4T2R Direct RF Transmitter and Observation Receiver

FEATURES

- Flexible reconfigurable radio common platform design
- Transmit/receive channel bandwidth up to $1.2 \mathrm{GHz} / 2.4 \mathrm{GHz}$ (4T2R)
- RFDAC/RFADC RF frequency range up to 7.5 GHz
- On-chip PLL with multichip synchronization
- External RFCLK input option
- Versatile digital features
- Configurable digital up/down conversion (DDC and DUC)
- 8 fine complex DUCs and 4 coarse complex DUCs
- 8 fine complex DDCs and 4 coarse complex DDCs, 2 independent
- 48-bit NCO per DUC/DDC
- Programmable 192-tap PFIR filter for receive equalization
- Supports 4 different profile settings loaded via GPIO
- Receive AGC support
- Fast detect with low latency for fast AGC control
- Signal monitor for slow AGC control
- Dedicated AGC support pins
- Transmit DPD support
- Programmable delay and gain per transmit data path
- Coarse DDC delay adjust for DPD observation path
- Auxiliary features
- Power amplifier downstream protection circuitry
- On-chip temperature monitoring unit
- Programmable GPIO pins supporting different user configurations
- ADC clock driver with selectable divide ratios
- TDD power savings option and sharing ADCs
- SERDES JESD204B/JESD204C interface, 16 lanes up to 24.75 Gbps
- 8 lanes per each DAC and ADC
- JESD204B compatible with maximum 15.5 Gbps lane rate
- JESD204C compatible with maximum 24.75 Gbps lane rate
- Supports real or complex digital data (8-bit, 12-bit, 16-bit, or 24-bit)
- $15 \mathrm{~mm} \times 15 \mathrm{~mm}, 324$-ball BGA with 0.8 mm pitch

APPLICATIONS

- Wireless communications infrastructure
- W-CDMA, LTE, LTE-A, Massive-MIMO
- Microwave point-to-point, E-band, and 5G mm Wave
- Broadband communications systems
- DOCSIS 3.1 and 4.0 CMTS
- Communications test and measurement system

GENERAL DESCRIPTION

The AD9986 is a highly integrated device with a 16 -bit, 12 GSPS maximum sample rate RF DAC core, and a 12-bit, 6 GSPS rate RF ADC core. The AD9986 supports four transmitter channels and two receiver channels with four transmitter, two receiver (4T2R) configuration. The AD9986 is well suited for 2-antenna and 4-antenna transmitter applications requiring a wide bandwidth observation receiver path for the digital predistortion. The AD9986 supports up to a 6 GSPS complex transmit and receive data rate in single channel mode. The maximum radio channel bandwidth supported is 1.2 GHz and 2.4 GHz for the transmit and receive paths, respectively (4T2R). The AD9986 features a 16 lane, 24.75 Gbps JESD204C or 15.5 Gbps JESD204B serial data port, an on-chip clock multiplier, and digital signal processing capability targeted at multiband, direct-to-RF radio applications.

TABLE OF CONTENTS

Features 1
Applications 1
General Description. 1
Functional Block Diagram 3
Specifications 4
Recommended Operating Conditions 4
Power Consumption 4
DAC DC Specifications 5
ADC DC Specifications 6
Clock Input and Phase-Locked Loop (PLL)
Frequency Specifications 6
DAC and ADC Sample Rate Specifications. 7
Input Data Rates Specifications 8
NCO Frequency Specifications9
JESD204B and JESD204C Interface
Electrical and Speed Specifications 9
CMOS Pin Specifications 11
DAC AC Specifications 11
ADC AC Specifications. 13
Timing Specifications 15
Absolute Maximum Ratings 17
Reflow Profile 17
Thermal Resistance 17
ESD Caution 17
Pin Configuration and Function Descriptions 18
Typical Performance Characteristics 23
DAC 23
ADC 28
Theory of Operation. 35
Applications Information 36
Outline Dimensions 37
Ordering Guide 37
Evaluation Boards 37

REVISION HISTORY

6/2021—Revision 0: Initial Version

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

Successful DAC calibration is required during the device initialization phase that occurs shortly after power-up to ensure long-term reliability of the DAC core circuitry. Refer to UG-1578, the device user guide, for more information on device initialization.

Table 1.

Parameter	Min	Typ	Max	Unit
OPERATING JUNCTION TEMPERATURE (T_{J})	-40		+120	${ }^{\circ} \mathrm{C}$
```ANALOG SUPPLY VOLTAGE RANGE AVDD2, BVDD2, RVDD2 AVDD1, AVDD1_ADC, CLKVDD1, FVDD1, VDD1_NVG```	$\begin{array}{\|l\|} 1.9 \\ 0.95 \end{array}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
DIGITAL SUPPLY VOLTAGE RANGE   DVDD1, DVDD1_RT, DCLKVDD1, DAVDD1 DVDD1P8	$\begin{aligned} & 0.95 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 2.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
SERIALIZER/DESERIALIZER (SERDES) SUPPLY VOLTAGE RANGE SVDD2_PLL   SVDD1, SVDD1_PLL	$\begin{array}{\|l\|} 1.9 \\ 0.95 \end{array}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

## POWER CONSUMPTION

Typical at nominal supplies and maximum at $5 \%$ supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}$ varies between $-40^{\circ} \mathrm{C}$ and $+120^{\circ} \mathrm{C}$. For the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.
DAC datapath with a complex I/Q data rate frequency (fla DATA) $=1500 \mathrm{MSPS}$, interpolation of $8 x$, and DAC frequency (fIAC) of 12 GSPS . JRx mode of $15 C(L=8, M=8, F=2, S=1, K=128, E=1, N=16, N P=16)$.
ADC datapath with a complex $f_{I Q}$ DATA $=3000$ MSPS, decimation of $2 x$, and ADC sample rate ( $f_{A D C}$ ) of 6 GSPS. JTx mode of $18 C(L=8, M=4$, $F=1, S=1, K=128, E=1, N=16, N P=16)$.
Note that the AD9986 does not have the option to bypass the digital up and down converters in the transmit and receive paths, respectively.
See the UG-1578 for further information on the JESD204B and JESD204C mode configurations, and a detailed description of the settings referenced throughout this data sheet.

Parameter	Test Conditions/Comments	Min Typ	Max	Unit
CURRENTS				
AVDD2 ( $\mathrm{I}_{\text {AVDD2 }}$ )	2.0 V supply	195	204	mA
BVDD2 ( livida ) + RVDD2 ( ${ }_{\text {RVVDD2 }}$ )	2.0 V supply	290	340	mA
	2.0 V supply	45	55	mA
Power Dissipation for 2 V Supplies	2.0 V supply total power dissipation	1.06	1.20	W
PLLCLKVDD1 ( lpllclkvdi $^{\text {) }}$	1.0 V supply	15	25	mA
AVDD1 ( $\mathrm{I}_{\text {AVDD1 }}$ ) + DCLKVDD1 (loclkvDD1	1.0 V supply	975	1180	mA
AVDD1_ADC ( $\mathrm{I}_{\text {AVDD1_ADC }}$ )	1.0 V supply	1725	2100	mA
CLKVDD1 ( $\mathrm{I}_{\text {cLKVDD1 }}$ )	1.0 V supply	90	150	mA
FVDD1 (IFVDD1)	1.0 V supply	45	80	mA
VDD1_NVG (lvDD1_NvG)	1.0 V supply	280	360	mA
DAVDD1 ( $\mathrm{L}_{\text {avDD1 }}$ )	1.0 V supply	1575	1840	mA
DVDD1 ( $\mathrm{IVVDD1}^{\text {) }}$	1.0 V supply	3010	4070	mA
DVDD1_RT (ldVDD1_RT)	1.0 V supply	630	760	mA
SVDD1 ( ${ }_{\text {SVDD1 }}$ ) + SVDD1_PLL ( ${ }_{\text {SVDD1_PLL }}$ )	1.0 V supply	1875	2510	mA
Power Dissipation for 1 V Supplies	1.0 V supply total power dissipation	10.22	13.08	W
DVDD1P8 (IDVDD1P8)	1.8 V supply	7	10	mA

## SPECIFICATIONS

Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Total Power Dissipation	Total power dissipation of 2 V and 1 V supplies	11.29	14.30	W	

## DAC DC SPECIFICATIONS

Nominal supplies with DAC output full-scale current (loutrs) $=26 \mathrm{~mA}$, unless otherwise noted. ADC setup in 6 GSPS, full bandwidth mode (all digital downconverters bypassed). For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, and for the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.


1 For dc-coupled applications, the maximum full-scale output current is limited by the maximum $\mathrm{VCM}_{\text {OUT }}$ specification.
2 The actual measured full-scale power is frequency dependent due to DAC sinc response, impedance mismatch loss, and balun insertion loss.

## SPECIFICATIONS

## ADC DC SPECIFICATIONS

ADC setup in 6 GSPS, full bandwidth mode (all digital downconverters bypassed). For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$, and for the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4. ADC DC Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
ADC RESOLUTION		12			Bit
ADC ACCURACY   No Missing Codes   Offset Error Offset Matching Gain Error Gain Matching DNL INL			Guaranteed 0.04 0.03 1.5 0.6 0.32 1.38		$\begin{aligned} & \text { \%FSR } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
ADC ANALOG INPUTS   Differential Input Voltage Full-Scale Sine Wave Input Power   Common-Mode Input Voltage (VCM ${ }_{i N}$ ) Differential Input Resistance Differential Input Capacitance Return Loss	ADCxP and ADCxN   Input power level resulting in 0 dBFS tone level on fast Fourier transform (FFT)   AC-coupled, equal to voltage at VCMx for ADCx input   2.7 GHz   2.7 GHz to 3.8 GHz   3.8 GHz to 5.4 GHz		$\begin{aligned} & 1.475 \\ & 3.9 \\ & 1 \\ & 100 \\ & 0.4 \\ & -4.3 \\ & -3.6 \\ & -2.9 \end{aligned}$		Vp-p $d B m$ $V$ $\Omega$ $p F$ $d B$ $d B$ $d B$

## CLOCK INPUT AND PHASE-LOCKED LOOP (PLL) FREQUENCY SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 5.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
CLOCK INPUTS (CLKINP, CLKINN) FREQUENCY RANGES		25		12000	MHz
PHASE FREQUENCY DETECTOR (PFD) INPUT FREQUENCY RANGES		25		750	MHz
FREQUENCY RANGES ACCORDING TO CLOCK PATH CONFIGURATION   Direct Clock (PLL Off)   PLL Reference Clock (PLL On)	M divider set to divide by 1   M divider set to divide by 2   M divider set to divide by 3   M divider set to divide by 4	$\begin{array}{\|l} 2900^{1} \\ 25 \\ 50 \\ 75 \\ 100 \end{array}$		$\begin{aligned} & 12000 \\ & 750 \\ & 1500 \\ & 2250 \\ & 3000 \end{aligned}$	MHz   MHz   MHz   MHz   MHz
PLL VOLTAGE CONTROLLED OSCILLATOR (VCO) FREQUENCY RANGES   VCO Output   Divide by 1   Divide by 2   Divide by 3   Divide by 4	D divider set to divide by 1   D divider set to divide by 2   D divider set to divide by 3   D divider set to divide by 4	$\begin{array}{\|l} 5.8 \\ 2.9 \\ 1.93333 \\ 1.45 \end{array}$		$\begin{aligned} & 12 \\ & 6 \\ & 4 \\ & 3 \end{aligned}$	GHz   GHz   GHz   GHz

## SPECIFICATIONS

Table 5.

Parameter	Test Conditions/Comments	Min	Typ
CLOCK OUTPUTS (ADC CLOCK DRIVER)	MDCDRVP and ADCDRVN	Unit	
Differential Output Voltage Magnitude ${ }^{2}$	1.5 GHz		
	2.0 GHz	740	mV p-p
	3 GHz	690	mV p-p
Differential Output Resistance	6 GHz	640	mV p-p
Common-Mode Voltage		490	mV p-p

1 The minimum direct clock frequency is limited by the minimum DAC (core) sample rate, as specified in Table 6 . The clock receiver can accommodate the full range between the minimum PLL reference clock frequency and the maximum direct clock frequency.
${ }^{2}$ Measured with differential $100 \Omega$ load and less than 2 mm of printed circuit board (PCB) trace from package ball.

## DAC AND ADC SAMPLE RATE SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply. For the typical values, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 6. DAC Sample Rate Specifications

Parameter	Min	Typ	Max	Unit
DAC SAMPLE RATE				
Minimum				
Maximum	12	2.9	GSPS	

1 Pertains to the update rate of the DAC core, independent of datapath and JESD204 mode configuration.
Table 7. ADC Sample Rate Specifications

Parameter	Min	Typ	Max	Unit
ADC SAMPLE RATE ${ }^{1}$			1.45	GSPS
Minimum 6    Maximum     Aperture Jitter				

1 Pertains to the update rate of the ADC core, independent of datapath and JESD204 mode configuration.
${ }^{2}$ Measured using a signal-to-noise ratio ( SNR ) degradation method with the DAC disabled, clock divider $=1, \mathrm{f}_{\mathrm{ADC}}=4 \mathrm{GSPS}$, and input frequency $\left(\mathrm{f}_{\mathrm{N}}\right)=5.55 \mathrm{GHz}$.

## SPECIFICATIONS

## INPUT DATA RATES SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 8.

Parameter ${ }^{12}$	Test Conditions/Comments	Min	Typ	Max	Unit
MAXIMUM DATA RATE PER NUMBER OF ACTIVE DAC OUTPUTS	Single DAC, FDUC and CDUC bypassed (1x interpolation), 16-bit resolution; limited by the maximum DAC clock rate   Quad DAC, FDUC and CDUC bypassed (1× interpolation), 12-bit resolution; limited by the maximum JESD204C link throughput $(M=4, L=8)$			$\begin{aligned} & 12000 \\ & 4000 \end{aligned}$	MSPS   MSPS
MAXIMUM COMPLEX (I/Q) DATA RATE PER NUMBER OF ACTIVE INPUT DATA CHANNELS	1 channel: FDUC bypassed, 1 CDUC enabled, 12 -bit or 16 -bit resolution; limited by the maximum CDUC NCO clock rate   2 channels: FDUC bypassed, 2 CDUCs enabled, 12-bit resolution; limited by the maximum JESD204C link throughput ( $M=4, L=8$ )   4 channels: FDUC bypassed, 4 CDUCs enabled, 12-bit resolution; limited by the maximum JESD204C link throughput ( $M=8, L=8$ )   8 channels: 8 FDUCs enabled, one or more CDUC enabled, 12-bit or 16 -bit resolution; limited by the maximum FDUC NCO clock rate divided by the minimum $2 x$ interpolation rate required to enable the FDUC			$\begin{aligned} & 6000 \\ & 4000 \\ & 2000 \\ & 750 \end{aligned}$	MSPS   MSPS   MSPS   MSPS

1 The values listed for these parameters are the maximum possible when considering all JESD204 modes of operation. Some modes are more limiting, based on other parameters.
2 The interpolation filters in the Tx datapath have a total complex filter bandwidth of $80 \%$ of the data rate, combining the $40 \%$ bandwidth in the I path and $40 \%$ bandwidth in the $Q$ path. Similarly, the decimation stages inside the Rx datapath use filters with a total complex filter bandwidth of $81.4 \%$. Therefore, the maximum allowed instantaneous complex signal bandwidth (iBW) per channel is calculated as iBW = [Complex I/Q Data Rate per Channel] $\times$ [Total Complex Filter Bandwidth].

## SPECIFICATIONS

## NCO FREQUENCY SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 9.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
MAXIMUM NUMERICALLY CONTROLLED OSCILLATOR (NCO) CLOCK RATE   Fine Digital Up Converter (FDUC) NCO   Course Digital Up Converter (CDUC) NCO   Fine Digital Down Converter (FDDC) NCO   Course Digital Down Converter (CDDC) NCO				$\begin{aligned} & 1.5 \\ & 12 \\ & 1.5 \\ & 6 \end{aligned}$	GHz   GHz   GHz   GHz
MAXIMUM NCO SHIFT FREQUENCY RANGE   FDUC NCO   CDUC NCO   FDDC NCO   CDDC NCO	Channel interpolation rate must be $>1 \mathrm{x}$ $\mathrm{f}_{\text {DAC }}=12 \mathrm{GHz}$, main interpolation rate must be $>1 \mathrm{x}$ Channel decimation rate must be $>1 \mathrm{x}$ $\mathrm{f}_{\mathrm{ADC}}=6 \mathrm{GHz}$, main decimation rate must be $>1 \mathrm{x}$	$\begin{array}{\|l} -750 \\ -6 \\ -750 \\ -3 \end{array}$		$\begin{aligned} & +750 \\ & +6 \\ & +750 \\ & +3 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{GHz} \\ & \mathrm{MHz} \\ & \mathrm{GHz} \end{aligned}$
MAXIMUM FREQUENCY SPACING BETWEEN CHANNELIZER CHANNELS   Transmitter FDUC Channels   Receiver FDDC Channels	Maximum FDUC NCO clock rate $\times 0.8^{1}$   Maximum FDDC NCO clock rate $\times 0.814^{2}$			$\begin{aligned} & 1200 \\ & 1221 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

1 The 0.8 factor is because the total complex pass band of the first interpolation filter is $80 \%$ of the filter input data rate.
2 The 0.814 factor is because the total complex pass band of the decimation filter is $81.4 \%$ of the filter output data rate.

## JESD204B AND JESD204C INTERFACE ELECTRICAL AND SPEED SPECIFICATIONS

Nominal supplies. For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, and for the typical values, $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$, which corresponds to $\mathrm{T}_{\mathrm{J}}=80^{\circ} \mathrm{C}$, unless otherwise noted.

Table 10. Serial Interface Rate Specifications


[^0]
## SPECIFICATIONS

Table 12. JESD204 Transmitter Electrical Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
Standards Compliance   Differential Output Voltage   Differential Termination Impedance   Rise Time, $\mathrm{t}_{\mathrm{R}}$   Fall Time, $t_{F}$	Maximum strength   $20 \%$ to $80 \%$ into $100 \Omega$ load   $20 \%$ to $80 \%$ into $100 \Omega$ load	80	$\begin{aligned} & \hline \text { JESD2O } \\ & 675 \\ & 108 \\ & 18 \\ & 18 \end{aligned}$	120	$\begin{aligned} & m \vee p-p \\ & \Omega \\ & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$
SYNCXINB $\pm$ INPUT ${ }^{1}$   Logic Compliance Differential Input Voltage Input Common-Mode Voltage $\mathrm{R}_{\mathrm{N}}$ (Differential) Input Capacitance (Differential)	Where $\mathrm{x}=0$ or 1   DC-coupled	240	$\begin{aligned} & 0.7 \\ & 0.675 \\ & 18 \\ & 1 \end{aligned}$	$\begin{aligned} & 1900 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
SYNCxINB+ INPUT	CMOS input option	Refer to the CMOS Pin Specifications section			

1 IEEE 1596.3 standard LVDS compatible.
Table 13. SYSREF Electrical Specifications

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SYSREF+ AND SYSREF- INPUTS					
Logic Compliance			LVDS/LVPECL ${ }^{1}$		
Differential Input Voltage			0.7	1.9	$V \mathrm{p}$-p
Input Common-Mode Voltage Range	DC-coupled		0.675	2	V
Input Reference, $\mathrm{R}_{\text {IN }}$ (Differential)			100		$\Omega$
Input Capacitance (Differential)			1		pF

${ }^{1}$ LVDS means low voltage differential signaling and LVPECL means low voltage positive/pseudo emitter-coupled logic.

## SPECIFICATIONS

## CMOS PIN SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}, 1.7 \mathrm{~V} \leq \mathrm{DVDD1P8} \leq 2.1 \mathrm{~V}$, other supplies nominal, unless otherwise noted.
Table 14.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
INPUTS   Logic 1 Voltage Logic 0 Voltage Input Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	SDIO, SCLK, CSB, RESETB, RXEN0, RXEN1, TXEN0, TXEN1, SYNCOINB $\pm$, SYNC1INB $\pm$, and GPIOx	$\begin{aligned} & 0.70 \times \text { DVDD1P8 } \\ & 40 \\ & \hline \end{aligned}$		$0.3 \times$ DVDD1P8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ $\mathrm{k} \Omega$
OUTPUTS   Logic 1 Voltage Logic 0 Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{LL}} \end{aligned}$	SDIO, SDO, GPIOx, ADCx_FDx, ADCx_SMONx, SYNCOOUTB $\pm$, and SYNC1OUTB $\pm, 4 \mathrm{~mA}$ load	DVDD1P8-0.45		0.45	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
INTERRUPT OUTPUTS   Logic 1 Voltage Logic 0 Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	IRQB_0 and IRQB_1, pull-up resistor of $5 \mathrm{k} \Omega$ to DVDD1P8	1.35		0.48	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

## DAC AC SPECIFICATIONS

Nominal supplies with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Specifications represent the average of all four DAC channels with the $\mathrm{DAC} \mathrm{I}_{\text {OUTFS }}=26 \mathrm{~mA}$, unless otherwise noted.

Table 15.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SPURIOUS-FREE DYNAMIC RANGE (SFDR)					
Single-Tone, $\mathrm{f}_{\text {DAC }}=12 \mathrm{GSPS}$	-7 dBFS digital back off, shuffle enabled, 15C mode				
Output Frequency (fout) $=70 \mathrm{MHz}$		63	80		dBC
$\mathrm{f}_{\text {OUt }}=100 \mathrm{MHz}$			77		dBC
$\mathrm{f}_{\text {OUT }}=500 \mathrm{MHz}$			76		dBc
$\mathrm{f}_{\text {OUT }}=900 \mathrm{MHz}$			77		dBC
$\mathrm{f}_{\text {Out }}=1900 \mathrm{MHz}$		61	79		dBC
$\mathrm{f}_{\text {Out }}=2600 \mathrm{MHz}$			75		dBC
$\mathrm{f}_{\text {Out }}=3700 \mathrm{MHz}$			69		dBc
$\mathrm{f}_{\text {OUT }}=4500 \mathrm{MHz}$			68		dBC
Single-Tone, $\mathrm{f}_{\text {DAC }}=9$ GSPS	-7 dBFS digital back off, shuffle enabled, 15C mode				
$\mathrm{f}_{\text {OUT }}=100 \mathrm{MHz}$			78		dBc
$\mathrm{f}_{\text {OUT }}=500 \mathrm{MHz}$			78		dBc
$\mathrm{f}_{\text {OUT }}=900 \mathrm{MHz}$			77		dBC
$\mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz}$			80		dBC
$\mathrm{f}_{\text {Out }}=2600 \mathrm{MHz}$			80		dBC
$\mathrm{f}_{\text {OUT }}=3700 \mathrm{MHz}$			72		dBC
Single-Tone, $\mathrm{f}_{\text {DAC }}=6$ GSPS	-7 dBFS digital back off, shuffle enabled, 15C mode				
$\mathrm{f}_{\text {OUT }}=100 \mathrm{MHz}$			84		dBC
$\mathrm{f}_{\text {OUT }}=500 \mathrm{MHz}$			81		dBC
$\mathrm{f}_{\text {OUT }}=900 \mathrm{MHz}$			82		dBc
$\mathrm{f}_{\text {OUT }}=1900 \mathrm{MHz}$			81		dBc

## SPECIFICATIONS

Table 15.


## SPECIFICATIONS

Table 15.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
```SINGLE SIDEBAND PHASE NOISE OFFSET (PLL DISABLED) fouT =3.6GHz, fDAC}=12 GSPS, CLKINx Frequency (fCLKIN) =12 GHz 1 kHz 10 kHz 100 kHz 600 kHz 1.2 MHz 1.8 MHz 6MHz```	Direct device clock input at 6 dBm Rohde \& Schwarz SMA100B B711 option		$\begin{aligned} & -118 \\ & -129 \\ & -137 \\ & -144 \\ & -148 \\ & -149 \\ & -153 \end{aligned}$		dBc/Hz   dBC/Hz   dBc/Hz   dBc/Hz   dBC/Hz   dBc/Hz   dBC/Hz
SINGLE SIDEBAND PHASE NOISE OFFSET (PLL ENABLED)	Loop filter component values include C1 $=22 \mathrm{nF}, \mathrm{R} 1=$ $226 \Omega, \mathrm{C} 2=2.2 \mathrm{nF}, \mathrm{C} 3=33 \mathrm{nF}$, and phase detector frequency (PFD) $=500 \mathrm{MHz}$				
$\begin{aligned} & \mathrm{f}_{\text {OUT }}=1.8 \mathrm{GHz}, \mathrm{f}_{\text {DAC }}=12 \mathrm{GSPS}, \mathrm{f}_{\text {CLKIN }}=0.5 \mathrm{GHz} \\ & 1 \mathrm{kHz} \\ & 10 \mathrm{kHz} \\ & 100 \mathrm{kHz} \\ & 600 \mathrm{kHz} \\ & 1.2 \mathrm{MHz} \\ & 1.8 \mathrm{MHz} \\ & 6 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & -106 \\ & -113 \\ & -120 \\ & -127 \\ & -134 \\ & -138 \\ & -150 \end{aligned}$		$\mathrm{dBC} / \mathrm{Hz}$ dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc/Hz

ADC AC SPECIFICATIONS

Nominal supplies with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Input amplitude $\left(\mathrm{A}_{\mathrm{IN}}\right)=-1 \mathrm{dBFS}$, full bandwidth mode (all digital downconverters bypassed). For the minimum and maximum values, $T_{j}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$. Specifications represent average of four ADC channels with DACs powered on. See the AN-835 Application Note for definitions and for details on how these tests were completed.

Table 16.

Parameter	Min	Typ	Max	Unit
NOISE DENSITY ${ }^{1}$		-153		dBFS/Hz
NOISE FIGURE ${ }^{2}$		25.3		dB
SIGNAL-TO-NOISE RATIO (SNR) $\begin{aligned} & f_{\mathrm{IN}}=450 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=2700 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=3600 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz} \\ & \mathrm{f}_{\mathbb{N}}=6300 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz} \end{aligned}$	49.6	$\begin{aligned} & 56.9 \\ & 56.7 \\ & 54.9 \\ & 52.7 \\ & 52.1 \\ & 50.7 \\ & 50.8 \\ & 49.7 \\ & 48.8 \end{aligned}$		dBFS dBFS
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD) $\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=450 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=3600 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz} \end{aligned}$	49.5	$\begin{aligned} & 56.9 \\ & 56.5 \\ & 54.5 \\ & 52.5 \\ & 51.2 \\ & 50.2 \\ & 49.0 \\ & 48.0 \end{aligned}$		dBFS dBFS

SPECIFICATIONS

Table 16.

Parameter	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{F}}=7200 \mathrm{MHz}$		47.4		dBFS
EFFECTIVE NUMBER OF BITS (ENOB)				
$\mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz}$		9.2		Bits
$\mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz}$		9.1		Bits
$\mathrm{f}_{\mathrm{N}}=1800 \mathrm{MHz}$		8.8		Bits
$\mathrm{f}_{\mathrm{N}}=2700 \mathrm{MHz}$	7.9	8.4		Bits
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		8.2		Bits
$\mathrm{f}_{\mathrm{N}}=4500 \mathrm{MHz}$		8.05		Bits
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		7.8		Bits
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		7.7		Bits
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		7.6		Bits
SECOND-ORDER HARMONIC DISTORTION (HD2)				
$\mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz}$		-78		dBFS
$\mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz}$		-74		dBFS
$\mathrm{f}_{\mathrm{N}}=1800 \mathrm{MHz}$		-71		dBFS
$\mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz}$		-72	-57	dBFS
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		-60		dBFS
$\mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz}$		-62		dBFS
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		-55		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-54		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-54		dBFS
THIRD-ORDER HARMONIC DISTORTION (HD3)				
$\mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz}$		-84		dBFS
$\mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz}$		-83		dBFS
$\mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz}$		-66		dBFS
$\mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz}$		-68	-62	dBFS
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		-70		dBFS
$\mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz}$		-67		dBFS
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		-63		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-65		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-62		dBFS
WORST OTHER, EXCLUDING HD2, HD3, AND INTERLEAVING SPURS				
$\mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz}$		-90		dBFS
$\mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz}$		-91		dBFS
$\mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz}$		-86		dBFS
$\mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz}$		-83	-61	dBFS
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		-81		dBFS
$\mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz}$		-78		dBFS
$\mathrm{f}_{\mathrm{N}}=5400 \mathrm{MHz}$		-78		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-76		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-75		dBFS
DIGITAL COUPLING SPUR ($\mathrm{f}_{\mathrm{N}} \pm \mathrm{f}_{\mathrm{S}} / 4$)				
$\mathrm{f}_{\mathrm{N}}=450 \mathrm{MHz}$		-92		dBFS
$\mathrm{f}_{\mathrm{N}}=900 \mathrm{MHz}$		-88		dBFS
$\mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz}$		-81		dBFS
$\mathrm{f}_{\mathrm{IN}}=2700 \mathrm{MHz}$		-81		dBFS
$\mathrm{f}_{\mathrm{IN}}=3600 \mathrm{MHz}$		-78		dBFS
$\mathrm{f}_{\mathrm{IN}}=4500 \mathrm{MHz}$		-74		dBFS

SPECIFICATIONS

Table 16.

Parameter	Min	Typ	Max	Unit
$\mathrm{f}_{\mathrm{IN}}=5400 \mathrm{MHz}$		-76		dBFS
$\mathrm{f}_{\mathrm{IN}}=6300 \mathrm{MHz}$		-71		dBFS
$\mathrm{f}_{\mathrm{IN}}=7200 \mathrm{MHz}$		-70		dBFS
TWO-TONE INTERMODULATION DISTORTION (IMD3, $2 \mathrm{f}_{\mathrm{I}_{1} 1}-\mathrm{f}_{\mathrm{IN} 2}$ OR $\left.2 \mathrm{f}_{\mathbb{N} 2}-\mathrm{f}_{\mathrm{N} 1}\right)$ $\mathrm{A}_{\text {IN } 1}$ AND $_{\text {IN } 2}=-7 \mathrm{dBFS}$				
$\mathrm{f}_{\mathrm{N} 1}=1775 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=1825 \mathrm{MHz}$		-84		dBFS
$\mathrm{f}_{\mathrm{N} 1}=2675 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=2725 \mathrm{MHz}$		-86		dBFS
$\mathrm{f}_{\mathrm{N} 1}=3575 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=3625 \mathrm{MHz}$		-75		dBFS
$\mathrm{f}_{\mathrm{N} 1}=5375 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=5425 \mathrm{MHz}$		-67		dBFS
ANALOG BANDWIDTH ${ }^{3}$		8		GHz

1 Noise density is measured at 250 MHz input frequency at -30 dBFS , where timing jitter does not degrade noise floor.
${ }^{2}$ Noise figure is based on a nominal full-scale input power of 4.5 dBm with an input span of 1.5 V p-p and $\mathrm{R}_{\mathbb{I N}}=100 \Omega$.
${ }^{3}$ Analog input bandwidth is the bandwidth of operation in which the full-scale input frequency response rolls off by -3 dB based on a de-embedded model of the ADC extracted from the measured frequency response on the AD9986-FMCB-EBZ. This bandwidth requires optimized matching network to achieve this upper bandwidth.

TIMING SPECIFICATIONS

For the minimum and maximum values, $\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ and $\pm 5 \%$ of nominal supply, unless otherwise noted.
Table 17.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
SERIAL PORT INTERFACE (SPI) WRITE OPERATION Maximum SCLK Clock Rate SCLK Clock High SCLK Clock Low SDIO to SCLK Setup Time SCLK to SDIO Hold Time CSB to SCLK Setup Time CLK to CSB Hold Time	$\mathrm{f}_{\text {SCLK }} 1 /$ SCLK $t_{\text {PWH }}$ tpwL tos $t_{D H}$ t_{s} t_{H}	$\begin{aligned} & \text { SCLK }=33 \mathrm{MHz} \\ & \text { SCLK }=33 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 33 \\ & 8 \\ & 8 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$			MHz ns ns ns ns ns ns
SPI READ OPERATION LSB First Data Format Maximum SCLK Clock Rate SCLK Clock High SCLK Clock Low MSB First Data Format Maximum SCLK Clock Rate SCLK Clock High SCLK Clock Low SDIO to SCLK Setup Time SCLK to SDIO Hold Time CSB to SCLK Setup Time SCLK to SDIO Data Valid Time SCLK to SDO Data Valid Time CSB to SDIO Output Valid to High-Z CSB to SDO Output Valid to High-Z RESETB	$\mathrm{f}_{\text {SCLK }}, 1 /$ tsCLK $t_{\text {PWH }}$ tpwL $\mathrm{f}_{\text {SCLK }}, 1 /$ tsCLK tpWH tpwL tDS $t_{D H}$ ts $t_{D V}$ tDV_SDO t_{z} $\mathrm{t}_{\text {_SDO }}$	Minimum hold time to trigger a device reset	$\begin{aligned} & 33 \\ & 8 \\ & 8 \\ & 15 \\ & 15 \\ & 30 \\ & 30 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 40 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{MHz} \\ & \mathrm{~ns} \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$

SPECIFICATIONS

Timing Diagrams

Figure 2. Timing Diagram for 3-Wire Write Operation

Figure 3. Timing Diagram for 3-Wire Read Operation

Figure 4. Timing Diagram for 4-Wire Read Operation

ABSOLUTE MAXIMUM RATINGS

Table 18.

Parameter	Rating
ISET, DACxP, DACxN, TDP, TDN	-0.3 V to AVDD2 + 0.3 V
VCO_COARSE, VCO_FINE, VCO_VCM, VCO_VREG	-0.3 V to AVDD2_PLL +0.3 V
Receiver Input Power (ADCOP/N, ADC1P/N) ${ }^{1}$	22 dBm
VCM0, VCM1	-0.3 V to RVDD2 +0.3 V
CLKINP, CLKINN	-0.2 V to PLLCLKVDD1 + 0.2 V
ADCDRVN, ADCDRVP	-0.2 V to CLKVDD1 + 0.2 V
SERDINx \pm, SERDOUTx \pm	-0.2 V to SVDD1 +0.2 V
SYSREFP, SYSREFN, and SYNCxINB \pm	-0.2 V to +2.5 V
SYNCxOUTB \pm, RESETB, TXENx, RXENx, IRQB_x, CSB, SCLK, SDIO, SDO, TMU_REFN, TMU_REFP, ADCx_SMONO, ADCx_SMON1, ADCx_FD0, ADCx_FD1, GPIOx	-0.3 V to DVDD1P8 + 0.3 V
AVDD2, AVDD2_PLL, BVDD2, RVDD2, SVDD2_PLL, DVDD1P8	-0.3 V to +2.2 V
PLLCLKVDD1, AVDD1, AVDD1_ADC, CLKVDD1, FVDD1, DAVDD1, DVDD1_RT, DCLKVDD1, SVDD1, SVDD1_PLL	-0.2 V to +1.2 V
VNN1	-1.1 V to +0.2 V
Temperature Ranges	
Maximum Junction ($\left.\mathrm{T}_{\mathrm{J}}\right)^{2}$	$120^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
1 Tested continuously for 1000 hours with $\mathrm{f}_{\mathrm{N}}=4.7 \mathrm{GHz}$ pulsed and continuous tone at maximum allowed junction temperature (T_{J}). Refer to UG-1578, the device user guide, for more information.	
${ }^{2}$ Do not exceed this temperature for any duration of time when the device is powered.	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

REFLOW PROFILE

The AD9986 reflow profile is in accordance with the JEDEC JESD20 criteria for Pb-free devices. The maximum reflow temperature is $260^{\circ} \mathrm{C}$.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. The use of appropriate thermal management techniques is recommended to ensure that the maximum T_{J} does not exceed the limits shown in Table 18.
θ_{JA} is the natural convection, junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.
θ_{JC} TOP is the junction to case, thermal resistance.
θ_{JB} is the junction to board, thermal resistance.
Table 19. Thermal Resistance

PCB Type ${ }^{1}$	Airflow Velocity (m / $\mathrm{sec})$	$\theta_{\text {JA }}$	$\theta_{\text {JC_TOP }}$	$\theta_{\text {JB }}$	Unit
JEDEC 2s2p Board	0.0	14.9	0.7	1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
1 Thermal resistance values specified are simulated based on JEDEC specifications in compliance with JESD51-12 with the device power equal to 9 W .					

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi- ces and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration
Table 20. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
POWER SUPPLIES			
A2, E2, H2, L2, P2, V2	AVDD2	Input	Analog 2.0 V Supply Inputs for DAC.
L3	AVDD2_PLL	Input	Analog 2.0 V Supply Input for Clock PLL Linear Dropout Regulator (LDO).
D7, E7, P7, R7	BVDD2	Input	Analog 2.0 V Supply Inputs for ADC Buffer.
B11, U11	RVDD2	Input	Analog 2.0 V Supply Inputs for ADC Reference.
J5	PLLCLKVDD1	Input	Analog 1.0 V Supply Input for Clock PLL.
D2 to D4, E3, F3, N3, P3, R2 to R4	AVDD1	Input	Analog 1.0 V Supply Inputs for DAC Clock.
G7, G8, M7, M8	AVDD1_ADC	Input	Analog 1.0 V Supply Inputs for ADC.
G6, M6	CLKVDD1	Input	Analog 1.0 V Supply Inputs for ADC Clock.
D6, R6	FVDD1	Input	Analog 1.0 V Supply Inputs for ADC Reference.
D10, R10	VDD1_NVG	Input	Analog 1.0 V Supply Inputs for Negative Voltage Generator (NVG) Used to Generate -1 V Output.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 20. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
E9, P9	NVG1_OUT	Output	Analog -1 V Supply Outputs from NVG. Decouple NVG1_OUT to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
D8, E8, E10, P8, P10, R8	VNN1	Input	Analog -1 V Supply Inputs for ADC Buffer and Reference. Connect these pins to the adjacent NVG1_OUT pins.
C9, T9,	BVNN2	Output	Decoupling Pin for the Internally Generated Analog -2 V ADC Buffer Supply. Decouple each BVNN2 pin to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
C10, T10	BVDD3	Output	Decoupling Pin for the Internally Generated Analog 3 V ADC Buffer Supply. Decouple BVDD3 to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
E5, F5, N5, P5	DAVDD1	Input	Digital Analog 1.0 V Supply Inputs.
F10, H9, H11, J9, J11, K9, K11, L9, L11, M9	DVDD1	Input	Digital 1.0 V Supply Inputs.
J6, J7, K6, K7	DVDD1_RT	Input	Digital 1.0 V Supply Inputs for Retimer Block.
K5	DCLKVDD1	Input	Digital 1.0 V Clock Generation Supply.
A16, B16, C16, D16, E16, F16, G16, H16, M16, N16, P16, R16, T16, U16, V16	SVDD1	Input	Digital 1.0 V Supply Inputs for SERDES Deserializer and Serializer.
K15	SVDD2_PLL	Input	Digital 2.0 V Supply Input for SERDES LDO.
J16, K16	SVDD1_PLL	Input	Digital 1.0 V Supply Inputs for SERDES Clock Generation and PLL.
C13, F9, T13	DVDD1P8	Input	Digital Interface and Temperature Monitoring Unit (TMU) Supply Inputs (Nominal 1.8 V).
$A 1, A 3, A 4, A 7, A 8, A 11, A 17, A 18, B 2$ to $B 6, B 9, B 10$, B14, B15, C2, C5 to C8, C11, C17, C18, D1, D5, D9, D14, D15, E1, E4, E6, E17, E18, F2, F4, F6 to F8, F14, F15, G2 to G5, G17, G18, H1, H5 to H8, H10, H12, H14, H15, J2, J8, J10, J12, J14, J15, J17, J18, K2, K8, K10, K12, K14, K17, K18, L1, L5 to L8, L10, L12, L14, M2 to M5, M10, M17, M18, N2, N4, N6 to N8, N14, N15, P1, P4, P6, P17, P18, R1, R5, R9, R14, R15, T2, T5 to T8, T11, T17, T18, U2 to U6, U9, U10, U14, U15, V1, V3, V4, V7, V8, V11, V17, V18	GND	Input/output	Ground References.
ANALOG OUTPUTS			
B1, C1	DACOP, DACON	Output	DACO Output Currents, Ground Referenced. Tie these pins to GND if unused.
G1, F1	DAC1P, DAC1N	Output	DAC1 Output Currents, Ground Referenced. Tie these pins to GND if unused.
M1, N1	DAC2P, DAC2N	Output	DAC2 Output Currents, Ground Referenced. Tie these pins to GND if unused.
U1, T1	DAC3P, DAC3N	Output	DAC3 Output Currents, Ground Referenced. Tie these pins to GND if unused.
H3	ISET	Output	DAC Bias Current Setting Pin. Connect this pin with a $5 \mathrm{k} \Omega$ resistor to GND.
C3, C4	ADCDRVN, ADCDRVP,	Output	Optional Clock Output (for Example, ADC Clock Driver for an External ADC). These pins are disabled by default. Leave the pins floating if unused.
B8, U8	VCM0, VCM1	Output	ADC Buffer Common-Mode Output Voltage. Decouple these pins to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
K3	VCO_VREG	Output	PLL LDO Regulator Output. Decouple this pin to GND with a $2.2 \mu \mathrm{~F}$ capacitor.
G9	TMU_REFN	Output	TMU ADC Negative Reference. Connect this pin to GND.
G10	TMU_REFP	Output	TMU ADC Positive Reference. Connect this pin to DVDD1P8.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 20. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
ANALOG INPUTS			
A10, A9	ADCOP, ADCON	Input	ADCO Differential Inputs with Internal 100Ω Differential Resistor. Leave these pins floating if unused.
V10, V9	ADC1P, ADC1N	Input	ADC1 Differential Inputs with Internal 100Ω Differential Resistor. Leave these pins floating if unused.
J3	VCO_FINE	Input	On-Chip Device Clock Multiplier and PLL Fine Loop Filter Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
J4	VCO_COARSE	Input	On-Chip Device Clock Multiplier and PLL Coarse Loop Filter Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
K4	VCO_VCM	Input	On-Chip Device Clock Multiplier and VCO Common-Mode Input. If the PLL is not in use, leave this pin floating and disable the PLL via the control registers.
N9, N10	TDP, TDN	Input	Anode and Cathode of Temperature Diodes. This feature is not supported. Tie TDP and TDN to GND.
J1, K1	CLKINP, CLKINN	Input	Differential Clock Inputs with Nominal 100Ω Termination. Self bias input requiring ac coupling. When the on-chip clock multiplier PLL is enabled, this input is the reference clock input. If the PLL is disabled, an RF clock equal to the DAC output sample rate is required.
CMOS INPUTS AND OUTPUTS ${ }^{1}$			
G13	CSB	Input	Serial Port Enable Input. Active low.
H13	SCLK	Input	Serial Plot Clock Input.
F13	SDIO	Input/output	Serial Port Bidirectional Data Input/Output.
J13	SDO	Output	Serial Port Data Output.
C12	RESETB	Input	Active Low Reset Input. RESETB places digital logic and SPI registers in a known default state. RESETB must be connected to a digital IC that is capable of issuing a reset signal for the first step in the device initialization process.
E13, D13	RXEN0, RXEN1	Input	Active High ADC and Receive Datapath Enable Inputs. RXENx is also SPI configurable.
P13, R13	TXEN0, TXEN1	Input	Active High DAC and Transmit Datapath Enable Inputs. TXENx is also SPI configurable.
D12, D11	ADCO_SMONO, ADCO_SMON1	Output	ADCO Signal Monitoring Outputs by Default. Do not connect if unused.
E12, E11	ADCO_FD0, ADCO_FD1	Output	ADCO Fast Detect Outputs by Default. Do not connect if unused.
F12, F11	ADC1_SMON0, ADC1_SMON1	Output	ADC1 Signal Monitoring Outputs by Default. Do not connect if unused.
G12, G11	ADC1_FD0, ADC1_FD1	Output	ADC1 Fast Detect Outputs by Default. Do not connect if unused.
P12, R12	IRQB_0, IRQB_1	Output	Interrupt Request 0 and 1 Outputs. These pins are an open-drain, active low output (CMOS levels with respect to DVDD1P8). Connect > $5 \mathrm{k} \Omega$ pull-up resistor to DVDD1P8 to prevent these pins from floating when unused.
M11, M12, N11, N12, P11, R11	GPIO0 to GPIO5	Input/output	General-Purpose Input or Output Pins. These pins control auxiliary functions related to the transmitter datapaths.
K13, L13, M13, N13, T12	GPIO6 to GPIO10	Input/output	General-Purpose Input or Output Pins. These pins control auxiliary functions related to the receiver datapaths and ADCs.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 20. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
JESD204B or JESD204C COMPATIBLE SERDES DATA LANES AND CONTROL SIGNALS ${ }^{2}$			
L18, L17	SERDIN0+, SERDIN0-	Input	JRx Lane 0 Inputs, Data True/Complement.
N18, N17	SERDIN1+, SERDIN1-	Input	JRx Lane 1 Inputs, Data True/Complement.
R18, R17	SERDIN2+, SERDIN2-	Input	JRx Lane 2 Inputs, Data True/Complement.
U18, U17	SERDIN3+, SERDIN3-	Input	JRx Lane 3 Inputs, Data True/Complement.
M15, M14	SERDIN4+, SERDIN4-	Input	JRx Lane 4 Inputs, Data True/Complement.
V15, V14	SERDIN5+, SERDIN5-	Input	JRx Lane 5 Inputs, Data True/Complement.
T15, T14	SERDIN6+, SERDIN6-	Input	JRx Lane 6 Inputs, Data True/Complement.
P15, P14	SERDIN7+, SERDIN7-	Input	JRx Lane 7 Inputs, Data True/Complement.
U13, V13	SYNCOOUTB+, SYNCOOUTB-	Output	JRx Link 0 Synchronization Outputs for JESD204B interface. These pins are LVDS or CMOS configurable. These pins can also provide differential 100Ω output impedance in LVDS mode.
U12, V12	SYNC1OUTB+, SYNC10UTB-	Output	JRx Link 1 Synchronization Outputs for JESD204B interface or CMOS Input for Transmit Fast Frequency Hopping (FFH) via GPIOx pins. For sync output function, these pins are LVDS or CMOS output configurable and can provide differential 100 Ω output impedance in LVDS mode.
A15, A14	SERDOUTO+, SERDOUTO-	Output	JTx Lane 0 Outputs, Data True/Complement.
C15, C14	SERDOUT1+, SERDOUT1-	Output	JTx Lane 1 Outputs, Data True/Complement.
E15, E14	SERDOUT2+, SERDOUT2-	Output	JTx Lane 2 Outputs, Data True/Complement.
G15, G14	SERDOUT3+, SERDOUT3-	Output	JTx Lane 3 Outputs, Data True/Complement.
H18, H17	SERDOUT4+, SERDOUT4-	Output	JTx Lane 4 Outputs, Data True/Complement.
F18, F17	SERDOUT5+, SERDOUT5-	Output	JTx Lane 5 Outputs, Data True/Complement.
D18, D17	SERDOUT6+, SERDOUT6-	Output	JTx Lane 6 Outputs, Data True/Complement.
B18, B17	SERDOUT7+, SERDOUT7-	Output	JTx Lane 7 Outputs, Data True/Complement.
B13, A13	SYNCOINB+, SYNCOINB-	Input	JTx Link 0 Synchronization Inputs for JESD204B interface. These pins are LVDS or CMOS configurable and have selectable internal 100Ω input impedance for LVDS operation.
B12, A12	SYNC1INB+, SYNC1INB-	Input	JTx Link 1 Synchronization Inputs for JESD204B interface or CMOS Inputs for Receive FFH via GPIOx pins. These pins are LVDS or CMOS configurable and have selectable internal 100 Ω input impedance for LVDS operation.
T4, T3	SYSREFP, SYSREFN	Input	Active High JESD204B/C System Reference Inputs. These pins are configurable for differential current mode logic (CML), PECL, and LVDS with internal 100Ω termination or singleended CMOS.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 20. Pin Function Descriptions

Pin No.	Mnemonic	Type	Description
NO CONNECTS AND DO NOT CONNECTS			
B7, U7	DNC	Output	Do Not Connect.
H4, L4, L15, L16	DNC	DNC	Do Not Connect. The pins must be kept open.
A5, A6	NC	Input	No Connect.
V5, V6	Input	No Connect.	

1 CMOS inputs do not have pull-up or pull-down resistors.
2 SERDINX士 and SERDOUTx include 100Ω internal termination resistors.

TYPICAL PERFORMANCE CHARACTERISTICS

DAC

The data curves represent the average performance across all outputs with harmonics and spurs falling in the first Nyquist zone (<f $\mathrm{f}_{\mathrm{AC}} / 2$). All SFDR, IMD3, and NSD data measured on a laboratory evaluation board. All data for phase noise and ACLR is measured on the AD908x-FMCA-EBZ customer evaluation board. For additional information on the JESD204B and JESD204C mode configurations, see the UG-1578 user guide.

Figure 6. HD2 vs. $f_{\text {OUT }}$ over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, 15C Mode

Figure 7. HD2 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, 15C Mode

Figure 8. HD3 vs. $f_{\text {OUT }}$ over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, 15C Mode

Figure 9. HD2 vs. fout over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1×, Main Interpolation 6x, 15C Mode

Figure 10. HD2 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, 16B Mode

Figure 11. HD3 vs. $f_{\text {OUT }}$ over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, 15C Mode

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 12. HD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, 15C Mode

Figure 13. SFDR, Worst Spurious vs. fout over Digital Scale, 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, 15C Mode

Figure 14. SFDR, Worst Spurious vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, 15C Mode

Figure 15. HD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, 16B Mode

Figure 16. SFDR, Worst Spurious vs. fout over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, 15C Mode

Figure 17. SFDR, Worst Spurious vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, 16B Mode

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 18. IMD3 vs. $f_{\text {OUT }}$ over Digital Scale (Mode 17B), 6 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 4x, 15C Mode, IMD3 is a Two-Tone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 19. IMD3 vs. fout over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 8x, 15C Mode, IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 20. IMD3 vs. $f_{\text {OUT }}$ over $f_{\text {DAC }}$, Digital Scale -7 dBFS, IMD3 is a Two-Tone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 21. IMD3 vs. $f_{\text {OUT }}$ over Digital Scale, 9 GSPS DAC Sample Rate, Channel Interpolation 1x, Main Interpolation 6x, 15C Mode, IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 22. IMD3 vs. $f_{\text {OUT }}$ over Digital Scale, 12 GSPS DAC Sample Rate, Channel Interpolation 4x, Main Interpolation 8x, 16B Mode, IMD3 is a TwoTone Test, and the Scale per Tone is 6 dB Lower than the Reported Digital Scale

Figure 23. SFDR, Worst In-Band Spurious vs. fout over $f_{D A C}$, with 0 dBFS Tone Level

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 24. DACO Fundamental Output Power vs. $f_{O U T}$ Across $f_{D A C}$, at 0 dBFS Digital Back-Off, Measured on a Laboratory Evaluation Board, the AD9986-FMCB-EBZ has a Different PCB Layout that can Result in a Different Frequency Response when Compared to a Laboratory Evaluation Board

Figure 25. Single Sideband Phase Noise vs. Frequency Offset for Different Clock Input Power (PCLK), fout $=1.8 \mathrm{GHz}$, External 12 GHz Clock Input with Clock PLL Disabled

Figure 26. Single-Tone NSD Measured at 10% Offset from fout vs. fout over $f_{D A C}$, Shuffle On, 16-Bit Resolution, 15C Mode

Figure 27. Single Sideband Phase Noise vs. Frequency Offset for Different PLL Reference Clocks ($f_{\text {REF }}$), $f_{O U T}=1.8 \mathrm{GHz}, f_{D A C}=12$ GSPS, PLL Enabled with Exception of External 12 GHz Clock Input with Clock PLL Disabled

Figure 28. Single Sideband Phase Noise vs. Frequency Offset for Different DAC Output Frequencies (fout), External 12 GHz Clock Input with Clock PLL Disabled

Figure 29. Single-Tone NSD Measured at 10% Offset from fout vs. fout over $f_{\text {DAC }}$, 12-Bit Resolution, Shuffle On, 24C Mode

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 30. Single-Tone NSD Measured at 10% Offset from fout vs. $f_{\text {OUT }}$, Shuffle Off vs. Shuffle On, $f_{D A C}=11796.48$ MSPS, 16-Bit Resolution, 15 C Mode

Figure 31. Dual Band ACLR Performance for Two 20 MHz LTE carriers at $f_{\text {OUT }}=1.88 \mathrm{GHz}$ and $f_{\text {OUT }}=2.145 \mathrm{GHz}$ (See Figure 32 for a Wideband Plot), Showing a Close Up of One Carrier at $f_{\text {OUT }}=1.88$ GHz, $f_{D A C}=11.796$ GSPS, Test Vector PAR $=7.7 \mathrm{~dB}$ with -1 dBFS Back Off, Channel Interpolation 3x, Main Interpolation 8x, 9C Mode

Figure 32. Dual Band Wideband Plot for Two 20 MHz LTE Carriers at fout $=1.88 \mathrm{GHz}$ and $f_{O U T}=2.145 \mathrm{GHz}$ (3GPP Bands, B1 and B3, Respectively), at $f_{D A C}=11.796$ GSPS, Test Vector PAR $=7.7 \mathrm{~dB}$ with -1 dBFS Back Off, Channel Interpolation 3x, Main Interpolation 8x, 9C Mode

Figure 33. Single-Tone NSD Measured at 10% Offset from fout vs. $f_{\text {OUT }}$, Shuffle Off vs. Shuffle On, $f_{D A C}=11796.48$ MSPS, 12-Bit Resolution, $24 C$ Mode

Figure 34. Dual Band ACLR Performance for two 20 MHz LTE carriers at $f_{\text {OUT }}=1.88 \mathrm{GHz}$ and $f_{\text {OUT }}=2.145 \mathrm{GHz}$ (See Figure 32 for a Wideband Plot), Showing a Close-up of One Carrier at $f_{\text {OUT }}=2.145 \mathrm{GHz}, f_{\text {DAC }}=11.796$ GSPS, Test Vector PAR $=7.7 \mathrm{~dB}$ with -1 dBFS Back Off, Channel Interpolation 3x, Main Interpolation 8x, 9C Mode

Figure 35. Adjacent Channel Leakage Ratio (ACLR) Performance for 100 MHz $5 G$ Test Vector at $f_{O U T}=3.9 \mathrm{GHz}$ and $f_{D A C}=11.898$ GSPS, Test Vector Peak to RMS $=11.7 \mathrm{~dB}$ with -1 dBFS Back Off (9C Mode), Channel Interpolation 3x, Main Interpolation 8x

TYPICAL PERFORMANCE CHARACTERISTICS

ADC

Nominal supplies, $f_{\text {ADC }}=6$ GSPS with DAC clock frequency $\left(f_{\text {cle }}\right)=12 \mathrm{GHz}$ direct RF clock. ADC datapath with a complex I/Q data rate $\left(f_{f Q D A T A}\right)=3000$ MSPS and decimation of $2 x$. JTx mode of $16 C(L=8, M=4, F=1, S=1, K=256, E=1, N=16, N P=16), T_{J}=80^{\circ} \mathrm{C}\left(T_{A}=\right.$ $\left.25^{\circ} \mathrm{C}\right), 128,000$ sample FFT with five averages, and $\mathrm{A}_{\mathrm{IN}_{\mathrm{N}}}=-1 \mathrm{dBFS}$, unless otherwise noted.

Figure 36. Single-Tone FFT at $f_{I N}=450 \mathrm{MHz}$, $N C O=f_{A D C} / 4$

Figure 37. Single-Tone FFT at $f_{I N}=900 \mathrm{MHz}$, $N C O=f_{A D C} / 4$

Figure 38. Single-Tone FFT at $f_{I N}=1800 \mathrm{MHz}$, $N C O=f_{A D C} / 4$

Figure 39. Single-Tone SNR and SFDR vs. Input Amplitude $\left(A_{I N}\right)$ at $f_{I N}=450$ MHz, Full Bandwidth Mode

Figure 40. Single-Tone SNR and SFDR vs. $A_{I N}$ at $f_{I N}=900 \mathrm{MHz}$, Full Bandwidth Mode

Figure 41. Single-Tone SNR and SFDR vs. $A_{I N}$ at $f_{I N}=1800 \mathrm{MHz}$, Full Bandwidth Mode

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 42. Single-Tone FFT at $f_{f_{N}}=2000 \mathrm{MHz}$, $N C O=f_{A D C} / 4$

Figure 43. Single-Tone FFT at $f_{I_{N}}=3800 \mathrm{MHz}$, $N C O=f_{A D C} / 4$

Figure 44. Single-Tone FFT at $f_{I N}=4700 \mathrm{MHz}$, $N C O=f_{A D C} / 4$

Figure 45. Single-Tone SNR and SFDR vs. $A_{I N}$ at $f_{I N}=2700 \mathrm{MHz}$, Full Bandwidth Mode

Figure 46. Single-Tone SNR and SFDR vs. $A_{I N}$ at $f_{I N}=3600 \mathrm{MHz}$, Full Bandwidth Mode

Figure 47. Single-Tone SNR and SFDR vs. $A_{I N}$ at $f_{I N}=4500 \mathrm{MHz}$, Full Bandwidth Mode

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 48. Single-Tone FFT at $f_{f_{N}}=5400 \mathrm{MHz}$, $N C O=f_{A D C} / 4$

Figure 49. Single-Tone FFT at $f_{I N}=7200 \mathrm{MHz}, N C O=f_{A D C} / 4$

Figure 50. Single-Tone SNR and SFDR vs. $A_{I N}$ at $f_{I N}=5400 \mathrm{MHz}$, Full Bandwidth Mode

Figure 51. Single-Tone SNR and SFDR vs. $A_{I N}$ at $f_{I_{N}}=7200 \mathrm{MHz}$, Full Bandwidth Mode

Figure 52. Two-Tone FFT, $f_{I_{1} 1}=1.775 \mathrm{GHz}, f_{I_{N 2}}=1.825 \mathrm{GHz}$, Full Bandwidth Mode, $A_{I N 1}$ and $A_{I N 2}=-7 d B F S$ (IMD3L $=2 f_{I N 1}-f_{I N 2}$, and IMD3H $\left.=2 f_{I N 2}-f_{I N 1}\right)$

Figure 53. Two-Tone FFT, $f_{I_{1} 1}=2.675 \mathrm{GHz}, f_{I_{N} 2}=2.725 \mathrm{GHz}$, Full Bandwidth Mode, $A_{\text {IN } 1}$ and $A_{\text {IN2 }}=-7 \mathrm{dBFS}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 54. Two-Tone FFT, $f_{I N 1}=3.575 \mathrm{GHz}, f_{I N 2}=3.625 \mathrm{GHz}$, Full Bandwidth Mode, $A_{I N 1}$ and $A_{I N 2}=-7 \mathrm{dBFS}$

Figure 55. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I N 1}=1.775 \mathrm{GHz}, f_{I N 2}=1.825 \mathrm{GHz}$, Full Bandwidth Mode

Figure 56. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I_{N 1}}=2.675 \mathrm{GHz}, f_{I^{2} 2}=2.725 \mathrm{GHz}$, Full Bandwidth Mode

Figure 57. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I_{N 1}}=3.575 \mathrm{GHz}, f_{\mathrm{f}_{N} 2}=3.625 \mathrm{GHz}$, Full Bandwidth Mode

Figure 58. Two-Tone FFT, $f_{I N 1}=5.375 \mathrm{GHz}, f_{I N 2}=5.425 \mathrm{GHz}$, $A_{\text {IN1 }}$ and $A_{\text {IN2 }}=-7 d B F S$, Full Bandwidth Mode

Figure 59. SNR vs. Frequency with $A_{I N}=-1 d B F S$, Full Bandwidth Mode

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 60. Harmonics (HD2 and HD3) vs. Input Frequency with $A_{1 N}=-1 \mathrm{dBFS}$, Full Bandwidth Mode

Figure 61. Two-Tone IMD3 vs. $A_{I N}$ with $f_{I N 1}=5.375 \mathrm{GHz}, f_{I_{N} 2}=5.425 \mathrm{GHz}$, Full Bandwidth Mode

Figure 62. SFDR vs. Frequency with $A_{I N}=-1 d B F S$ Between Direct External RF Clock $=6 \mathrm{GHz}$ and PLL Clock Multiplier Enabled with Reference Input of 125 MHz, Full Bandwidth Mode

Figure 63. Harmonics (HD2 and HD3) vs. Frequency with $A_{I N}=-9 d B F S$, Full Bandwidth Mode

Figure 64. SNR vs. Input Frequency with $A_{I N}=-1 \mathrm{dBFS}$, Full Bandwidth Mode

Figure 65. SNR vs. Frequency with $A_{I N}=-1 d B F S$ with DAC On/Off and PLL On/Off Between Direct External RF Clock $=6 \mathrm{GHz}$ and PLL Clock Multiplier Enabled with Reference Input of 125 MHz , Full Bandwidth Mode

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 66. Measured ADC Input Bandwidth on the AD9986-FMCB-EBZ (No Matching Network)

Figure 67. Harmonics (HD2 and HD3) vs. Input Frequency with $A_{\text {IN }}=-1$ dBFS , Full Bandwidth Mode

Figure 68. HD2 and HD3 vs. ADC Sample Rate ($f_{A D C}$), $f_{I N}=450 \mathrm{MHz}$, $A_{1 N}=-1 \mathrm{dBFS}, f_{A D C}=2$ GSPS to 6 GSPS,

Full Bandwidth Mode

Figure 69. SFDR and SNR vs. Junction Temperature, $f_{I_{N}}=1.8 \mathrm{GHz}$, $A_{I N}=-1 \mathrm{dBFS}$, Full Bandwidth Mode

Figure 70. Current vs. Junction Temperature, $f_{I N}=1.8 \mathrm{GHz}, A_{I_{N}}=-1 \mathrm{dBFS}$, Full Bandwidth Mode

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 71. HD2 and HD3 vs. $f_{A D C}, f_{I N}=3450 \mathrm{MHz}, A_{I N}=-1 \mathrm{dBFS}, f_{A D C}=2$ GSPS to 6 GSPS, Full Bandwidth Mode

Figure 72. Harmonic Distortion vs. Junction Temperature, $f_{I_{N}}=1.8 \mathrm{GHz}, A_{I N}=$ -1 dBFS, Full Bandwidth Mode

THEORY OF OPERATION

The AD9986 is a highly integrated, mixed-signal, direct RF sampling transceiver offering 4T2R and digital signal processing (DSP) functions. The device delivers a versatile combination of high performance, configurability, and low power consumption demanded by wireless infrastructure applications, such as multiband macro 5G and mm Wave 5 G base station radios. The AD9986 offers support for both time division duplex (TDD) and frequency division duplex (FDD) modes of operation.

The receive path consists of two pipelined, 12-bit, 6 GSPS rate, RF ADC cores. The transmit path consists of four 16-bit, 12 GSPS maximum sample rate, RF DAC cores. Both the receive and transmit paths are designed and optimized to sample and synthesize signals up to 8 GHz , with maximum instantaneous bandwidths of up to 1.2 GHz with a sample resolution of 16 bits. The device also supports lower resolutions such as 12 bits and 8 bits for applications that do not require high dynamic range. The wide instantaneous bandwidth allows the chip to support multiple carrier bands or a single wide band within a single device. The combination of the direct RF conversion architecture relaxes the requirements of the RF filters when compared to traditional intermediate frequency (IF) receivers. Several auxiliary functions, such as fast detect and signal monitor, programmable FIR filter, transmit downstream power amplifier protection, and general-purpose input/output (GPIO) controls are also integrated.

The DAC and ADC cores use sampling clocks that originate from either an external clock source or an on-chip clock multiplier that consists of an integer PLL circuit and voltage-controlled oscillator (VCO).
The device features eight transmit and eight receive lanes that support 24.75 Gbps/lane JESD204C or 15.5 Gbps/lane JESD204B standards in a single or dual link setup. Multichip synchronization is supported via Subclass 1. The JESD204B/C interface supports a wide range of setups depending on the interface bandwidth requirements of the custom application specific IC (ASIC) or fieldprogrammable gate array (FPGA). Refer to the UG-1578 for more information on device features and operation.

The AD9986 has an on-chip thermal management unit (TMU) that can be used to measure die temperature as part of a thermal management solution to guarantee thermal stability during system operation. The device is controlled via a standard 4 -wire serial port interface (SPI) with support for 3 -wire SPI communications. A comprehensive set of power-down modes are included to minimize power consumption during normal use. The AD9986 is packaged in a $15 \mathrm{~mm} \times 15 \mathrm{~mm}$, thermally enhanced, 324-ball grid array (BGA_ED).

APPLICATIONS INFORMATION

Refer to the UG-1578, the device user guide, for more information on device initialization and other applications information.

OUTLINE DIMENSIONS

Figure 73. 324-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]
(BP-324-3)
Dimensions shown in millimeters
Updated: April 13, 2021
ORDERING GUIDE

				Package
Model ${ }^{1}$	Temperature Range	Package Description	Ordering Quantity	Option
AD9986BBPZ-4D2AC	$-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	$324-$ Ball BGA_ED $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.58 \mathrm{~mm})$	Tray, 126	BP-324-3
AD9986BBPZRL-4D2AC	$-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	$324-$ Ball BGA_ED $(15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 1.58 \mathrm{~mm})$	Reel, 1000	BP-324-3

1 Z = RoHS Compliant Part

EVALUATION BOARDS

Model	Description
AD9986-FMCB-EBZ	AD9986 Evaluation Board with High Performance Analog Network

[^0]: 1 IEEE 1596.3 standard LVDS compatible.

