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INTRODUCTION 
Data transmission systems that must operate in a bandwidth-
limited environment must contend with the fact that constraining 
the bandwidth of the transmitted signal necessarily increases 
the likelihood of a decoding error at the receiver. Bandwidth 
limited systems often employ pulse-shaping techniques that 
allow for bandwidth containment while minimizing the 
likelihood of errors at the receiver.  

Before digital filters were available, pulse shaping was accom-
plished with analog filters. Unfortunately, the response of an 
analog filter is affected by variations in component values due 
to specified tolerance ranges, temperature, and aging. The 
response of a digital filter, by contrast, is solely dependent on 
the filter coefficients, which are invariant to both temperature 
and aging. Therefore, digital pulse-shaping filters have become 
an integral part of many digital data transmission systems. This 
application note describes the fundamentals of pulse shaping 
and the tradeoffs associated with the design of digital pulse-
shaping filters. 

THE RECTANGULAR PULSE 
The most basic information unit in a digital transmission 
scheme is a rectangular pulse. It has a defined amplitude,  
A, and defined duration, T. Such a pulse is shown in Figure 1, 
where A = 1, T = To, with the pulse centered about the time 
origin at t = 0. Typically, a sequence of such pulses (each 
delayed by T seconds relative to the previous one) constitutes 
the transmission of information. The information, in this  
case, is encoded in the amplitude of the pulse. The simplest  
case is when a binary 0 is encoded as the absence of a pulse  
(A = 0) and a binary 1 is encoded as the presence of a pulse  
(A = constant). Since each pulse spans the period T, the maxi-
mum pulse rate is 1/T pulses per second, which leads to a data 
transmission rate of 1/T bits per second. 

In more sophisticated data transmission schemes, the pulse 
amplitude can take on both positive and negative values with 
multiple discrete amplitudes used to encode more than one bit 
into the pulse. For example, four levels can be used to encode 
two bits in which each level is uniquely associated with one of 
the four possible bit patterns. In some cases, multiple pulses are 
transmitted simultaneously, which allows even more bits to be 
encoded (see the Multibit Symbol Encoding section). 
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Figure 1. A Single Rectangular Pulse (T = TO, A = 1) 

In sophisticated transmission systems, multiple amplitudes 
and/or multiple simultaneous pulses transmit a single unit of 
data. As such, each single unit of data can represent more than 
one bit. The group of bits that a single unit of data represents is 
referred to as a symbol. The trivial case, of course, is the single 
bipolar pulse of Figure 1 where each unit of data is a single bit 
(symbol and bit are synonymous in this case). 

The pulses used to transmit symbols occupy a fixed time inter-
val, T (as in Figure 1). Thus, the pulse rate is 1/T pulses per 
second, which leads to a symbol rate of 1/T symbols per second. 
The unit, symbols per second, is often referred to as baud. The 
data transmission rate in bits per second is the baud rate 
multiplied by the number of bits represented by each symbol. 
For example, if a symbol represents four bits, then the bit rate is 
four times the symbol rate. This means that a lower transmission 
rate can be used to transmit symbols as opposed to directly 
transmitting bits, which is the primary reason that the more 
sophisticated data transmission systems encode groups of bits 
into symbols. The remainder of this application note focuses on 
a single bipolar pulse for transmitting one bit at a time. That is, a 
logical 1 is represented by the presence of a pulse of unit 
amplitude and a logical 0 by the absence of a pulse (that is, zero 
amplitude). The concepts discussed in this application note, 
however, extend directly to the more sophisticated encoding 
schemes.
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SPECTRUM OF A RECTANGULAR PULSE 
The frequency content (or spectrum) associated with the pulse 
of Figure 1 is shown in Figure 2. The spectrum of the pulse is 
obtained by applying the Fourier transform to the time domain 
waveform of Figure 1. The shape of the spectrum is the well-
known sin(x)/x response, which is often referred to as the sinc 
response. The null points (where the spectral magnitude is 
zero) always occur at integer multiples of fO, which is the pulse 
(or symbol) rate. Therefore, the null points are solely determined 
by the pulse period, T. In theory, the nulls and peaks extend in 
frequency out to ±∞ with the peaks approaching zero magnitude. 
However, because the frequency span of Figure 2 is only ±4 fO, 
only four null points are evident on each side of the f = 0 line. 
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Figure 2. Spectrum of a Single Rectangular Pulse of Duration To 

The general shape of the spectrum that appears in Figure 2 is 
the same regardless of the amplitude of the rectangular pulse. 
Although the amplitude of the rectangular pulse proportionally 
affects the magnitude of the peaks, it has no effect on the 
frequency location of the null points. Therefore, encoding 
schemes that rely on pulse amplitude variations still produce  
a spectrum similar to that of Figure 2 even though the pulse 
amplitude may vary from pulse to pulse. 

THE RAISED COSINE FILTER 
As shown in Figure 2, the spectrum of a rectangular pulse spans 
infinite frequency. In many data transmission applications, the 
transmitted signal must be restricted to a certain bandwidth. 
This can be due to either system design constraints or govern-
ment regulation. In such instances, the infinite bandwidth 
associated with a rectangular pulse is not acceptable. The 
bandwidth of the rectangular pulse can be limited, however, by 
forcing it to pass through a low-pass filter. The act of filtering 
the pulse causes its shape to change from purely rectangular to a 
smooth contour without sharp edges. Therefore, the act of 
filtering rectangular data pulses is often referred to as pulse 
shaping. 

Unfortunately, limiting the bandwidth of the rectangular pulse 
necessarily introduces a damped oscillation. That is, the 
rectangular pulse exhibits nonzero amplitude only during the 

pulse interval, whereas the smoothed (or filtered) pulse exhibits 
ripples both before and after the pulse interval. At the receiver, 
the ripples can lead to incorrect decoding of the data, because 
the ripples associated with one pulse interfere with the pulses 
before and after it. However, the choice of a proper filter can 
yield the desired bandwidth reduction while maintaining a time 
domain shape that does not interfere with the decoding process 
of the receiver.  

This filter is the well-known raised cosine filter and its 
frequency response is given by  
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where: 
ω is radian frequency (2πf). 
τ is the pulse period (equivalent to TO in Figure 1). 
α is the roll off factor.  
c is equal to π (1 − α)/τ. 
d is equal to π (1 + α)/τ. 

A plot of the raised cosine frequency response is shown in 
Figure 3 (normalized to τ = 1). The raised cosine filter gets its 
name from the shape of its frequency response, rather than its 
impulse (or time domain) response. 
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Figure 3. The Raised Cosine Frequency Response 

The response characteristic of the raised cosine filter is 
adjustable via a parameter known as the roll off factor 
represented by the symbol α, where 0 ≤ α ≤ 1.  

In the case of α = 0, the frequency response is confined to  
½ fO (the green trace).  

For α = 1, the frequency response is confined to fO (the  
blue trace).  

For values of α between 0 and 1, the frequency response is 
restricted to an intermediate range between ½ fO and fO (the  
red trace shows the response for α = ½).  
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The dashed black trace is the spectrum of a rectangular pulse 
and is included for the sake of comparison. 

There are three significant frequency points associated with the 
raised cosine response. The first is known as the Nyquist frequency, 
which occurs at ½ fO (that is, ½ the pulse rate). According to 
communication theory, this is the minimum possible bandwidth 
that can be used to transmit data without loss of information. 
Note that the raised cosine response crosses through the ½ 
amplitude point at ½ fo regardless of the value of α. The second 
significant frequency point is the stop band frequency (fSTOP) 
defined as the frequency at which the response first reaches 
zero magnitude. It is related to α by: 

2
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The third, and final, significant frequency point is the pass band 
frequency (fPASS) defined as the frequency at which the response 
first begins to depart from its peak magnitude. The raised 
cosine response is perfectly flat from f = 0 (DC) to fPASS, where: 
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Sometimes it is desirable to implement the raised cosine 
response as the product of two identical responses, one at the 
transmitter and the other at the receiver. In such cases, the 
response becomes a square-root raised cosine response since 
the product of the two responses yields the desired raised cosine 
response. The square-root raised cosine response is given below. 
Note that the variable definitions are the same as for the raised 
cosine response. 
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PULSE SHAPING 
The consequence of pulse shaping is that it distorts the shape of 
the original time domain rectangular pulse into a smoothly 
rounded pulse with damped oscillations (ripples) before and 
after the ±½ To points. The ripples result from the convolution 
of the rectangular pulse with the raised cosine impulse response 
(convolution is the process of filtering in the time domain). The 
impulse response (time domain) of the raised cosine filter is 
shown in Figure 4 where the color scheme is the same as that 
used in Figure 3. That is, the green trace corresponds to the 
impulse response for α = 0, the red trace for α = ½, and the blue 
trace for  α = 1. The oscillation observed in the impulse response 
is the unavoidable consequence of limiting the bandwidth of the 
filter to something less than infinity. However, the beauty of the 
raised cosine filter is that the zero crossings of the impulse 
response coincide with the midpoint of adjacent pulses. As long 
as the receiver makes its decision at the middle of each pulse  

interval, then the ripples from adjacent pulses are crossing 
through zero. Therefore, they do not interfere with the decision 
making process. 

1.0

0.5

0

1.5

–0.5
–4 –3 –2 –1 0 1 2 3 4

A
M

PL
IT

U
D

E

FREQUENCY (NORMALIZED TO SYMBOL PERIOD)

RAISED COSINE TIME DOMAIN RESPONSE

–TO
2

TO
2

α = 0 α = 1/2

α = 1

06
89

7-
00

4

 
Figure 4. The Raised Cosine Time Domain Response 

Note that as α is increased from 0 to 1 the pass band of the filter 
is increased (see Figure 3) while the amplitude of the time 
domain ripples is decreased (see Figure 4). Thus, α = 0 offers 
the most efficient use of bandwidth, but this comes at the cost 
of more pronounced ripples in the time domain response 
(relative to α > 0). Choosing α > 0 causes an increase in the 
bandwidth of the transmitted spectrum, but this negative effect 
is offset by a reduction of the ripple amplitude in the time 
domain response. 

The raised cosine response is beneficial because it produces 
time domain ripples that cross through zero at the middle of 
adjacent pulse intervals. If the raised cosine pulse exhibits zero 
crossings at the midpoint of adjacent pulse intervals regardless 
of the choice of α, then why be concerned about the ripple 
amplitude? Why not just choose α = 0 to get the minimum 
bandwidth and accept the maximum ripple amplitude? The 
reason is that the receiver is usually not capable of sampling at 
exactly the midpoint of each pulse. Since the ripples only 
exhibit zero amplitude at the middle of adjacent pulse intervals, 
then a receiver sample that is not coincident with the midpoint 
of a pulse interval necessarily samples some ripple from 
adjacent pulses.  

This is a source of decision-making error at the receiver known 
as intersymbol interference (ISI). Reduced bandwidth means 
larger ripple, which exacerbates ISI and increases the likelihood 
of an incorrect decision (that is, error) at the receiver. Obviously, 
a trade off exists between bandwidth containment in the fre-
quency domain and ripple attenuation in the time domain. It is 
this trade off of bandwidth containment vs. ripple amplitude 
that must be considered by design engineers when developing a 
data transmission system that employs pulse shaping. 
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DIGITAL PULSE-SHAPING FILTERS 
Raised cosine filters are frequently implemented as digital 
rather than analog filters. A digital implementation means that 
the filter is subject to the constraints of a Nyquist system. That 
is, the filter sample rate must be twice that of the input band-
width in order to avoid aliasing. If a digital pulse shaping filter 
operates at a sample rate of fO (the symbol rate), then the 
maximum input bandwidth must be limited to ½ fO. This poses 
a problem because Figure 3 shows that the required bandwidth 
is greater than ½ fO for α > 0 and can extend to fo for α = 1. The 
implication is that digital pulse-shaping filters must oversample 
the symbol pulses by at least a factor of two in order to 
accommodate bandwidths as high as fO. 

Although digital filters typically produce a desired frequency 
domain response, they actually perform the filtering task in the 
time domain. That is, the digital filter coefficients (taps) define 
the impulse response of the filter (a time domain characteristic), 
which produces the desired frequency response. Therefore, the 
digital filter design task is greatly simplified with knowledge of 
the desired impulse response rather than the frequency response. 
To this end, the impulse response of the raised cosine filter is 
given in the following equation. 
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The variable definitions are the same as for the raised cosine 
frequency response, except that the time variable, t, replaces the 
frequency variable, ω. Although h(t) is indeterminate for t = 0 
and undefined for t = ±τ/(2α), it can be shown that: 
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Likewise, the impulse response of the square-root raised cosine 
filter is given by 
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Again, h(t) is undefined at t = 0, but it can be shown that 
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It turns out that h(t) is also undefined at t = ± τ/(4α), but 
without remedy. Therefore, avoid designing a square-root raised 
cosine filter with any taps that coincide with this value of t.  

Generally, digital pulse-shaping filters are implemented as finite 
impulse response (FIR) filters rather than as infinite impulse 
response (IIR) filters for several reasons.  

• FIR filters can be easily designed with linear phase 
response, which can be of paramount importance in 
applications that must guarantee constant group delay.  

• FIR filters do not suffer from limit cycles, which often 
plague IIR designs. Limit cycles are small oscillations that 
persist at the output of the filter even when the input signal 
is removed.  

• FIR filters are intrinsically stable because they do not 
incorporate feedback. The IIR architecture, on the other 
hand, does have feedback so the choice of coefficients has 
an impact on stability. In fact, an IIR filter can oscillate if 
care is not taken to ensure an unconditionally stable design.  

• If the filter is implemented in hardware (as opposed to 
software), FIR filters lend themselves to a polyphase 
architecture, which significantly reduces the amount of 
hardware required. This is important because an IIR filter 
generally requires fewer filter coefficients (or taps) than an 
FIR filter with a similar frequency response characteristic. 
Since the amount of hardware required to implement the 
filter is directly proportional to the number of taps, FIR 
filters tend to be more hardware intensive. However, the 
hardware reduction offered by the polyphase option tends 
to make the IIR hardware advantage less significant. 

For the sake of brevity, only the FIR implementation is 
considered in this application note. However, regardless of 
whether one chooses a FIR or IIR digital filter implementation, 
the filter response is, at best, an approximation of the ideal 
response (raised cosine in this case). The degree to which the 
filter response matches the ideal response is dependent on two 
parameters: the amount of over sampling (M) and the number 
of taps (N). 

Generally, N is chosen to be an integer multiple of M when 
designing a FIR for the purpose of pulse shaping. This guaran-
tees that the impulse response of the filter spans an integer 
number of pulses. As such, the number of filter taps is given by  

N = D × M 

where D and M are both integers.  

The filter order is odd or even based on whether N is odd or 
even. If a particular filter order is preferred, then it is customary 
to add 1 to N to yield the desired order. Note that the value of D 
defines the number of symbols spanned by the impulse response 
of the filter. Generally, a larger D means a better approximation 
of the ideal response. Unfortunately, the complexity of the filter 
is proportional to D, so it is advantageous to use the smallest 
value of D that meets the filtering requirements. Determination 
of the smallest acceptable value of D can be a daunting task, 
especially if the filter must be designed to handle a wide range 
of α values. This is because the frequency response of the filter 
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is affected by the roll off factor (α), the number of symbols 
spanned by the impulse response (D), the oversampling factor 
(M), and the filter order (odd or even number of taps). 

To assist with the choice of D, a collection of surface plots are 
provided on the following pages. These plots are intended as a 
guide for selecting a workable value of D for a given set of 
filtering requirements. The plots were produced from simula-
tions that used floating-point operations. Therefore, the plots 
do not include the quantization and/or truncation errors that 
must be considered if a fixed-point design is employed. 
Generally, quantization and truncation tend to reduce stop 
band attenuation, which makes applications with an aggressive 
stop band requirement more sensitive to their effects. 

The α and D values covered by each plot are 0.05 ≤ α ≤ 1 and  
2 ≤ D ≤ 20. The plots are organized into three major groups 
corresponding to the three significant frequency points: pass-
band edge, Nyquist frequency, and stop band. All the plots 
employ decibel units on the vertical scale. 

• Group 1: pass band edge frequency, f = ½(1 − α)fO.  

Group 1 plots the error of the filter response at the pass-
band edge frequency relative to 0 dB (or unity, which is the 
magnitude of the ideal raised cosine response at the pass-
band edge). 

• Group 2: Nyquist frequency, f = ½ fO (which is ½ the 
symbol rate). 
Group 2 plots the error of the filter response at the Nyquist 
frequency relative to −6 dB (or ½, which is the magnitude 
of the ideal raised cosine response at the Nyquist frequency). 

• Group 3: the stop band, f ≥ ½(1 + α)fO.  
Group 3 plots the minimum stop band attenuation, which 
is the smallest attenuation value that occurs across the 
entire stop band: ½(1 + α)fO ≤ f ≤ ½ MfO.  

Each group consists of four plots arranged in a 2 × 2 grid. The 
left side is for an even order filter and the right side is for an 
odd order filter. The upper two plots are for an oversampling 
factor of 2 (M = 2) and the lower two plots are for an over-
sampling factor of 7 (M = 7). Only two oversampling factors are 
shown for the sake of brevity. The goal of the plots is to indicate 
general trends rather than to serve as a comprehensive collection 
of data. 

Inspection of the plots reveals some clues about the relation-
ships between the various design parameters (M, D, and α).  

• As α approaches zero, D must increase dramatically to 
maintain a given level of pass band, stop band, and Nyquist 
performance. Thus, a filter design that accommodates both 
small and large values of α must be designed with a D value 
large enough to satisfy the filter requirements for the 
smallest α value.  

• The smallest acceptable value of D is primarily driven by 
the minimum stop band attenuation requirement. This is 
especially true for small α values. For example, when  
α = 1, the minimum stop band attenuation is nearly 80 dB 
for D = 20, but the same value of D only yields about  
20 dB attenuation when α = 0.05.  

• The amount of oversampling (M) has little impact on filter 
performance other than to reduce the variation in stop 
band attenuation for small changes in D or α. 

• The choice of an even or odd filter design appears to be 
academic. The odd design offers an advantage at the 
Nyquist frequency point, but only for small D and α. 
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GROUP 1 PLOTS: ERROR AT THE EDGE OF THE PASS BAND 
The plots shown in Figure 5 through Figure 8 correspond to the pass band edge frequency, f = ½(1 −  α)fO. 

SYMBOL DEPTHALPHA
PA

SS
 B

A
N

D
 E

R
R

O
R

 (d
B

)

06
89

7-
00

5
 

Figure 5. M = 2, Even Order Filter 
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Figure 6. M = 2, Odd Order Filter 
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Figure 7. M = 7, Even Order Filter 
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Figure 8. M = 7, Odd Order Filter 
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GROUP 2 PLOTS: ERROR AT THE NYQUIST FREQUENCY 
The plots shown in Figure 9 through Figure 12 correspond to the Nyquist frequency, f = ½ fO. 
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Figure 9. M = 2, Even Order Filter 
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Figure 10. M = 2, Odd Order Filter 
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Figure 11. M = 7, Even Order Filter 
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Figure 12. M = 7, Odd Order Filter 
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GROUP 3 PLOTS: MINIMUM STOP BAND ATTENUATION 
The plots shown in Figure 13 through Figure 16 correspond to the stop band, f ≥ ½(1 + α)fO. 
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Figure 13. M = 2, Even Order Filter 
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Figure 14. M = 2, Odd Order Filter 
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Figure 15. M = 7, Even Order Filter 
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Figure 16. M = 7, Odd Order Filter 
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MULTIBIT SYMBOL ENCODING
 

A commonly used multibit pulse-encoding scheme is quad-
rature amplitude modulation (QAM). QAM relies on two 
mechanisms to encode bits. One is the pulse amplitude, which 
can assume both positive and negative values, and the other is 
the use of two simultaneous pulses. The latter requires two 
independent baseband channels, one for each pulse. One 
channel is referred to as the I, or in-phase, channel and the 
other as the Q, or quadrature, channel. 

QAM comes in a variety of forms depending on the number  
of bits encoded into each pair of pulses. For example, 16 QAM 
uses a 4-bit symbol to represent 16 possible symbol values;  
64 QAM uses a 6-bit symbol to represent 64 possible symbol 
values; and 256 QAM uses an 8-bit symbol to represent 256 
possible symbol values. Generally, QAM symbols encode an 
even number of bits (4, 6, 8 and so on), but odd bit schemes, 
though uncommon, exist as well.  

For a more detailed look at the QAM encoding scheme, con-
sider 16 QAM. Like the other QAM versions, 16 QAM uses  
two simultaneous pulses to encode a symbol. Therefore, for  
16 QAM, each pulse must be able to assume one of four levels, 
because two pulses with four possible levels per pulse yields  
16 possible combinations. The four possible pulse levels are: 
+1/3 AMAX, −1/3 AMAX, +AMAX, and −AMAX (AMAX denotes the 
maximum pulse amplitude). An example of the I and Q pulses 
for 16 QAM is shown in Figure 17 (included are the symbol 
values taken from Table 1.).  

06
89

7-
01

8

0

I
PULSES

0

–AMAX

–AMAX/3

–AMAX/3

AMAX/3

AMAX/3

AMAX

AMAX

–AMAX

Q
PULSES

0100 1010001010010101011111010000 SYMBOL
VALUES

 
Figure 17. I and Q Pulses for 16 QAM 

The amplitude values displayed on the vertical axes of Figure 17 
provide equal steps in amplitude from the lowest to the highest 
value. With this arrangement, the levels of the two simultaneous 
pulses identify a unique 4-bit symbol. For example, let the 
amplitude of the I and Q pulses be represented by a coordinate 
pair, (Ik, Qm), where the index values (k and m) range from 0 to 
3 and the amplitudes (Ik and Qm) take on values of ±1/3 AMAX or 
±AMAX. Assigning amplitude pairs to symbol values, as shown in 
Table 1, yields the constellation diagram shown in Figure 18. 

Table 1.  
Symbol (Binary) k m Ik Qm 
0000 0 0 1/3 AMAX 1/3 AMAX 
0001 0 1 1/3 AMAX AMAX 
0010 0 2 +1/3 AMAX −1/3 AMAX 
0011 0 3 +1/3 AMAX −AMAX 
0100 1 0 AMAX 1/3 AMAX 
0101 1 1 AMAX AMAX 
0110 1 2 +AMAX −1/3 AMAX 
0111 1 3 +AMAX −AMAX 
1000 2 0 −1/3 AMAX +1/3 AMAX 
1001 2 1 −1/3 AMAX +AMAX 
1010 2 2 −1/3 AMAX −1/3 AMAX 
1011 2 3 −1/3 AMAX −AMAX 
1100 3 0 −AMAX +1/3 AMAX 
1101 3 1 −AMAX +AMAX 
1110 3 2 −AMAX −1/3 AMAX 
1111 3 3 −AMAX −AMAX 
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Figure 18. Constellation Diagram 
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