HIGH KELIABILIIY CUNVEKIEKS ADCIIII, DACIII2, SHAIII4, DACIII7

which lists its characteristics and capabilities in great detail.

ADC1111

The ADC1111 is a high reliability version of the ADC-12QM. It performs 12 bit conversions in $25 \mu \mathrm{~s}$ (max) and has excellent stability over temperature. It comes complete with an input buffer and offers the choice of five user-programmable input voltage ranges. Module dimensions are $2^{\prime \prime} \times 4^{\prime \prime} \times 0.4^{\prime \prime}(51 \mathrm{x}$ $102 \times 10 \mathrm{~mm}$).

DAC1112

The DAC1112 is a high reliability version of the DAC-12QS. This $2^{\prime \prime} \times 2^{\prime \prime} \times 0.4^{\prime \prime}(51 \times 51 \times 10 \mathrm{~mm})$ module, which comes complete with a versatile output amplifier, settles to 0.01% accuracy in $5 \mu \mathrm{~s}$. The user can program either of five output voltage ranges by means of jumpers connected to the module's terminal pins.

SHA1114

The SHA1114 is a high reliability version b the SHA-2 A. It is a fast sample-and-hold amplifier with a $500 \mathrm{~ns}(\max)$ adquisition time to 0.01% accuracy. Module dimensions are $2^{\prime \prime} \times 3^{\prime \prime} \times 0.4^{\prime \prime}$ ($51 \times 76 \times 10 \mathrm{~mm}$).

DAC1117

The DAC1117 is a high reliability 12 bit current output D/A converter packaged in a $1.5^{\prime \prime} \times 1^{\prime \prime} \times 0.4^{\prime \prime}(38 \times 25 \times 10 \mathrm{~mm})$ hermetically sealed metal enclosure. It settles to 0.01% accuracy in 3μ s when used with a high speed output amplifier. This device is also available in a non-military grade extended temperature version, the MDA-12QD/ET, and a commercial grade version, the MDA-12QD.

THE HIGH RELIABILITY CONVERTER PROGRAM

Analog Devices has, over the past several years, supplied a great many A/D and D/A converter modules intended for military and critical industrial applications. As a result of this experience, we know what is needed in a high reliability converter and what it takes to build one. This experience is now available to you in the form of the industry's first line of converter products intended expressly for high reliability applications.

ADVANTAGES TO THE USER

The first big advantage is the ease of specification. As part of our development program, we have generated a separate specification drawing for each of the four products. These drawings run an average of 17 pages and specify in exact detail all pertin-
ent characteristics of the module. By copying our drawing over onto his own specification control drawing format, the user can completely specify a high reliability converter module in a very short time with a mimimum of effort.

The second advantage is that the system designer can get quick delivery of units needed for breadboarding and prototyping. Since the high reliability converters are standard products for us, they're available in small quantities in a few weeks or less.
The third advantage is cost. The user is no longer in the position of having to subsidize the development of a special high reliability converter. We have sustained all the development costs and the user pays only for the modules he actually requires

SYM.	DESCRIPTION	DR.	CKD.	APPD.	DATE
A	INITIAL RELEASE PER E.R. NO.				

ANALOG-TO-DIGITAL CONVERTER, MODEL NUMBER ADC1111

1.0 SCOPE:

1.1 This specification covers the requirements for an encapsulated 12-bit analog-to-digital converter module. This A / D converter module accepts analog input signals within any of several input voltage ranges and converts them into TTL/DTL compatible parallel output digital data.

GENERAL REQUIREMENTS : Mofules surp
cess\&d and
plied to this specification shall be manufactured, pro-: with good ehgeneering practice. The manufacturer of modules, in compitance with this gecyfication, shall have production and test facilitiles and quality and reliapilify assurance program adequate teassure swccessigl qompliance pith the requirepents of this speci-
fication.
3.0 APPLICABLE DOCUMENTS:
3.1 The following documents form a part α this spectification extent specified herein. Applicable documents referenced id the remainder of this specification are referenced by numbler only/ wi out reference to amendment or issue. In each case, the amendment or issue referenced below shall apply.

3.2 In the event of any conflict between this specification and any other document, this specification shall take precedence.
3.3 Military Standards

MIL-STD-130D Identification Marking of U.S. Military Froperty
MIL-STD-202E Test Methods for Electronic and Electrical Component Parts

MIL-STD-454D Standard General Requirements for Electronic Equipment

MIL-STD-883 Tést Methods and Procedures for Microelectronics
3.4 Military Handbooks

MIL-HDBK-217A Reliability Stress and Failure Rate Data for Electronic Equipment

3.5
 Military Specifications

MIL-R-11-1A Resistor, Fixed, Composition (Insulated)/Appropriate Device Specification
MIL-M-14G Molding Plastics and Molded Plastic Parts, Thermosetting
MIL-C-20E Capacitor, Fixed, Ceramic Dielectric, (Temperature Compensating)/Appropriate Device Specification
MIL-R-10509F Resistor, Fixed, Film (High Stability)/Appropriate

MIL-S-19500E
MIL-S-23586C
MIL-C-26655B
Capacitor, Fixed, Electrolytic (Solid Electrolyte), Tantalum
MIL-M-38510A Microcircuits, General Specifications For/Appropriate Device Specification
MIL-G-45204B Gold P1ating, Electrode Deposited
MIL-I-45208A Inspection System Requirements
MIL-I-46058C Insulating Compound, Electrical (For Coating Printed Circuit Assembles)

DWG.NO ,
4.0 ABSOLUTE MAXIMUM RATINGS:
4.1 Absolute maximum ratings shall be as shown in Table 1.
5.0 ELECTRICAL SPECIFICATIONS:
5.1 Recommended operating conditions shall be as shown in Table 2.
5.2 Electrical specifications shall be as shown in Table 3.

6.2

The desired input range, fer is used, stall be determined according to Table 4.

When sing a bipola) input voltage large either offset binary or two's complement output coding shall pe available. The on difference between the two codes ls the foot of the post signifteant bit (MSB). For offset binary ceding use Pi /n 72 (MSB) as thy MSB put puts For two's complement use pin 70 (MSW).

Gain and zero adjustment potentiometers, if used, shall b as shown in Figure 2.
6.4 When the A/D converter is used with its own internal clock, as is normally the case, connection to the clock shall be effected by connetting together pins 35 and 36 of the module.

7.0 MECHANICAL SPECIFICATIONS:

7.1 The module's circuitry shall conform to the block diagram shown in Figure 2.
7.2 The module's pin assignments and pin designations shall be as shown in Table 5.
7.3 The physical outline of the module shall be in accordance with Figure 3.
7.4 The maximum weight of the module shall be 3.5 ounces (99.3 grams).
7.5 The module shall be permanently and legibly marked per MIL-STD-130. The manufacturer's identification, model numbers, and pin numbers shall be marked on top of the module. Any additional markings shall be on one or more sides of the module.

7.6 Modules meeting the requirements of this specification shall have their printed circuit cards coated subsequent to component mounting and soldering, but prior to encapsulation, using a plastic coating material meeting the requirements of MIL-I-46058.
8.0 ENVIRONMENTAL SPECIFICATIONS:
8.1 A/D modules meeting the requirements of this specification shall be capable of passing the environmental tests shown in Table 6.

9.0 QUALITY CONFORMANCE INSPECTION

All modules meeting the requirements of this specification shall be inspected using an inspection system meeting the requirements of MLLT-45208.

All modules pefting the requirements of this specification shall be subjected to the fotibwing screening tests, in the order shown, After assemis, the foodufe, whille at ahbie

9.5 After temperature stabilization of the module at $-55^{\circ} \mathrm{C}$, the module shall be tested for, and shall pass, the low temperature operating parameters designated by reference numbers $1,2,3$ and 4 of Table 3 .
9.6 The module shall be temperature cycled in accordance with MIL-STD883, Method 1010, test condition B.
9.7 The module shall be operated in an ambient temperature of $+125^{\circ} \mathrm{C}$ $\pm 2^{\circ} \mathrm{C}$ for 168 hours with +5 V and $\pm 15 \mathrm{~V}$ power applied to the unit, and with a 5 kHz minimum repetition rate convert command.
9.8 The module, after stabilization at room ambient temperature, shall be retested, and shall pass the $25^{\circ} \mathrm{C}$ operating parameters designated by reference numbers 1,2 , and 4 of Table 3 .
9.9 A pre-encapsulation visual inspection shall be performed to verify that workmanship is in accordance with MIL-STD-454, Requirement 9.

FOR REVISIONS AND APPROVAL SEE SHEET I
9.10 After encapsulation, the module shall have a final electrical test, which shall consist of being tested for, and passing, the $25^{\circ} \mathrm{C}$ operating parameters designated by reference numbers 1,2 , and 4 of Table 3.
9.11 If any components, other than trim resistors, are replaced within the module after the quality conformance inspection has commenced, any tests already performed on the module are invalidated, and the module must begin the quality conformance inspection procedure again.

CALCULATED MEAN TIME BETWEEN FAILURES:
The module shall have a minimum calculated MTBF of 100,000 hours at portal 1 joon mbient femperature with nominal supply voltages applied. The MTBF sho (be dal) culated accordance with Handbook MIL-HDBK-
11.0
11.1
 components used in modules meeting this speciligation shall, met all requirements of the appropriate specificatior (s) called out b\&low:
11.1.1 CARBON RESISTORS shall meet the requirements of $M+R-11$.
11.1.2 METAL FILM RESISTORS shall meet the requirements of MIL-R-10509.
11.1.3 CERAMIC CAPACITORS shall meet the applicable requirements of MIL-C11015 and MIL-C-20.
11.1.4 TANTALUM CAPACITORS shall meet the requirements of MIL-C-26655.
11.1.5 MICROCIRCUITS shall be hermetically sealed and shall meet one of the following requirements, shown in order of preference: 1) microcircuits qualified to MIL-M-38510, Class B, 2) microcircuits processed to MIL-M-38510, Class B. 3) microcircuits processed to the applicable requirements of MIL-STD-883, Class B. Microcircuits meeting the requirements of a lower preference are acceptable only when those meeting the requirements of a higher preference are not available.
11.1.6 DISCRETE SEMICONDUCTORS shall be hermetically sealed and meet the requirements of MIL-S-19500.
11.1.7 PRINTED CIRCUIT BOARDS shall use material meeting the requirements
of MIL-P-13949. of MIL-P-13949.
11.1.8 ENCAPSULATING COMPOUND shall meet the requirements of Thermal Shock MIL-I-16923, and Corrosion Resistance MIL-S-23586.
 ne

ANALOG DEVICESmc NORWOOD MASSACHUSETTS
11.1.9 PLASTIC CASES shall be manufactured of diallyl phthalate meeting the requirements of MIL-M-14, SDG.
11.1.10 TERMINAL PINS shall be made of half-hard brass and shall be gold plated per MIL-G-45204, Class 1, Type II.
11.2 The vendor shall, upon request, furnish a list of all components not meeting the appropriate requirements of paragraph 11.1, and shall indicate the reason (s) for using such components.
12.0 PREPARATION FOR DELIVERY:

Preservation and Packaging; The module shall be afforded preservation and packaging in a manner that will afford adequate protection against erosion, deterioration, and physical damage during shipment.
Pa
Packing; the module shall be packed in containers of the type, size, ard kin como sly us\&d for the purpose, in a manner that will insure acceptance by common carrier and safeqelivery at destination.

FOR REVISIONS AND APPROVAL SEE SHEET I

TABLE 1

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

```
```

+15V Supply Voltage

```
```

+15V Supply Voltage
-15V Supply Voltage
-15V Supply Voltage
Tracking Error Between +15V and
Tracking Error Between +15V and
-15V Supplies
-15V Supplies
+5V Supply Voltage
+5V Supply Voltage
Analog Input Voltage Range
Analog Input Voltage Range
Convert Command Logic "1" Voltage
Convert Command Logic "1" Voltage
Convert Command Logic "0" Voltage
Convert Command Logic "0" Voltage
Convert Command Pulse Width
Convert Command Pulse Width
Ambient Operating Temperature Range

```
```

Ambient Operating Temperature Range

```
```

$$
\begin{aligned}
& +15 \text { Volts } \pm 3 \% \\
& -15 \text { Volts } \pm 3 \% \\
& \\
& 1 \% \text { Maximum } \\
& +5 \text { Volts } \pm 5 \% \\
& -15 \mathrm{~V} \text { to }+15 \mathrm{~V} \\
& +2.4<\mathrm{V}_{\text {IN }}<+5.0 \mathrm{~V} \\
& +0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<+0.4 \mathrm{~V} \\
& 100 \mathrm{~ns} \text { Minimum } \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
$$

ON 'OMO

TABLE 4
INPUT RANGE AND BUFFER SELECTION

TABLE 5

PIN DESIGNATIONS

FOR REVISIONS AND APPROVAL SEE SHEET I

TABLE 6
ENVIROMMENTAL TESTS

FIG:RF 1
TIMTNG DLAGRAM

Previous Code $=10110$. . . 1
New Code $\quad=01010$... 1
Note Idle Clock Pulses between 4 th and 5 th bits, and between 8 th and 9 th bits.

FOR REVISIONS AND APPROVAL SEE SHEET I

FIGURE 2
BLOCK DIAGRAM

FIGURE 3
PHYSICAL OUTLINE

Pin Diameter 0.018 (0.457) MIN

Note:
Pins installed only in shaded hole locations
Dimensions in mm shown inside parenthesis

