

# AN-859 Application Note

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

## RF Port Impedance Data, Matching, and External Component Selection for the ADF7020-1, ADF7021, and ADF7021-N

#### by Conor O'Mahony

### SCOPE OF THIS DOCUMENT

This application note describes the RF port impedance models of the power amplifier (PA) and low noise amplifier (LNA) of the ADF7020-1, ADF7021, and ADF7021-N. The port impedance values are listed for the range of frequencies over which the ADF7020-1, ADF7021, and ADF7021-N can operate with the external inductor VCO (130 MHz to 650 MHz). Matching circuits, loop filter components, and VCO tank inductor values are also provided for a range of frequency bands.

### INTRODUCTION

The ADF7020-1, ADF7021, and ADF7021-N have two RF ports: an LNA input (RFIN/RFINB) and a PA output (RFOUT). The properties and function of these RF ports depend on the operating mode of the transceiver, that is, transmit (Tx) mode or receive (Rx) mode. The ports and the different states are shown in Table 1.

The need for complex broadband models is avoided by providing simple lumped-element models for each RF port. This simplification has the disadvantage of rendering the models valid only in a narrow frequency band. The ADF7020-1, ADF7021, and ADF7021-N port model has been extracted with an approach based on fixture modeling.

The ADF7020-1, ADF7021, and ADF7021-N feature an on-chip VCO with external tank inductor, which is used to set the RF frequency range. Information is provided on how to select this external inductor for the required operating band in the External VCO Inductor section.

Example loop filter and matching components are also given for various popular operating bands of the ADF7020-1, ADF7021, and ADF7021-N.

#### Table 1.

| Port                                      | State                                  |
|-------------------------------------------|----------------------------------------|
| PA Output (Single Ended, Ground Referred) | Tx: Optimum PA load impedance          |
|                                           | Rx: PA idle impedance                  |
| LNA Input (Single Ended, Ground Referred) | Tx: LNA idle impedance                 |
|                                           | Rx: LNA input impedance (maximum gain) |

# TABLE OF CONTENTS

| Scope of This Document | 1 |
|------------------------|---|
| Introduction           | 1 |
| PA Port Impedance      | 3 |
| Tx Mode                | 3 |
| Rx Mode                | 4 |
| LNA Port Impedance     | 5 |

| Tx Mode                      | 5  |
|------------------------------|----|
| Rx Mode                      | 7  |
| Choosing External Components | 9  |
| Matching                     | 9  |
| Loop Filter Components       | 9  |
| External VCO Inductor        | 10 |

# PA PORT IMPEDANCE

### Tx MODE

The PA load impedance values have been optimized to yield an output power of 10 dBm at the lowest possible current consumption with a supply voltage of 3.0 V. This optimum PA load impedance ( $Z_{OPTIMUM}$ ) is highlighted in Figure 1, which also shows the equivalent lumped-element circuit of this impedance. Note that when designing a matching network for the PA in transmit mode, model the PA as the conjugate of  $Z_{OPTIMUM}$ .

Table 2 lists optimum PA load impedance values in steps of 10 MHz over the frequency range of 160 MHz to 620 MHz.



Figure 1. PA Optimum Load Impedance Definition in Transmit Mode and Lumped-Element Model

#### Table 2. PA Optimum Load Impedance in Transmit Mode

| Frequency (MHz) | Ζορτίμυμ (Ω)    | R (Ω) | L (nH) |
|-----------------|-----------------|-------|--------|
| 160             | 177.28 + 48.41i | 190   | 694    |
| 170             | 174.66 + 48.73i | 188   | 632    |
| 180             | 171.9 + 49.3i   | 186   | 574    |
| 190             | 169.02 + 50.06i | 184   | 520    |
| 200             | 166.02 + 50.99i | 182   | 471    |
| 210             | 162.93 + 52.03i | 180   | 426    |
| 220             | 159.75 + 53.16i | 177   | 386    |
| 230             | 156.5 + 54.33i  | 175   | 350    |
| 240             | 153.18 + 55.52i | 173   | 317    |
| 250             | 149.82 + 56.71i | 171   | 288    |
| 260             | 146.41 + 57.87i | 169   | 262    |
| 270             | 142.99 + 58.97i | 167   | 239    |
| 280             | 139.56 + 60.02i | 165   | 219    |
| 290             | 136.14 + 60.98i | 163   | 200    |

| Frequency (MHz) |                 | R (O) | L (nH) |
|-----------------|-----------------|-------|--------|
| 300             | 132.74 + 61.86i | 162   | 184    |
| 310             | 129.37 + 62.65i | 160   | 169    |
| 320             | 126.06 + 63.34i | 158   | 156    |
| 330             | 122.81 + 63.93i | 156   | 145    |
| 340             | 119.65 + 64.42i | 154   | 134    |
| 350             | 116.62 + 64.81i | 153   | 125    |
| 360             | 113.74 + 65.09i | 151   | 117    |
| 370             | 111.04 + 65.28i | 149   | 109    |
| 380             | 108.54 + 65.39i | 148   | 103    |
| 390             | 106.26 + 65.42i | 147   | 97     |
| 400             | 104.2 + 65.4i   | 145   | 92     |
| 410             | 102.4 + 65.32i  | 144   | 88     |
| 420             | 100.85 + 65.21i | 143   | 84     |
| 430             | 99.58 + 65.08i  | 142   | 80     |
| 440             | 98.6 + 64.93i   | 141   | 78     |
| 450             | 97.92 + 64.77i  | 141   | 75     |
| 460             | 97.55 + 64.6i   | 140   | 73     |
| 470             | 97.5 + 64.43i   | 140   | 72     |
| 480             | 97.65 + 64.27i  | 140   | 71     |
| 490             | 97.86 + 64.13i  | 140   | 69     |
| 500             | 98 + 64.01i     | 140   | 68     |
| 510             | 97.93 + 63.94i  | 140   | 67     |
| 520             | 97.52 + 63.93i  | 139   | 65     |
| 530             | 96.64 + 63.98i  | 139   | 63     |
| 540             | 95.17 + 64.09i  | 138   | 61     |
| 550             | 93.02 + 64.21i  | 137   | 58     |
| 560             | 90.12 + 64.29i  | 136   | 54     |
| 570             | 86.55 + 64.23i  | 134   | 50     |
| 580             | 82.41 + 63.94i  | 132   | 47     |
| 590             | 77.84 + 63.34i  | 129   | 43     |
| 600             | 72.98 + 62.36i  | 126   | 39     |
| 610             | 67.97 + 60.98i  | 123   | 36     |
| 620             | 62.96 + 59.17i  | 119   | 32     |

### **Rx MODE**

In receive mode, the parasitic capacitance of the PA port is of interest if a combined Rx/Tx match is being designed (as on the ADF7020-1, ADF7021, and ADF7021-N evaluation boards). Figure 2 shows the lumped-element model of the biased PA in Rx mode. Table 3 lists the optimum PA port impedance values in steps of 7 MHz for the frequency range of 150.5 MHz to 626.5 MHz.



Figure 2. PA Port Impedance Definition in Receive Mode and Equivalent Lumped-Element Model

| Table 5. FA Fort Impe | uance in Receive Mo     | Jue   |        | -J7.J |
|-----------------------|-------------------------|-------|--------|-------|
| Frequency (MHz)       | Z <sub>PA_OFF</sub> (Ω) | R (Ω) | C (pF) | 444.5 |
| 150.5                 | 25.71 – 265.48i         | 2767  | 3.95   | 451.5 |
| 157.5                 | 29.31 – 274.14i         | 2593  | 3.64   | 458.5 |
| 164.5                 | 25.86 – 281.78i         | 3096  | 3.40   | 465.5 |
| 171.5                 | 19.65 – 281.12i         | 4041  | 3.29   | 472.5 |
| 178.5                 | 18.42 – 273.92i         | 4092  | 3.24   | 479.5 |
| 185.5                 | 18.27 – 266.72i         | 3912  | 3.20   | 486.5 |
| 192.5                 | 18.46 – 259.52i         | 3667  | 3.17   | 493.5 |
| 199.5                 | 18.63 – 252.47i         | 3440  | 3.14   | 500.5 |
| 206.5                 | 18.57 – 245.7i          | 3269  | 3.12   | 507.5 |
| 213.5                 | 18.36 – 239i            | 3130  | 3.10   | 514.5 |
| 220.5                 | 17.82 – 232.79i         | 3059  | 3.08   | 521.5 |
| 227.5                 | 17.53 – 226.9i          | 2954  | 3.06   | 528.5 |
| 234.5                 | 19.48 – 219.07i         | 2483  | 3.07   | 535.5 |
| 241.5                 | 19.35 – 215.94i         | 2429  | 3.03   | 542.5 |
| 248.5                 | 17.82 – 210.02i         | 2493  | 3.03   | 549.5 |
| 255.5                 | 17.39 – 203.99i         | 2410  | 3.03   | 556.5 |
| 262.5                 | 17.46 – 198.72i         | 2279  | 3.03   | 563.5 |
| 269.5                 | 17.4 – 193.91i          | 2178  | 3.02   | 570.5 |
| 276.5                 | 17.08 – 189.36i         | 2116  | 3.02   | 577.5 |
| 283.5                 | 16.66 – 184.97i         | 2070  | 3.01   | 584.5 |
| 290.5                 | 16.35 – 180.56i         | 2010  | 3.01   | 591.5 |
| 297.5                 | 16.23 – 176.12i         | 1927  | 3.01   | 598.5 |
| 304.5                 | 16.26 – 171.96i         | 1835  | 3.01   | 605.5 |
| 311.5                 | 16.11 – 167.8i          | 1764  | 3.02   | 612.5 |
| 318.5                 | 15.85 – 163.58i         | 1704  | 3.03   | 619.5 |
| 325.5                 | 15.63 – 159.8i          | 1649  | 3.03   | 626.5 |
| 332.5                 | 15.43 – 156.21i         | 1597  | 3.03   |       |
|                       |                         |       |        |       |

| ۸r | n n l | lio | otic | n n | No | to |
|----|-------|-----|------|-----|----|----|
| A  | ۱Ų    | IIU | all  | Л   | NU | lt |

| Frequency (MHz) | $Z_{PA_OFF}(\Omega)$ | R (Ω) | C (pF) |
|-----------------|----------------------|-------|--------|
| 339.5           | 15.17 – 152.5i       | 1548  | 3.04   |
| 346.5           | 14.94 – 148.94i      | 1500  | 3.05   |
| 353.5           | 14.75 – 145.61i      | 1452  | 3.06   |
| 360.5           | 14.52 – 142.4i       | 1411  | 3.07   |
| 367.5           | 14.04 – 139.02i      | 1391  | 3.08   |
| 374.5           | 13.89 – 136.06i      | 1347  | 3.09   |
| 381.5           | 13.69 – 133.17i      | 1309  | 3.10   |
| 388.5           | 13.48 – 130.32i      | 1273  | 3.11   |
| 395.5           | 13.31 – 127.51i      | 1235  | 3.12   |
| 402.5           | 13.1 – 124.8i        | 1202  | 3.13   |
| 409.5           | 12.86 – 122.21i      | 1174  | 3.15   |
| 416.5           | 12.66 – 119.72i      | 1145  | 3.16   |
| 423.5           | 12.51 – 117.27i      | 1112  | 3.17   |
| 430.5           | 12.43 – 115.08i      | 1078  | 3.18   |
| 437.5           | 12.24 – 112.91i      | 1054  | 3.18   |
| 444.5           | 12.01 – 110.79i      | 1034  | 3.19   |
| 451.5           | 11.78 – 108.67i      | 1014  | 3.21   |
| 458.5           | 11.58 – 106.55i      | 992   | 3.22   |
| 465.5           | 11.43 – 104.4i       | 965   | 3.24   |
| 472.5           | 11.25 – 102.48i      | 945   | 3.25   |
| 479.5           | 11.09 – 100.58i      | 923   | 3.26   |
| 486.5           | 10.91 – 98.72i       | 904   | 3.27   |
| 493.5           | 10.67 – 96.98i       | 892   | 3.29   |
| 500.5           | 10.48 – 95.16i       | 875   | 3.30   |
| 507.5           | 10.41 – 93.43i       | 849   | 3.32   |
| 514.5           | 10.23 – 91.75i       | 833   | 3.33   |
| 521.5           | 9.96 – 90.11i        | 825   | 3.35   |
| 528.5           | 9.86 - 88.47i        | 804   | 3.36   |
| 535.5           | 9.73 – 86.94i        | 787   | 3.38   |
| 542.5           | 9.59 – 85.46i        | 771   | 3.39   |
| 549.5           | 9.46 – 84.01i        | 756   | 3.40   |
| 556.5           | 9.32 – 82.61i        | 742   | 3.42   |
| 563.5           | 9.17 – 81.3i         | 730   | 3.43   |
| 570.5           | 9.02 – 79.91i        | 717   | 3.45   |
| 577.5           | 8.91 – 78.62i        | 703   | 3.46   |
| 584.5           | 8.8 – 77.41i         | 690   | 3.47   |
| 591.5           | 8.58 – 76.22i        | 686   | 3.49   |
| 598.5           | 8.43 – 74.96i        | 675   | 3.50   |
| 605.5           | 8.32 – 73.86i        | 664   | 3.51   |
| 612.5           | 8.19 – 72.78i        | 655   | 3.53   |
| 619.5           | 8.02 – 71.64i        | 648   | 3.54   |
| 626.5           | 7.92 – 70.53i        | 636   | 3.56   |

# LNA PORT IMPEDANCE

### Tx MODE

Figure 3 shows the lumped-element model of the LNA in transmit mode. This model reflects the measured port impedance values with an equivalent circuit of the lowest possible complexity.

When the ADF7020-1, ADF7021, and ADF7021-N are in transmit mode, the Tx/Rx switch is closed, providing a low impedance path ( $Z_B$ ) between the differential inputs of the LNA (RFIN and RFINB).  $Z_A$  and  $Z_C$  represent the impedances between RFIN to GND and RFINB to GND, respectively, and they are equal. For the design of a matching network, the LNA input impedance can be modeled using the lumped-element model shown in Figure 3.

Table 4 lists the  $Z_A$ ,  $Z_B$ , and  $Z_C$  impedances and their corresponding lumped-element values in 10 MHz steps for a frequency range of 100 MHz to 620 MHz.



Figure 3. Lumped-Element Model of LNA in Transmit Mode

#### Table 4. Port Impedance and Lumped-Element Values for the LNA in Transmit Mode

| Frequency (MHz) | Ζ <sub>Α</sub> (Ω) | R <sub>A</sub> (Ω) | C <sub>A</sub> (pF) | Ζ <sub>B</sub> (Ω) | R <sub>B</sub> (Ω) | L <sub>B</sub> (nH) | Ζ <sub>C</sub> (Ω) | R <sub>c</sub> (Ω) | C <sub>c</sub> (pF) |
|-----------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|
| 100             | 209.69 – 750.06i   | 2893               | 1.97                | 10.12 + 0.79i      | 10.2               | 207.6               | 209.69 – 750.06i   | 2893               | 1.97                |
| 110             | 192.68 – 701.23i   | 2745               | 1.92                | 10.12 + 0.86i      | 10.2               | 173.5               | 192.68 – 701.23i   | 2745               | 1.92                |
| 120             | 159.71 – 632.35i   | 2663               | 1.97                | 10.13 + 0.97i      | 10.2               | 141.6               | 159.71 – 632.35i   | 2663               | 1.97                |
| 130             | 141.32 – 596.57i   | 2660               | 1.94                | 10.12 + 1.07i      | 10.2               | 118.5               | 141.32 – 596.57i   | 2660               | 1.94                |
| 140             | 110.5 – 539.87i    | 2748               | 2.02                | 10.16 + 1.11i      | 10.3               | 107.0               | 110.5 – 539.87i    | 2748               | 2.02                |
| 150             | 100.4 – 500.12i    | 2592               | 2.04                | 10.16 + 1.2i       | 10.3               | 92.5                | 100.4 – 500.12i    | 2592               | 2.04                |
| 160             | 83.12 – 462.07i    | 2652               | 2.09                | 10.16 + 1.31i      | 10.3               | 79.7                | 83.12 – 462.07i    | 2652               | 2.09                |
| 170             | 76.19 – 423.43i    | 2429               | 2.14                | 10.16 + 1.4i       | 10.4               | 70.3                | 76.19 – 423.43i    | 2429               | 2.14                |
| 180             | 70.35 – 407.17i    | 2427               | 2.11                | 10.2 + 1.51i       | 10.4               | 62.3                | 70.35 – 407.17i    | 2427               | 2.11                |
| 190             | 55.83 – 378.53i    | 2622               | 2.17                | 10.16 + 1.63i      | 10.4               | 54.4                | 55.83 – 378.53i    | 2622               | 2.17                |
| 200             | 59.81 – 359.02i    | 2215               | 2.16                | 10.14 + 1.72i      | 10.4               | 48.9                | 59.81 – 359.02i    | 2215               | 2.16                |
| 210             | 57.75 – 338.81i    | 2045               | 2.17                | 10.14 + 1.82i      | 10.5               | 44.2                | 57.75 – 338.81i    | 2045               | 2.17                |
| 220             | 47.16 – 330.59i    | 2365               | 2.14                | 10.17 + 1.88i      | 10.5               | 41.2                | 47.16 – 330.59i    | 2365               | 2.14                |
| 230             | 47.58 – 308.71i    | 2051               | 2.19                | 10.14 + 1.99i      | 10.5               | 37.1                | 47.58 – 308.71i    | 2051               | 2.19                |
| 240             | 45.61 – 296.9i     | 1978               | 2.18                | 10.14 + 2.06i      | 10.6               | 34.5                | 45.61 – 296.9i     | 1978               | 2.18                |
| 250             | 39.44 – 274.86i    | 1955               | 2.27                | 10.14 + 2.15i      | 10.6               | 31.8                | 39.44 – 274.86i    | 1955               | 2.27                |
| 260             | 41.59 – 264.05i    | 1718               | 2.26                | 10.09 + 2.27i      | 10.6               | 28.8                | 41.59 – 264.05i    | 1718               | 2.26                |
| 270             | 35.5 – 253.72i     | 1849               | 2.28                | 10.11 + 2.44i      | 10.7               | 26.1                | 35.5 – 253.72i     | 1849               | 2.28                |
| 280             | 35.04 – 240.15i    | 1681               | 2.32                | 10.11 + 2.56i      | 10.8               | 24.1                | 35.04 – 240.15i    | 1681               | 2.32                |
| 290             | 31.94 – 234.19i    | 1749               | 2.30                | 10.13 + 2.75i      | 10.9               | 22.0                | 31.94 – 234.19i    | 1749               | 2.30                |
| 300             | 29.26 – 227.03i    | 1791               | 2.30                | 10.17 + 2.93i      | 11.0               | 20.3                | 29.26 – 227.03i    | 1791               | 2.30                |
| 310             | 30.13 – 217.74i    | 1604               | 2.31                | 10.22 + 3.07i      | 11.1               | 19.0                | 30.13 – 217.74i    | 1604               | 2.31                |
| 320             | 31.83 – 209.67i    | 1413               | 2.32                | 10.22 + 3.18i      | 11.2               | 17.9                | 31.83 – 209.67i    | 1413               | 2.32                |
| 330             | 31.13 – 202.45i    | 1348               | 2.33                | 10.27 + 3.33i      | 11.3               | 16.9                | 31.13 – 202.45i    | 1348               | 2.33                |
| 340             | 32.71 – 197.29i    | 1223               | 2.31                | 10.29 + 3.44i      | 11.4               | 16.0                | 32.71 – 197.29i    | 1223               | 2.31                |
| 350             | 31.84 – 193.62i    | 1209               | 2.29                | 10.3 + 3.5i        | 11.5               | 15.4                | 31.84 – 193.62i    | 1209               | 2.29                |
| 360             | 31.39 – 189.84i    | 1180               | 2.27                | 10.34 + 3.63i      | 11.6               | 14.6                | 31.39 – 189.84i    | 1180               | 2.27                |
| 370             | 28.33 – 181.71i    | 1194               | 2.31                | 10.37 + 3.75i      | 11.7               | 13.9                | 28.33 – 181.71i    | 1194               | 2.31                |
| 380             | 30.76 – 178.73i    | 1069               | 2.28                | 10.36 + 3.85i      | 11.8               | 13.3                | 30.76 – 178.73i    | 1069               | 2.28                |
| 390             | 30.87 – 173.95i    | 1011               | 2.27                | 10.38 + 3.97i      | 11.9               | 12.7                | 30.87 – 173.95i    | 1011               | 2.27                |

# AN-859

**Application Note** 

| Frequency (MHz) | Ζ <sub>Α</sub> (Ω) | R <sub>A</sub> (Ω) | C <sub>A</sub> (pF) | Ζ <sub>Β</sub> (Ω) | R <sub>B</sub> (Ω) | L <sub>B</sub> (nH) | Ζ <sub>c</sub> (Ω) | R <sub>c</sub> (Ω) | C <sub>c</sub> (pF) |
|-----------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|
| 400             | 32.18 – 170.85i    | 939                | 2.25                | 10.42 + 4.14i      | 12.1               | 12.1                | 32.18 – 170.85i    | 939                | 2.25                |
| 410             | 33.11 – 166.02i    | 866                | 2.25                | 10.47 + 4.2i       | 12.2               | 11.8                | 33.11 – 166.02i    | 866                | 2.25                |
| 420             | 30.47 – 159.59i    | 866                | 2.29                | 10.5 + 4.36i       | 12.3               | 11.2                | 30.47 – 159.59i    | 866                | 2.29                |
| 430             | 27.95 – 155.18i    | 890                | 2.31                | 10.54 + 4.5i       | 12.5               | 10.8                | 27.95 – 155.18i    | 890                | 2.31                |
| 440             | 30.2 – 150.2i      | 777                | 2.31                | 10.5 + 4.61i       | 12.5               | 10.3                | 30.2 – 150.2i      | 777                | 2.31                |
| 450             | 29.08 – 146.18i    | 764                | 2.33                | 10.47 + 4.71i      | 12.6               | 9.9                 | 29.08 – 146.18i    | 764                | 2.33                |
| 460             | 29.13 – 142.38i    | 725                | 2.33                | 10.45 + 4.83i      | 12.7               | 9.5                 | 29.13 – 142.38i    | 725                | 2.33                |
| 470             | 28.74 – 139.25i    | 703                | 2.33                | 10.42 + 4.92i      | 12.7               | 9.1                 | 28.74 – 139.25i    | 703                | 2.33                |
| 480             | 29.71 – 137.39i    | 665                | 2.31                | 10.41 + 5.07i      | 12.9               | 8.8                 | 29.71 – 137.39i    | 665                | 2.31                |
| 490             | 30.13 – 134.96i    | 635                | 2.29                | 10.44 + 5.26i      | 13.1               | 8.4                 | 30.13 – 134.96i    | 635                | 2.29                |
| 500             | 31.09 – 131.09i    | 584                | 2.30                | 10.46 + 5.42i      | 13.3               | 8.2                 | 31.09 – 131.09i    | 584                | 2.30                |
| 510             | 30.85 – 128.62i    | 567                | 2.29                | 10.43 + 5.62i      | 13.5               | 7.8                 | 30.85 – 128.62i    | 567                | 2.29                |
| 520             | 31.41 – 125.89i    | 536                | 2.29                | 10.43 + 5.78i      | 13.6               | 7.5                 | 31.41 – 125.89i    | 536                | 2.29                |
| 530             | 30.8 – 123.66i     | 527                | 2.29                | 10.41 + 5.91i      | 13.8               | 7.3                 | 30.8 – 123.66i     | 527                | 2.29                |
| 540             | 31.27 – 121.49i    | 503                | 2.28                | 10.4 + 6.01i       | 13.9               | 7.1                 | 31.27 – 121.49i    | 503                | 2.28                |
| 550             | 31.44 – 118.47i    | 478                | 2.28                | 10.39 + 6.14i      | 14.0               | 6.9                 | 31.44 – 118.47i    | 478                | 2.28                |
| 560             | 31.61 – 117.03i    | 465                | 2.26                | 10.37 + 6.28i      | 14.2               | 6.7                 | 31.61 – 117.03i    | 465                | 2.26                |
| 570             | 31 – 114.7i        | 455                | 2.27                | 10.37 + 6.45i      | 14.4               | 6.5                 | 31 – 114.7i        | 455                | 2.27                |
| 580             | 31.16 – 111.91i    | 433                | 2.28                | 10.39 + 6.59i      | 14.6               | 6.3                 | 31.16 – 111.91i    | 433                | 2.28                |
| 590             | 31.54 – 110.09i    | 416                | 2.26                | 10.38 + 6.76i      | 14.8               | 6.1                 | 31.54 – 110.09i    | 416                | 2.26                |
| 600             | 31.3 – 107.92i     | 403                | 2.27                | 10.37 + 6.93i      | 15.0               | 6.0                 | 31.3 – 107.92i     | 403                | 2.27                |
| 610             | 31.87 – 105.94i    | 384                | 2.26                | 10.36 + 7.08i      | 15.2               | 5.8                 | 31.87 – 105.94i    | 384                | 2.26                |
| 620             | 31.62 – 103.66i    | 371                | 2.27                | 10.35 + 7.21i      | 15.4               | 5.7                 | 31.62 – 103.66i    | 371                | 2.27                |

# **Application Note**

### **Rx MODE**

For the design of a matching network in receive mode, the LNA input impedance can be modeled using the lumped-element model shown in Figure 4.  $Z_A$  and  $Z_C$  represent the impedances between RFIN to GND and RFINB to GND, respectively, and they are equal.  $Z_B$  represents the high impedance coupling path between RFIN and RFINB when the ADF7020-1, ADF7021, and ADF7021-N are in receive mode.

Table 5 lists the  $Z_A, Z_B$ , and  $Z_C$  impedances and their corresponding lumped-element values in 10 MHz steps for a frequency range of 80 MHz to 620 MHz.



Figure 4. Lumped-Element Model of LNA in Receive Mode

| Table 5.1 oft imper | ance and Lumped-   | Liement            | v alues loi         | the LIVII in Rece  | ive moue            |                     |                    |                    |                     |
|---------------------|--------------------|--------------------|---------------------|--------------------|---------------------|---------------------|--------------------|--------------------|---------------------|
| Frequency (MHz)     | Ζ <sub>Α</sub> (Ω) | R <sub>A</sub> (Ω) | C <sub>A</sub> (pF) | Ζ <sub>в</sub> (Ω) | R <sub>B</sub> (kΩ) | L <sub>Β</sub> (μΗ) | Ζ <sub>c</sub> (Ω) | R <sub>c</sub> (Ω) | C <sub>c</sub> (pF) |
| 80                  | 283.6 – 195.34i    | 418                | 3.28                | 8752 + 45068i      | 240.8               | 93.0                | 283.6 – 195.34i    | 418                | 3.28                |
| 90                  | 266.56 – 196.62i   | 412                | 3.17                | 8261 + 39759i      | 199.6               | 73.3                | 266.56 – 196.62i   | 412                | 3.17                |
| 100                 | 255.86 – 197.01i   | 408                | 3.01                | 7723 + 35582i      | 171.7               | 59.3                | 255.86 – 197.01i   | 408                | 3.01                |
| 110                 | 241.69 – 199.86i   | 407                | 2.94                | 7435 + 32166i      | 146.6               | 49.0                | 241.69 – 199.86i   | 407                | 2.94                |
| 120                 | 235.11 – 196.3i    | 399                | 2.78                | 6943 + 29253i      | 130.2               | 41.0                | 235.11 – 196.3i    | 399                | 2.78                |
| 130                 | 226.1 – 195.53i    | 395                | 2.68                | 6619 + 26815i      | 115.3               | 34.8                | 226.1 – 195.53i    | 395                | 2.68                |
| 140                 | 214.85 – 196.68i   | 395                | 2.64                | 6435 + 24750i      | 101.6               | 30.0                | 214.85 – 196.68i   | 395                | 2.64                |
| 150                 | 202.75 – 196.07i   | 392                | 2.62                | 6301 + 22917i      | 89.7                | 26.2                | 202.75 – 196.07i   | 392                | 2.62                |
| 160                 | 190.63 – 193.43i   | 387                | 2.61                | 6179 + 21251i      | 79.3                | 22.9                | 190.63 – 193.43i   | 387                | 2.61                |
| 170                 | 182.58 – 194.18i   | 389                | 2.56                | 6033 + 19870i      | 71.5                | 20.3                | 182.58 – 194.18i   | 389                | 2.56                |
| 180                 | 175.45 – 187.62i   | 376                | 2.51                | 5829 + 18438i      | 64.2                | 17.9                | 175.45 – 187.62i   | 376                | 2.51                |
| 190                 | 165.52 – 190.88i   | 386                | 2.50                | 5808 + 17361i      | 57.7                | 16.2                | 165.52 – 190.88i   | 386                | 2.50                |
| 200                 | 157.68 – 187.19i   | 380                | 2.49                | 5695 + 16257i      | 52.1                | 14.5                | 157.68 – 187.19i   | 380                | 2.49                |
| 210                 | 154.28 – 185.18i   | 377                | 2.42                | 5511 + 15322i      | 48.1                | 13.1                | 154.28 – 185.18i   | 377                | 2.42                |
| 220                 | 147.36 – 182.92i   | 374                | 2.40                | 5423 + 14433i      | 43.8                | 11.9                | 147.36 – 182.92i   | 374                | 2.40                |
| 230                 | 140.47 – 179.73i   | 370                | 2.39                | 5342 + 13593i      | 39.9                | 10.9                | 140.47 – 179.73i   | 370                | 2.39                |
| 240                 | 135.28 – 176.8i    | 366                | 2.37                | 5238 + 12829i      | 36.7                | 9.9                 | 135.28 – 176.8i    | 366                | 2.37                |
| 250                 | 127.58 – 175.88i   | 370                | 2.37                | 5220 + 12157i      | 33.5                | 9.2                 | 127.58 – 175.88i   | 370                | 2.37                |
| 260                 | 122.84 – 172.06i   | 364                | 2.36                | 5122 + 11480i      | 30.9                | 8.4                 | 122.84 – 172.06i   | 364                | 2.36                |
| 270                 | 117.58 – 170.11i   | 364                | 2.34                | 5051 + 10882i      | 28.5                | 7.8                 | 117.58 – 170.11i   | 364                | 2.34                |
| 280                 | 112.3 – 167.68i    | 363                | 2.34                | 4989 + 10307i      | 26.3                | 7.2                 | 112.3 – 167.68i    | 363                | 2.34                |
| 290                 | 107.86 – 166.61i   | 365                | 2.32                | 4919 + 9803i       | 24.5                | 6.7                 | 107.86 – 166.61i   | 365                | 2.32                |
| 300                 | 103.61 – 163.58i   | 362                | 2.31                | 4840 + 9285i       | 22.7                | 6.3                 | 103.61 – 163.58i   | 362                | 2.31                |
| 310                 | 97.21 – 161.87i    | 367                | 2.33                | 4826 + 8817i       | 20.9                | 5.9                 | 97.21 – 161.87i    | 367                | 2.33                |
| 320                 | 94.36 – 158.11i    | 359                | 2.32                | 4722 + 8345i       | 19.5                | 5.5                 | 94.36 – 158.11i    | 359                | 2.32                |
| 330                 | 94.26 – 155.44i    | 351                | 2.27                | 4565 + 7939i       | 18.4                | 5.1                 | 94.26 – 155.44i    | 351                | 2.27                |
| 340                 | 90.14 – 152.23i    | 347                | 2.28                | 4501 + 7521i       | 17.1                | 4.8                 | 90.14 – 152.23i    | 347                | 2.28                |
| 350                 | 85.92 – 150.81i    | 351                | 2.28                | 4453 + 7163i       | 16.0                | 4.5                 | 85.92 – 150.81i    | 351                | 2.28                |
| 360                 | 83.5 – 148.35i     | 347                | 2.26                | 4361 + 6811i       | 15.0                | 4.2                 | 83.5 – 148.35i     | 347                | 2.26                |
| 370                 | 79.88 – 146.58i    | 349                | 2.26                | 4307 + 6482i       | 14.1                | 4.0                 | 79.88 – 146.58i    | 349                | 2.26                |
| 380                 | 76.06 – 144.22i    | 350                | 2.27                | 4262 + 6153i       | 13.1                | 3.8                 | 76.06 – 144.22i    | 350                | 2.27                |
| 390                 | 74.79 – 142.15i    | 345                | 2.25                | 4161 + 5864i       | 12.4                | 3.6                 | 74.79 – 142.15i    | 345                | 2.25                |
| 400                 | 73.08 – 138.83i    | 337                | 2.24                | 4064 + 5558i       | 11.7                | 3.4                 | 73.08 – 138.83i    | 337                | 2.24                |
| 410                 | 69.99 – 137.3i     | 339                | 2.24                | 4014 + 5298i       | 11.0                | 3.2                 | 69.99 – 137.3i     | 339                | 2.24                |
| 420                 | 68.84 – 135.07i    | 334                | 2.23                | 3917 + 5045i       | 10.4                | 3.1                 | 68.84 – 135.07i    | 334                | 2.23                |
| 430                 | 66.77 – 132.99i    | 332                | 2.22                | 3845 + 4803i       | 9.8                 | 2.9                 | 66.77 – 132.99i    | 332                | 2.22                |
| 440                 | 63.82 – 130.69i    | 331                | 2.23                | 3795 + 4562i       | 9.3                 | 2.8                 | 63.82 – 130.69i    | 331                | 2.23                |
| 450                 | 62.68 – 128.77i    | 327                | 2.22                | 3710 + 4350i       | 8.8                 | 2.7                 | 62.68 – 128.77i    | 327                | 2.22                |

### Table 5. Port Impedance and Lumped-Element Values for the LNA in Receive Mode

# AN-859

# **Application Note**

| Frequency (MHz) | Ζ <sub>Α</sub> (Ω) | R <sub>A</sub> (Ω) | C <sub>A</sub> (pF) | Ζ <sub>B</sub> (Ω) | R <sub>B</sub> (kΩ) | L <sub>Β</sub> (μΗ) | Ζ <sub>C</sub> (Ω) | R <sub>c</sub> (Ω) | C <sub>c</sub> (pF) |
|-----------------|--------------------|--------------------|---------------------|--------------------|---------------------|---------------------|--------------------|--------------------|---------------------|
| 460             | 61.25 – 127.17i    | 325                | 2.21                | 3636 + 4153i       | 8.4                 | 2.5                 | 61.25 – 127.17i    | 325                | 2.21                |
| 470             | 58.09 – 124.04i    | 323                | 2.24                | 3588 + 3917i       | 7.9                 | 2.4                 | 58.09 – 124.04i    | 323                | 2.24                |
| 480             | 57.24 – 121.85i    | 317                | 2.23                | 3499 + 3725i       | 7.5                 | 2.3                 | 57.24 – 121.85i    | 317                | 2.23                |
| 490             | 55.05 – 121.1i     | 321                | 2.22                | 3452 + 3562i       | 7.1                 | 2.2                 | 55.05 – 121.1i     | 321                | 2.22                |
| 500             | 53.91 – 119.38i    | 318                | 2.21                | 3378 + 3394i       | 6.8                 | 2.2                 | 53.91 – 119.38i    | 318                | 2.21                |
| 510             | 53.04 – 117.48i    | 313                | 2.21                | 3299 + 3233i       | 6.5                 | 2.1                 | 53.04 – 117.48i    | 313                | 2.21                |
| 520             | 52.45 – 115.4i     | 306                | 2.20                | 3216 + 3076i       | 6.2                 | 2.0                 | 52.45 – 115.4i     | 306                | 2.20                |
| 530             | 50.92 – 114.29i    | 307                | 2.19                | 3162 + 2937i       | 5.9                 | 1.9                 | 50.92 – 114.29i    | 307                | 2.19                |
| 540             | 49.99 – 112.68i    | 304                | 2.19                | 3092 + 2797i       | 5.6                 | 1.8                 | 49.99 – 112.68i    | 304                | 2.19                |
| 550             | 49.27 – 111.08i    | 300                | 2.18                | 3022 + 2666i       | 5.4                 | 1.8                 | 49.27 – 111.08i    | 300                | 2.18                |
| 560             | 48.21 – 109.71i    | 298                | 2.17                | 2961 + 2542i       | 5.1                 | 1.7                 | 48.21 – 109.71i    | 298                | 2.17                |
| 570             | 46.63 – 108.85i    | 301                | 2.17                | 2919 + 2428i       | 4.9                 | 1.7                 | 46.63 – 108.85i    | 301                | 2.17                |
| 580             | 45.71 – 107.46i    | 298                | 2.16                | 2860 + 2314i       | 4.7                 | 1.6                 | 45.71 – 107.46i    | 298                | 2.16                |
| 590             | 44.63 – 106.25i    | 298                | 2.16                | 2809 + 2207i       | 4.5                 | 1.6                 | 44.63 – 106.25i    | 298                | 2.16                |
| 600             | 43.79 – 104.88i    | 295                | 2.15                | 2751 + 2102i       | 4.4                 | 1.5                 | 43.79 – 104.88i    | 295                | 2.15                |
| 610             | 42.68 – 102.83i    | 290                | 2.16                | 2693 + 1984i       | 4.2                 | 1.5                 | 42.68 – 102.83i    | 290                | 2.16                |
| 620             | 41.44 – 100.73i    | 286                | 2.18                | 2638 + 1867i       | 4.0                 | 1.4                 | 41.44 – 100.73i    | 286                | 2.18                |

## CHOOSING EXTERNAL COMPONENTS matching

Table 6 provides matching components at popular frequency bands for the ADF7020-1, ADF7021, and ADF7021-N evaluation boards (EVAL-ADF702xDBZx). Note that components L4, L5, and C35 act as a T-stage filter to suppress RF harmonics.

These matching components are valid only for the EVAL-ADF702XDBZx. If the PCB layout is changed, the matching must be redesigned using the PA and LNA impedance data provided in Table 2 to Table 5.

### LOOP FILTER COMPONENTS

Table 7 provides loop filter components for various popular frequency bands. Each loop filter gives an open-loop bandwidth of about 60 kHz at the center frequency of the band, with a VCO<sub>ADJUST</sub> of 1 and a charge pump current ( $I_{CP}$ ) of 1.44 mA.

Note that because of the variation in VCO gain with the VCO tuning voltage, the loop filter bandwidth varies considerably across the band. ADI SRD Design Studio software (version 1.0 and up), which models this variation, is recommended for analyzing loop filter performance across a particular operating band (see Figure 5).

If the required operating band is wide the VCO<sub>ADJUST</sub> and I<sub>CP</sub> can be varied to keep the loop filter bandwidth somewhat constant across the band of interest. ADIsimPLL<sup> $\infty$ </sup> can be used for this analysis as well.



Figure 5. ADIsimPLL Software

### **EXTERNAL VCO INDUCTOR**

The VCO inductor (L3) used with the ADF7020-1, ADF7021, and ADF7021-N sets the operating frequency of the VCO. Typically, a particular inductor value can get a  $\pm 6\%$  range of the RF operating frequency. At 400 MHz, for example, an operating band of about  $\pm 24$  MHz with a single inductor can be expected.

Figure 6 shows the operating frequency vs. the external inductor value ( $L_{EXT}$ ) for the ADF7020-1, ADF7021, and ADF7021-N evaluation boards. It is very important to note that this is the external inductor value, not the total inductance as seen by the pins of the ADF7020-1, ADF7021, and ADF7021-N. Total inductance added by the traces on the EVAL-ADF702xDBZx has been measured as 2.66 nH.

ADIsimPLL (version 3.0 and up) can be used to automatically calculate the ideal value of the external inductance that centers the VCO tuning range. To view the results of this calculation,

expand the **PLL/VCO** menu in the data panel on the left side of the screen (see Figure 5). The ideal external inductance to center the VCO tuning range is displayed under the **L(ext)** heading. Note that **L(ext)** in ADI SRD Design Studio is the total inductance, including track inductance.

To ensure operation over the required band, use of an inductor that centers the VCO operating range at the center of the required operating band is advised. The VCO operating point can be checked by measuring the VCO tuning voltage on the VCOIN pin of the ADF7020-1, ADF7021, and ADF7021-N. The VCO tuning range is 0.2 V to 2 V, meaning the VCO is centered when the tuning voltage is around 1.1 V.

Methods in which two or more inductors are used to extend the operating frequency range can be employed in applications where a single inductor does not provide the required operating range. Discontinuous ranges are also possible with these methods.

| Frequency (MHz) | C1 (pF) | C2 (pF) | C3 (pF) | L1 (nH) | L2 (nH) | L4 (nH) | L5 (nH) | C35 (pF) (EVAL-ADF7020-1)<br>C23 (pF) (EVAL-ADF7021/-N) |
|-----------------|---------|---------|---------|---------|---------|---------|---------|---------------------------------------------------------|
| 120 to 150      | 12      | 18      | 10      | 100     | 200     | 150     | 130     | 15                                                      |
| 310 to 350      | 5.6     | 10      | 6.8     | 30      | 56      | 51      | 47      | 6.8                                                     |
| 400 to 440      | 4.7     | 8.2     | 4.7     | 18      | 36      | 27      | 30      | 5.6                                                     |
| 440 to 470      | 3.9     | 8.2     | 4.7     | 15      | 33      | 24      | 27      | 5.6                                                     |
| 470 to 510      | 3.9     | 8.2     | 3.9     | 13      | 30      | 18      | 20      | 5.6                                                     |

#### Table 7. EVAL-ADF702XDBZx Loop Filter Values for Popular Frequency Bands

|                 |            |           | C16 <sup>1</sup> | C17   | C18  | R4   | R5  |                                   |
|-----------------|------------|-----------|------------------|-------|------|------|-----|-----------------------------------|
|                 |            |           | C13 <sup>3</sup> | C12   | C11  | R1   | R2  |                                   |
| Frequency (MHz) | Xtal (MHz) | PFD (MHz) | (pF)             | (pF)  | (pF) | (Ω)  | (Ω) | Loop Filter BW (kHz) <sup>2</sup> |
| 120 to 150      | 11.0592    | 5.5296    | 470              | 15000 | 1000 | 1000 | 390 | 60                                |
| 310 to 350      | 9.8304     | 9.8304    | 330              | 10000 | 870  | 1500 | 680 | 60                                |
| 400 to 440      | 11.0592    | 11.0592   | 390              | 15000 | 1000 | 1200 | 560 | 60                                |
| 440 to 470      | 11.0592    | 11.0592   | 680              | 15000 | 1500 | 910  | 400 | 60                                |
| 470 to 510      | 11.0592    | 11.0592   | 680              | 22000 | 1500 | 800  | 400 | 60                                |

<sup>1</sup> ADF702-1.

<sup>2</sup> VCO<sub>ADJUST</sub> =1, I<sub>CP</sub> =1.44 mA. For ADF7021 and ADF7021-N a loop bandwidth of 90 kHz100 kHz is recommended.

<sup>3</sup> ADF7021-N.



Figure 6. ADF7020-1, ADF7021, and ADF7021-N Frequency vs. L<sub>EXT</sub> (L3) Using EVAL-ADF7020-1DBZx, EVAL-ADF7021DBZx, or EVAL-ADF7021-NDBZx Layout

# NOTES

# NOTES

©2006—2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. AN06301-0-3/09(A)



www.analog.com

Rev. A | Page 12 of 12