistors are not assumed to be equal (R_{A} and R_{B}).

The primary winding is split into two separate circuits as a result of the ground connection at the primary tap. The upper winding is referred to as Primary A and the lower winding as Primary B. The windings are labeled A, B, and C to indicate the number of turns associated with each winding (Primary A, Primary B, and secondary, respectively). The overall turns ratio of the transformer is $1: \mathrm{N}$, where $\mathrm{N}=\mathrm{C} /(\mathrm{A}+\mathrm{B})$. The tapped transformer exhibits the following three independent accoupled networks (the associated turns ratios appear in parentheses):

- Primary A and the secondary ($\mathrm{A}: \mathrm{C}$)
- Primary B and the secondary (B:C)
- Primary A and Primary B (A:B)

Also shown in Figure 10 are the transformed impedances at Primary $A\left(Z_{A}\right)$, Primary $B\left(Z_{B}\right)$, and the secondary $\left(Z_{S}\right)$ along with the voltages that appear across each winding ($\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}$, and v_{s}).

Since the DAC is assumed to be of the balanced, current-output variety, Figure 10 can be redrawn as shown in Figure 11. The DAC is replaced by current sources I_{A} and I_{B}. These represent sinusoidal current sources with a peak-to-peak amplitude of $\mathrm{I}_{\text {MAX }}$ (the maximum output current of the DAC). Also, the center-tap connection is drawn differently than in Figure 10 to clearly show that the signal sources exist as separate current loops.
Z_{A} consists of two parallel impedances. The first is the transformed impedance of the secondary resistor $\left(\mathrm{R}_{\mathrm{L}}\right)$, which is referred to as Z_{1}. The second is the transformed impedance of R_{B}, which is referred to as Z_{2}. Note that the DAC output impedance can be ignored under the assumption that the internal current sources exhibit an infinite impedance (ideally), which means that the internal impedance of the DAC output does not impact the parallel combination of Z_{1} and Z_{2}. Therefore, Z_{A} can be expressed as (see Appendix A regarding impedance transformation):

$$
\begin{align*}
& Z_{A}=Z_{1}\left\|Z_{2}=\left\{\left(\frac{A}{C}\right)^{2} R_{L}\right\}\right\|\left\{\left(\frac{A}{B}\right)^{2} R_{B}\right\} \\
& =\left\{\frac{R_{L} A^{2}}{C^{2}}\right\} \|\left\{\frac{R_{B} A^{2}}{B^{2}}\right\}=\frac{R_{L} R_{B}}{R_{L}\left(\frac{B}{A}\right)^{2}+R_{B}\left(\frac{C}{A}\right)^{2}} \tag{19}
\end{align*}
$$

Note that the symbol || in this and all subsequent equations can be read as "in parallel with."

Figure 10. A Balanced Current-Output DAC Coupled to a Tapped Transformer

Figure 11. DAC Shown as a Dual Current Source

Likewise, the value of Z_{B} consists of two parallel impedances. The first is the transformed impedance of the secondary resistor $\left(R_{L}\right)$, which is referred to as Z_{3}. The second is the transformed impedance of R_{A}, which is referred to as Z_{4}. Therefore, Z_{B} can be expressed as:

$$
\begin{align*}
& Z_{B}=Z_{3}\left\|Z_{4}=\left\{\left(\frac{B}{C}\right)^{2} R_{L}\right\}\right\|\left\{\left(\frac{B}{A}\right)^{2} R_{A}\right\} \\
& =\left\{\frac{R_{L} B^{2}}{C^{2}}\right\} \|\left\{\frac{R_{A} B^{2}}{A^{2}}\right\}=\frac{R_{L} R_{A}}{R_{L}\left(\frac{A}{B}\right)^{2}+R_{A}\left(\frac{C}{B}\right)^{2}} \tag{20}
\end{align*}
$$

Similarly, the value of Z_{S} consists of two parallel impedances. The first is the transformed impedance of R_{A}, which is referred to as Z_{5}. The second is the transformed impedance of R_{B}, which is referred to as Z_{6}. Therefore, Z_{s} can be expressed as:

$$
\begin{align*}
& Z_{S}=Z_{5}\left\|Z_{6}=\left\{\left(\frac{C}{A}\right)^{2} R_{A}\right\}\right\|\left\{\left(\frac{C}{B}\right)^{2} R_{B}\right\} \\
& =\left\{\frac{R_{A} C^{2}}{A^{2}}\right\} \|\left\{\frac{R_{B} C^{2}}{B^{2}}\right\}=\frac{R_{A} R_{B}}{R_{A}\left(\frac{B}{C}\right)^{2}+R_{B}\left(\frac{A}{C}\right)^{2}} \tag{21}
\end{align*}
$$

Referring to Figure 11, the sinusoidal current delivered by the normal and complementary DAC outputs is given by $I_{A}=1 / 2 I_{M A X}$ $+1 / 2 I_{\text {MAX }} \sin (\theta)$ and $I_{B}=1 / 2 I_{\text {MAX }}-1 / 2 I_{\text {MAX }} \sin (\theta)$, respectively. However, for ac analysis, the dc term in both equations can be eliminated, yielding $\mathrm{I}_{\mathrm{A}}=1 / 2 \mathrm{I}_{\mathrm{MAX}} \sin (\theta)$ and $\mathrm{I}_{\mathrm{B}}=-1 / 2 \mathrm{I}_{\mathrm{MAX}} \sin (\theta)$.

Furthermore, in the context of ac analysis, the sine function can be replaced by its rms equivalent, $\sqrt{ } 2 / 2$, which yields

$$
\begin{equation*}
I_{A}=\frac{\sqrt{2}}{4} I_{M A X} \text { and } I_{B}=-\frac{\sqrt{2}}{4} I_{M A X} \tag{22}
\end{equation*}
$$

Note that $\mathrm{I}_{\mathrm{B}}=-\mathrm{I}_{\mathrm{A}}$. From these results, Figure 11 can be redrawn by replacing I_{A} with its rms equivalent and by replacing I_{B} with $-\mathrm{I}_{\mathrm{A}}$ (see Figure 12).
The upper current source drives the side of Primary A marked with a dot, while the lower current source drives the side of Primary B that is not marked with a dot. However, the dot associated with Primary B can be moved to the other side of the Primary B winding without impacting the functionality as long as the connection to the signal source is reversed. Reversal of the signal source is equivalent to simply changing its sign. This is shown in Figure 13, where the sign of the lower current source is changed and the dot is moved to the other side of the Primary B winding.
With the modification in Figure 13 it is no longer necessary to treat I_{A} and I_{B} separately because it is now apparent that

$$
\begin{equation*}
I_{A}=I_{B}=\frac{\sqrt{2}}{4} I_{M A X} \tag{23}
\end{equation*}
$$

Figure 12. Modified AC Equivalent Model

Figure 13. AC Equivalent Model with the Primary B Circuit Modified

Notice that the load as seen by the current source driving Primary A is the parallel combination of R_{A} and Z_{A}. Likewise, the load as seen by the current source driving Primary B is the parallel combination of R_{B} and Z_{B}. These loads are referred to as $Z_{\text {NORM }}$ and $Z_{\text {COMP }}$, since they are the loads as seen by the normal and complementary outputs of the DAC, respectively, and are given as

$$
\begin{align*}
& Z_{\text {NORM }}=R_{A}\left\|Z_{A}=\left\{R_{A}\right\}\right\|\left\{\frac{R_{L} R_{B}}{R_{L}\left(\frac{B}{A}\right)^{2}+R_{B}\left(\frac{C}{A}\right)^{2}}\right\} \\
& =\frac{R_{A} R_{B} R_{L}}{R_{A} R_{L}\left(\frac{B}{A}\right)^{2}+R_{A} R_{B}\left(\frac{C}{A}\right)^{2}+R_{B} R_{L}} \tag{24}\\
& Z_{\text {COMP }}=R_{B}\left\|Z_{B}=\left\{R_{B}\right\}\right\|\left\{\frac{R_{L} R_{A}}{R_{L}\left(\frac{A}{B}\right)^{2}+R_{A}\left(\frac{C}{B}\right)^{2}}\right\} \\
& =\frac{R_{A} R_{B} R_{L}}{R_{B} R_{L}\left(\frac{A}{B}\right)^{2}+R_{A} R_{B}\left(\frac{C}{B}\right)^{2}+R_{A} R_{L}} \tag{25}
\end{align*}
$$

This result makes it possible to express the voltage generated by each DAC output, which is the product of the DAC output current and the load as seen by the DAC output. The normal and complementary DAC output voltages are expressed as

$$
\begin{align*}
& v_{\text {NORM }}=I_{A} Z_{\text {NORM }} \\
& =\left(\frac{\sqrt{2} I_{\text {MAX }}}{4}\right)\left(\frac{R_{A} R_{B} R_{L}}{R_{A} R_{L}\left(\frac{B}{A}\right)^{2}+R_{A} R_{B}\left(\frac{C}{A}\right)^{2}+R_{B} R_{L}}\right) \tag{26}\\
& v_{\text {COMP }}=I_{B} Z_{\text {COMP }} \\
& =\left(\frac{\sqrt{2} I_{M A X}}{4}\right)\left(\frac{R_{A} R_{B} R_{L}}{R_{B} R_{L}\left(\frac{A}{B}\right)^{2}+R_{A} R_{B}\left(\frac{C}{B}\right)^{2}+R_{A} R_{L}}\right) \tag{27}
\end{align*}
$$

where I_{A} and I_{B} have been replaced based on Equation 23.
The secondary voltage (v_{s}) is made up of the contribution of each of the primary voltages multiplied by the associated turns ratio. Specifically,

$$
\begin{gather*}
v_{S}=v_{\text {NORM }}\left(\frac{C}{A}\right)+v_{\text {COMP }}\left(\frac{C}{B}\right)=\left(\frac{\sqrt{2} I_{M A X}}{4}\right) \times \\
\left(\frac{R_{A} R_{B} R_{L}\left(\frac{C}{A}\right)}{R_{A} R_{L}\left(\frac{B}{A}\right)^{2}+R_{A} R_{B}\left(\frac{C}{A}\right)^{2}+R_{B} R_{L}}+\frac{R_{A} R_{B} R_{L}\left(\frac{C}{B}\right)}{R_{B} R_{L}\left(\frac{A}{B}\right)^{2}+R_{A} R_{B}\left(\frac{C}{B}\right)^{2}+R_{A} R_{L}}\right) \tag{28}
\end{gather*}
$$

The two primary voltages (v_{A} and v_{B}) can be derived from v_{S} based on the respective turns ratios, as follows:

$$
\begin{gather*}
v_{A}=v_{S}\left(\frac{A}{C}\right)=\left(\frac{\sqrt{2} I_{M A X}}{4}\right) \times \\
\left(\frac{R_{A} R_{B} R_{L}}{R_{A} R_{L}\left(\frac{B}{A}\right)^{2}+R_{A} R_{B}\left(\frac{C}{A}\right)^{2}+R_{B} R_{L}}+\frac{R_{A} R_{B} R_{L}\left(\frac{A}{B}\right)}{R_{B} R_{L}\left(\frac{A}{B}\right)^{2}+R_{A} R_{B}\left(\frac{C}{B}\right)^{2}+R_{A} R_{L}}\right) \tag{29}
\end{gather*}
$$

$$
v_{B}=v_{S}\left(\frac{B}{C}\right)=\left(\frac{\sqrt{2} I_{M A X}}{4}\right) \times
$$

$$
\begin{equation*}
\left(\frac{R_{A} R_{B} R_{L}\left(\frac{B}{A}\right)}{R_{A} R_{L}\left(\frac{B}{A}\right)^{2}+R_{A} R_{B}\left(\frac{C}{A}\right)^{2}+R_{B} R_{L}}+\frac{R_{A} R_{B} R_{L}}{R_{B} R_{L}\left(\frac{A}{B}\right)^{2}+R_{A} R_{B}\left(\frac{C}{B}\right)^{2}+R_{A} R_{L}}\right) \tag{30}
\end{equation*}
$$

The equations derived thus far will work for any generalized case of a tapped transformer. However, in practice, there are two simplifications that significantly reduce the complexity of these equations. The first is to use a center-tapped transformer (that is, $\mathrm{A}=\mathrm{B}$). The second is to use equal DAC termination resistors (that is, $R_{A}=R_{B}$) of value R_{o}. Additionally, recall that $\mathrm{N}=\mathrm{C} /(\mathrm{B}+\mathrm{A})$. With the stipulation that $\mathrm{A}=\mathrm{B}$, it is possible to show that $\mathrm{C} / \mathrm{B}=\mathrm{C} / \mathrm{A}=2 \mathrm{~N}$. Applying these concepts to the previous equations yields the following simplified equations:

$$
\begin{align*}
& Z_{\text {NORM }}=Z_{\text {COMP }}=\frac{R_{O} R_{L}}{2 R_{L}+4 R_{O} N^{2}} \tag{31}\\
& Z_{S}=2 N^{2} R_{O} \tag{32}\\
& v_{\text {NORM }}=v_{\text {COMP }}=\left(\frac{\sqrt{2} I_{M A X}}{8}\right)\left(\frac{R_{O} R_{L}}{R_{L}+2 R_{O} N^{2}}\right) \tag{33}\\
& v_{S}=\left(\frac{\sqrt{2} I_{M A X}}{2}\right)\left(\frac{N R_{O} R_{L}}{R_{L}+2 R_{O} N^{2}}\right) \tag{34}
\end{align*}
$$

NOTES

AN-912

NOTES

