1.0 SCOPE

This specification documents the detail requirements for space qualified die per MIL-PRF-38534 class K except as modified herein.
The manufacturing flow described in the SPACE DIE BROCHURE is to be considered a part of this specification.

This datasheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at www.analog.com/HMC1015
2.0 Part Number. The complete part number(s) of this specification follow:

Part Number	$\frac{\text { Description }}{\text { MMC8805 }}$
MMIC Triple Balanced Mixer 26-32GHz Die	

3.0 Die Information

3.1 Die Dimensions

Die Size	Die Thickness	Bond Pad and Backside Metalization
$43.3 \mathrm{mil} \times 44.9 \mathrm{mil}$	$4 \mathrm{mil} \pm 0.5 \mathrm{mil}$	Au

3.2 Die Picture

1. RF (AC coupled, matched to 50 ohms)
2. IF (AC coupled, matched to 50 ohms)
3. LO (AC coupled, matched to 50 ohms)
Backside (must be connected to RF/DC GND)

Connection to unlabeled bond pads not required
3.3 Absolute Maximum Ratings 1/

LO Drive .. 20 dBm
Maximum Junction Temperature .. $150^{\circ} \mathrm{C}$
Continuous PDiss ($\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$, derate $2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$) ... 79 mW
Thermal Resistance (Junction to Die Bottom) ... $392^{\circ} \mathrm{C} / \mathrm{W}$
Ambient Operating Temperature Range (T_{A})..-40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature ...-65${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Absolute Maximum Ratings Notes:
1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

Die Qualification
In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.
(a) Pre-screen test post assembly required prior to die qualification, to remove all assembly related rejects.
(b) Mechanical Shock or Constant Acceleration not performed; die qualification is performed in an open carrier.
(c) Interim and post burn-in electrical tests will include static tests screened at $+25^{\circ} \mathrm{C}$ only.

Table I- Dice Electrical Characteristics					
Parameter	Symbol	Conditions 1/, $\underline{1 / 2}, \underline{3} /$ 50Ω System	Limit Min	Limit Max	Units
Conversion Loss	CL	$\begin{gathered} \hline \mathrm{RF}=26-32 \mathrm{GHz}, \\ \mathrm{IF}=16-22 \mathrm{GHz}, \\ \mathrm{LO}=7-11 \mathrm{GHz} \\ \hline \end{gathered}$		13	dB
LO to RF Isolation	Isolo-rf	$\begin{gathered} \mathrm{RF}=26-32 \mathrm{GHz}, \\ \mathrm{IF}=16-22 \mathrm{GHz} \\ \mathrm{LO}=7-11 \mathrm{GHz} \end{gathered}$	30		dB
LO to IF Isolation	Isolo-lif	$\begin{gathered} \mathrm{RF}=26-32 \mathrm{GHz}, \\ \mathrm{IF}=16-22 \mathrm{GHz} \\ \mathrm{LO}=7-11 \mathrm{GHz} \\ \hline \end{gathered}$	28		dB
2 LO to IF Isolation	Isoziolif	$\begin{gathered} \mathrm{RF}=26-32 \mathrm{GHz}, \\ \mathrm{IF}=16-22 \mathrm{GHz} \\ \mathrm{LO}=7-11 \mathrm{GHz} \end{gathered}$	41		dB
RF to IF Isolation	Isorf-IF	$\begin{gathered} \mathrm{RF}=26-32 \mathrm{GHz}, \\ \mathrm{IF}=16-22 \mathrm{GHz} \\ \mathrm{LO}=7-11 \mathrm{GHz} \end{gathered}$	29		dB

Table I Notes:
$\frac{1 /}{2 /}$ Limits apply at $+25^{\circ} \mathrm{C}$ only.
2/ Tested as Up Converter only
3/ S-par data to be swept and tabulated as follows:
a. LO Pin $=+13 \mathrm{dBm}$, IF Pin $=-10 \mathrm{dBm}$
b. Conversion Loss
i. $\mathrm{LO}=7.0 \mathrm{GHz}, \mathrm{RF}=23,27.5,31 \mathrm{GHz}$
ii. $\mathrm{LO}=9.0 \mathrm{GHz}, \mathrm{RF}=26,29.5,32 \mathrm{GHz}$
iii. $\mathrm{LO}=11.0 \mathrm{GHz}, \mathrm{RF}=29.0,31.5,34 \mathrm{GHz}$
c. Isolations
i. LO-RF Isolation: LO @ $7.0,9.0,11.0 \mathrm{GHz}$
ii. LO-IF Isolation: LO @ 7.0, 9.0, 11.0 GHz
iii. 2LO-IF Isolation: LO @ 14.0, 18.0, 22.0 GHz
iv. RF-IF Isolation: RF @ $26.0,29.5,32.0 \mathrm{GHz}$

Table II - Electrical Characteristics for Qual Samples						
Parameter	Symbol	Conditions 1/2/3/4/5/ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ unless otherwise specified, 50 Ohm System	Subgroups	Min Limit	Max Limit	Units
Conversion Loss	CL	$\begin{aligned} & \mathrm{RF}=26-32 \mathrm{GHz}, \\ & \mathrm{IF}=16-22 \mathrm{GHz}, \\ & \mathrm{LO}=7-11 \mathrm{GHz} \end{aligned}$	4		13	dB
			5,6		13.5	
LO to RF Isolation	ISOLo-RF	$\begin{aligned} & \mathrm{RF}=26-32 \mathrm{GHz}, \\ & \mathrm{IF}=16-22 \mathrm{GHz}, \\ & \mathrm{LO}=7-11 \mathrm{GHz} \end{aligned}$	4,5,6	30		dB
LO to IF Isolation	Isolo-IF	$\begin{aligned} & \mathrm{RF}=26-32 \mathrm{GHz}, \\ & \mathrm{IF}=16-22 \mathrm{GHz}, \\ & \mathrm{LO}=7-11 \mathrm{GHz} \end{aligned}$	4,5,6	28		dB
2LO to IF Isolation	ISO2LO-IF	$\begin{aligned} & \mathrm{RF}=26-32 \mathrm{GHz}, \\ & \mathrm{IF}=16-22 \mathrm{GHz}, \\ & \mathrm{LO}=7-11 \mathrm{GHz} \end{aligned}$	4,5,6	41		dB
RF to IF Isolation	\|SORF-IF	$\begin{aligned} & \mathrm{RF}=26-32 \mathrm{GHz}, \\ & \mathrm{IF}=16-22 \mathrm{GHz}, \\ & \mathrm{LO}=7-11 \mathrm{GHz} \end{aligned}$	4,5,6	29		dB
Input Third Order Intercept Point	IIP3	$\begin{aligned} & \mathrm{RF}=26-32 \mathrm{GHz}, \\ & \mathrm{IF}=16-22 \mathrm{GHz}, \\ & \mathrm{LO}=7-11 \mathrm{GHz} \end{aligned}$	4,5,6	16		dBm
Input 1dB Compression	IP1dB	$\begin{aligned} & \mathrm{RF}=26-32 \mathrm{GHz}, \\ & \mathrm{IF}=16-22 \mathrm{GHz}, \\ & \mathrm{LO}=7-11 \mathrm{GHz} \end{aligned}$	4,5,6	7		dBm

Table II Notes:
1/ Pre burn-in and Post burn-in electrical require S-parameter testing only as defined. Final electrical tests shall incorporate power tests as defined.
2/ Temperature testing required for Final Electrical testing only
3/ Tested as Up Converter only
4/ S-par data to be swept and tabulated as follows:

- LO Pin $=+13 \mathrm{dBm}$, IF Pin $=-10 \mathrm{dBm}$
- Conversion Loss
o $\mathrm{LO}=9.0 \mathrm{GHz}, \mathrm{RF}=26,29.5,32 \mathrm{GHz}$
- Isolations
o LO-RF Isolation: LO @ 7.0, 9.0, 11.0 GHz
o LO-IF Isolation: LO @ 7.0, 9.0, 11.0 GHz
o 2LO-IF Isolation: LO @ 14.0, 18.0, 22.0 GHz
o RF-IF Isolation: RF @ 26.0, 29.5, 32.0 GHz
5/ IP3 \& P1dB data to be swept and tabulated at $\mathrm{RF}=26,29.5,32 \mathrm{GHz}$
- IF: 17.0, 20.5, 23.0 GHz, $\operatorname{Pin}=-10 \mathrm{dBm}$
- LO: $9 \mathrm{GHz}, \operatorname{Pin}=+13 \mathrm{dBm}$

| Table III - Endpoint and Delta Limits ($+\mathbf{2 5}{ }^{\circ} \mathrm{C}$) | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Product is tested in accordance with Table II with the following exceptions) | | | | | | |
| Parameter | Symbol | Sub-
 groups | End-point | | Delta | Units |
| Conversion Loss | CL | 4 | | Max | | |

Table III Notes:
1/Table Il limits will not be exceeded
$\underline{2} / 240$ hour burn in and Group C end point electrical parameters. Deltas are performed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

5.0 Die Outline

1. RF (AC coupled, matched to 50 ohms)
2. IF (AC coupled, matched to 50 ohms)
3. LO (AC coupled, matched to 50 ohms)

Backside (must be connected to RF/DC GND)

Connection to unlabeled bond pads not required

Rev	Description of Change	Date
A	Initiate	26-October-2015
B	Add note to exceptions section to clarify test temperatures for interim and post burn-in electrical tests	4-June-2019

