## FEATURES

## Latch-Proof DI CMOS

Overvoltage-Proof: VSUPPLY $\pm \mathbf{2 5 V}$
Superior DG-200 Replacement
Break-Before-Make Switching Action
$R_{\text {ON }}: 100 \Omega$ max over Full Temperature Range
Direct TTL/CMOS Interface


The ADG200 is a dual single-pole-dingle-throy annlog switch. In the ON condition, the switch conducts current in enker direction, maintaining nearly constant ON resistance over the entire analog signal range. In the OFF condition, the switch blocks voltages of peak values equal to the switch $V+$ and $V$ supplies. Switch action is break-before-make. The digital inputs interface directly to TTL or CMOS logic over the full operating temperature range.
Fabricated using an advanced monolithic dielectrically-isolated CMOS process, the ADG200 is a superior plug-in replacement for the DG200. The ADG200 provides additional advantages (over the DG200) of: overvoltage protection to $\pm 25 \mathrm{~V}$ beyond the power supplies, total latch-free operation, much lower power dissipation ( $30 \mathrm{~mW} \max$ ) and faster switching time.


SWITCH STATES ARE FOR LOGIC " 1 " INPUT (POSITIVE LOGIC)

## ORDERING INFORMATION

| Commercial $0 \text { to }+70^{\circ} \mathrm{C}$ | $\begin{gathered} \text { Industrial } \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  | Military$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Plastic | Ceramic | TO-100 | Ceramic | TO-100 |
| ADG200CJ | ADG200BP | ADG200BA | ADG200AP | ADG200AA ADG200AA/883 |

[^0]Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062
Tel: 617/329-4700
TWX: 710/394-6577

Texas
214/231-5094

## SPECIFICATIONS



NOTES:
${ }^{1}$ Typical values for information only, not guaranteed or pro-
100\% screened to MIL-STD-883, method 5004, para. 3.1.1
${ }_{2}$ duction tested.
${ }^{2}$ Guaranteed, not subject to $100 \%$ production test.
${ }^{1} \mathrm{D}(\mathrm{ON})$ is leakage from driver gate into ON switch.
${ }^{4}$ Digital inputs are MOS gates. Typical leakage $\left(+25^{\circ} \mathrm{C}\right)$ is less than 1 nanoamp.
through 3.1.12 for a class B device. Final electrical tests are:
${ }^{\text {r DS }}(\mathrm{ON}), \mathrm{I}_{\mathrm{S}}(\mathrm{OFF}), \mathrm{I}_{\mathrm{D}}(\mathrm{OFF}), \mathrm{I}_{\mathrm{INH}}, \mathrm{I}_{\mathrm{INL}}, \mathrm{I}_{1}$, and $\mathrm{I}_{2}$ at $+25^{\circ} \mathrm{C}$
and $+125^{\circ} \mathrm{C}$ (AA/883 version)
This is in contrast to other designs which require typically $150 \mu \mathrm{~A}$ to switch.
Switch action is guaranteed break-before-make.
${ }^{6}$ OFF isolation $(\mathrm{dB})=20 \log \mathrm{~V}_{\mathrm{S}} / \mathrm{V}_{\mathrm{D}}$ where $\mathrm{V}_{\mathrm{S}}=$ input to OFF switch and
but the input logic switching threshold will shift (see page 4). $\mathrm{V}_{\mathrm{D}}=$ output.

## CAUTION:

ESD (Electro-Static-Discharge) sensitive device. The digital control inputs are zener protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.


## ABSOLUTE MAXIMUM RATINGS

$\mathrm{V}_{\mathrm{IN}}$ (Digital Input) to Ground $\ldots . .$. $\mathrm{V}_{\mathrm{S}}$ or $\mathrm{V}_{\mathrm{D}}$ to $\mathrm{V}_{1}$
(1 second surge) . . . . . . . . . . . . . . . . . . . . +25V, -40V
(continuous) . . . . . . . . . . . . . . . . . . . . . $+20 \mathrm{~V},-35 \mathrm{~V}$
$\mathrm{V}_{\mathrm{S}}$ or $\mathrm{V}_{\mathrm{D}}$ to $\mathrm{V}_{2}$
(1 second surge) . . . . . . . . . . . . . . . . . . . . $-25 \mathrm{~V},+40 \mathrm{~V}$
(continuous) . . . . . . . . . . . . . . . . . . . . . $-20 \mathrm{~V},+35 \mathrm{~V}$
$\mathrm{V}_{1}$ to Ground. . . . . . . . . . . . . . . . . . . . . . . . $-0.3 \mathrm{~V},+17 \mathrm{~V}$
$\mathrm{V}_{2}$ to Ground. . . . . . . . . . . . . . . . . . . . . . . . $+0.3 \mathrm{~V},-17 \mathrm{~V}$
Current, Any Terminal Except S or D . . . . . . . . . . . . 30 mA
Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Current, S or D Pulsed
(1ms, $10 \%$ duty cycle $\max$ ) . . . . . . . . . . . . . . . . 150 mA

## Operating Temperature

AA, AP Suffix . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
BA, BP Suffix. . . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
CJ Suffix. . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## Storage Temperature

$$
\text { CJ Suffix. . . . . . . . . . . . . . . . . . . . . . }-65^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
\text { All Others . . . . . . . . . . . . . . . . . . . }-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Power Dissipation (Package)*
Metal Can**. . . . . . . . . . . . . . . . . . . . . . . . . 450 mW
14 Pin Ceramic DIP
14 Pin Plastic DIP ${ }^{* * * *}$. . . . . . . . . . . . . . . . . . . . . . 470 mWW

* Devices with all leads welded or soldered to printed circuit board
** Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$
*** Derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$
**** Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$


NOTE: LOGIC "0" ON IN TERMINAL CLOSES SWITCH BETWEEN S AND D.
 fabrication process to eliminate the four-layer structre found in junction-isolated CMOS, thus providing latch-free operation.
A typical switch channel is shown in Figure 1. The output switching element consists of device numbers 17 and 20. Operation is as follows: for an "ON" switch, the gate of device 20 is $\mathrm{V}_{1}$ and the gate of device 17 is $\mathrm{V}_{2}$ from the driver circuits. Device numbers 14,15 , and 16 are "OFF" and numbers 18 and 19 are "ON". Hence, the back-gates of the P - and N -channel output devices (numbers 17 and 20) are tied together and floating. Floating the output switch back-gates with the signal input provides a flatter $\mathrm{R}_{\mathrm{ON}}$ versus $\mathrm{V}_{\mathrm{S}}$ response.
For an "OFF" switch, device numbers 18 and 19 are "OFF", and the back-gates of devices 17 and 20 are tied through $1 \mathrm{k} \Omega$ resistors $\mathrm{R}_{3}$ and $\mathrm{R}_{4}$ to the respective supply voltages through the "ON" devices 14,15 , and 16 .


Figure 2. ADG200 Output Switch Diode Equivalent Circuit

If a voltage is applied to the S or D terminals which exceeds $\mathrm{V}_{1}$ or $\mathrm{V}_{2}$, the S - or D-to-back-gate diode is forward biased; however, $\mathrm{R}_{3}$ and $\mathrm{R}_{4}$ provide current limiting action (Fig. 2). Cdnsequently, without external current limiting resistance ( O r in creased $\mathrm{R}_{\mathrm{O}}$ ), the $A \perp C 200$ series switches provide:
 2 shows that, indeed, the $1 \mathrm{k} \Omega$ limpiting resistors fre in sefies with the back-gates of the P- and dannel dutput devices not in series with the signal path between thes\& D terminals.

In some applications it is possible to run on a parasitic NPN (drain to back-gate to source of the N -channel) transistor which causes device destruction under certain conditions. This case will only manifest itself when a negative overvoltage (and not a positive overvoltage) exists with another voltage source on the other side of the switch. Current limitation through external resistors ( $200 \Omega$ ) or the output of op amps will prevent damage to the device.

MECHANICAL INFORMATION
Dimensions shown in inches and (mm).


14-PIN CERAMIC DIP


LEADS ARE GOLD PLATED (50 MICROINCHES MIN.) KOVAR OR ALLOY 42


Figure 4. Input Logic Threshold vs. Power Supply Voltage

BONDING DIAGRAM
Dimensions shown in inches and (mm).


NOTES:

1. BOND GND PIN FIRST TO MINIMIZE ESD HAZARD
2. BONDING PADS ARE $0.004 \times 0.004$ INCHES $(0.102 \times 0.102 \mathrm{~mm})$.

TO-100



[^0]:    Note: "/883" version is $\mathbf{1 0 0 \%}$ screened to MIL-STD-883, class B as per note 7 , page 2 .

