FEATURES

2.4 pF off capacitance

$<1 \mathrm{pC}$ charge injection
Low leakage; 0.6 nA maximum @ $85^{\circ} \mathrm{C}$
120Ω on resistance
Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}$
No V L supply required
3 V logic-compatible inputs
Rail-to-rail operation
6-lead SOT-23 package

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG1201/ADG1202 are monolithic complementary metal-oxide semiconductor (CMOS) devices containing an SPST switch designed in an $i \mathrm{CMOS}^{*}$ (industrial CMOS) process. iCMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the parts suitable for video signal switching.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC " 1 " INPUT Figure 1.

ADG1202

TABLE OF CONTENTS

Features .. 1
Applications... 1
Functional Block Diagram ... 1
General Description .. 1
Product Highlights .. 1
Revision History .. 2
Specifications.. 3
Dual Supply .. 3
Single Supply .. 4

REVISION HISTORY
2/08-Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

[^0]
ADG1202

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$V_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	100 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current per Channel, S or D	30 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
6 Lead SOT-23	
$\theta_{\text {JA, }}$ Thermal Impedance	$229.6^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jc}, Thermal Impedance	$91.99^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb-free	$260^{\circ} \mathrm{C}$

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG1202

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD $_{\text {DD }}$	Most Positive Power Supply Potential.
2	GND	Ground (O V) Reference.
3	V $_{\text {SS }}$	Most Negative Power Supply Potential.
4	S	Source Terminal. Can be an input or output.
5	D	Drain Terminal. Can be an input or output.
6	IN	Logic Control Input.

Table 5. ADG1201/ADG1202 Truth Table

ADG1201 IN	ADG1202 IN	Switch Condition
1	0	On
0	1	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Single Supply

Figure 8. Leakage Currents as a Function of Temperature, Dual Supply

ADG1202

Figure 9. Leakage Currents as a Function of Temperature, Dual Supply

Figure 10. Leakage Currents as a Function of Temperature, Single Supply

Figure 11. IDD vs. Logic Level

Figure 12. Charge Injection vs. Source Voltage

Figure 13. Ton/Toff Times vs. Temperature

Figure 14. Off Isolation vs. Frequency

Figure 15. On Response vs. Frequency

Figure 16. THD + N vs. Frequency

Figure 17. Capacitance vs. Input Voltage, Dual Supply

Figure 18. Capacitance vs. Input Voltage, Single Supply

Figure 19. ACPSRR vs. Frequency

ADG1202

TEST CIRCUITS

Figure 20. On Resistance

Figure 21. Off Leakage

Figure 22. On Leakage

Figure 24. Bandwidth

Figure 25. THD + Noise

Figure 26. Switching Times

Figure 27. Charge Injection

ADG1202

TERMINOLOGY

IdD
The positive supply current.
Iss
The negative supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminal D and Terminal S.
Ron
The ohmic resistance between D and S .

$\mathbf{R}_{\text {flat(on) }}$

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.
Is $_{\text {(}}$ Off)
The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$

The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.

C_{s} (Off)

The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}$ (On)

The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
ton
The delay between applying the digital control input and the output switching on. See Figure 26.
$t_{\text {off }}$
The delay between applying the digital control input and the output switching off. See Figure 26.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

ACPSRR (AC Power Supply Rejection Ratio)

Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p -p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

OUTLINE DIMENSIONS

Figure 28. 6-Lead Small Outline Transistor Package [SOT-23]
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG1201BRJZ-R2 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package $[$ SOT-23]	RJ-6	S25
ADG1201BRJZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package $[$ SOT-23]	RJ-6	S25
ADG1202BRJZ-R2 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package $[$ SOT-23]	RJ-6	S26
ADG1202BRJZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S26

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

ADG1202
NOTES

ADG1202
NOTES

ADG1202
NOTES

\square

[^0]: ${ }^{1}$ Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Temperature range for B version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

