

DC – 12 GHz Divide-by-8 **ADH363S**

1.0 SCOPE

This specification documents the detail requirements for an internally defined equivalent flow per MIL-PRF-38535 Level V expect as modified herein

The manufacturing flow described in the RF & MICROWAVE STANDARD SPACE LEVEL PRODUCTS PROGRAM is to be considered a part of this specification.

This data specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at http://www.analog.com/HMC363G8

2.0 Part Number

The complete part number(s) of this specification follows:

Specific Part Number	<u>Description</u>
ADH363R701G8	DC to 12 GHz Divide-by-8

3.0 Case Outline

The case outline is as follows:

Outline Letter	Descriptive Designator	Terminals	Lead Finish	Package style
Х	FR-8-2	8 Lead	Gold	Glass/Metal Hermetic SMT (G8)

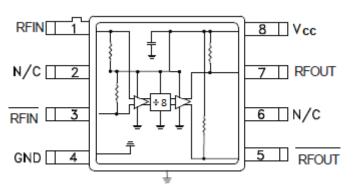


Figure 1 – Functional Block Diagram

ASI	D00	165	84
-----	-----	-----	----

Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

ADH363S

	Package: X				
Pin Number	Terminal Symbol	Pin Type	Pin Description	Interface Schematic	
1	RFIN	RF Input	Positive RF differential Input <u>1</u> /		
2	N/C		No Connection		
3	RFIN	RF Input	Negative RF differential Input <u>2</u> /		
4	GND	Power	RF/DC ground		
5	RFOUT	RF Output	Negative RF differential Output <u>3</u> /		
6	N/C	N/C	No Connection		
7	RFOUT	RF Output	Positive RF differential Output <u>4</u> /		
8	Vcc	Power	Supply Voltage <u>5</u> /		
Package Bottom	GND	Power	RF/DC ground <u>6</u> /		
Package Lid		NIC	2/		

Figure 2 – Terminal Connections

1/ RF Input must be DC blocked.
2/ RF Input 180° out of phase with pin 1 for differential operation. Must be DC blocked. AC ground for single ended operation.
3/ Divided output 180° out of phase with pin 7. Must be DC blocked.
4/ RF Input must be DC blocked. Divided output.
5/ Supply voltage 4.75 V to 5.25 V
6/ Package bottom must be connected to RF/DC ground.
7/ No internal connection on lid. Lid may be connected to RF/DC ground.

ASD0016584 Rev. D | Page 2 of 7

ADH363S

4.0 Specifications

4.1. Absolute Maximum Ratings <u>1</u> /	
Supply voltage (Vcc)	5.5 Vdc
RF Input (Vcc = +5 V)	+13 dBm
Junction temperature maximum (T _J)	+135 °C
Continuous PDiss (T= 85 °C)	676 mW
(derate 13.5 mW/°C above 85 °C)	
Thermal resistance, junction-to-case (θ_{JC})	74 °C/W
Thermal resistance, junction-to-ambient (θ_{JA})	107.56 °C/W
Storage temperature range	-65 °C to +150 °C
ESD Sensitivity (HBM)	Class 1A, Passed 250 V
4.2. Recommended Operating Conditions	
Supply voltage (Vcc)	+4.75 V to +5.25 V
Ambient operating temperature range (T _A)	40 °C to +85 °C
 Ambient operating temperature range (T_A) 4.3. Nominal Operating Performance Characteristics <u>2</u>/ 	40 °C to +85 °C
	40 °C to +85 °C
4.3. Nominal Operating Performance Characteristics 2/	
4.3. <u>Nominal Operating Performance Characteristics</u> <u>2</u> / Input Sensitivity near DC Operation (Square Wave input)	-10 dBm to +10 dBm
 4.3. <u>Nominal Operating Performance Characteristics</u> <u>2</u>/ Input Sensitivity near DC Operation (Square Wave input) 0.01 to 0.2 GHz 	-10 dBm to +10 dBm
 4.3. <u>Nominal Operating Performance Characteristics</u> <u>2</u>/ Input Sensitivity near DC Operation (Square Wave input) 0.01 to 0.2 GHz 0.2 to 0.5 GHz 	-10 dBm to +10 dBm -15 dBm to +10 dBm
 4.3. <u>Nominal Operating Performance Characteristics</u> <u>2</u>/ Input Sensitivity near DC Operation (Square Wave input) 0.01 to 0.2 GHz 0.2 to 0.5 GHz Input Sensitivity near DC Operation (Sine Wave input) 	-10 dBm to +10 dBm -15 dBm to +10 dBm -15 dBm to +10 dBm
 4.3. Nominal Operating Performance Characteristics 2/ Input Sensitivity near DC Operation (Square Wave input) 0.01 to 0.2 GHz 0.2 to 0.5 GHz Input Sensitivity near DC Operation (Sine Wave input) 0.5 to 1 GHz 	-10 dBm to +10 dBm -15 dBm to +10 dBm -15 dBm to +10 dBm 100 ps
 4.3. Nominal Operating Performance Characteristics 2/ Input Sensitivity near DC Operation (Square Wave input) 0.01 to 0.2 GHz 0.2 to 0.5 GHz Input Sensitivity near DC Operation (Sine Wave input) 0.5 to 1 GHz Output Transition Time (Fout = 882 MHz, PIN = 0 dBm) 	-10 dBm to +10 dBm -15 dBm to +10 dBm -15 dBm to +10 dBm 100 ps -55 dB

Radiation Features

Maximum total dose available (dose rate = 50 - 300 rads (Si)/s) 100k rads (Si)

- absolute maximum ratings for extended periods may affect device reliability. <u>2</u>/ All typical specifications are at $T_A = 25$ °C, Vcc = 5 V, unless otherwise noted. <u>3</u>/ $P_{IN} = 0$ dBm, $F_{IN} = 6$ GHz

^{1/} Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to

ADH363S

Parameter		Conditions <u>1</u> / Unless otherwise specified			Lir	nits	
See notes at end of table	Symbol			Sub-Group	Min	Max	Units
F CHARACTERISTICS							
Input Frequency	F _{IN}			4,5,6	1	12	GHz
Input Frequency	ΓIN		M,D,P,L,R	4	1	12	GHZ
		$F_{IN} = 1 \text{ GHz}$ $P_{IN} = -15 \text{ dBm}, +10 \text{ dBm}$		4,6	1		
			M,D,P,L,R	4	1		
		$F_{IN} = 1 \text{ GHz}$ $P_{IN} = -10 \text{ dBm}, +10 \text{ dBm}$	ı	5	1		
		$F_{IN} = 6 \text{ GHz}$ $P_{IN} = -15 \text{ dBm}, +10 \text{ dBm}$	۱	4,5,6	1		
Output Power <u>4</u> /	Pout		M,D,P,L,R	4	1		dBm
output rower <u>+</u> /	Tout	$F_{IN} = 8 \text{ GHz}$ $P_{IN} = -10 \text{ dBm}, +5 \text{ dBm}$		4,5,6	1		
			M,D,P,L,R	4	1		
		$F_{IN} = 12 \text{ GHz}$ $P_{IN} = -10 \text{ dBm}, 0 \text{ dBm}$		4,6	1		
			M,D,P,L,R	4	1		
		$F_{IN} = 12 \text{ GHz}$ $P_{IN} = -10 \text{ dBm}, -5 \text{ dBm}$		5	1		
UPPLY CURRENT	-				-		
		Vcc = 5.0 V		1,2,3		105	
Supply Current	lcc	No RF	M,D,P,L,R	1		105	mA
		Vcc = 4.75 V, 5.25 V <u>2</u> / <u>3</u> / No RF		1,2,3		105	
ARMONIC CONTENT	-						
Feedthrough	FTHRU	$P_{IN} = 0 \text{ dBm}, F_{IN} = 6 \text{ GHz} \underline{2} / \underline{3} / $		4,5,6		-24	
2nd harmonic	2nd	$P_{IN} = 0 \text{ dBm}, F_{IN} = 6 \text{ GHz} \frac{2}{2}$		4,5,6		-31	dBm
3rd harmonic	3rd	$P_{IN} = 0 \text{ dBm}, F_{IN} = 6 \text{ GHz} \frac{2}{3}$		4,5,6		-4	

TABLE I – ELECTRICAL PERFORMANCE CHARACTERISTICS

TABLE I Notes:

1/Vcc = 5 V, TA nom = 25 °C, TA max = 85 °C, and TA min = -40 °C unless otherwise noted.

2/ Parameter is part of device initial characterization which is only repeated after design and process changes or with subsequent wafer lots.

 $\underline{3}/$ Parameter is not tested post irradiation.

 $\underline{4}/$ Apply for both pin 5 and pin 7. Output power is single-ended.

Test Requirements	Sub-groups (in accordance with MIL-PRF-38535, Table III)
Interim Electrical Parameters	1, 4
Final Electrical Parameters	1, 4 <u>1/ 2</u> /
Group A Test Requirements	1, 2, 3, 4, 5, 6
Group C end-point electrical parameters	1,4 <u>2</u> /
Group D end-point electrical parameters	1, 4
Group E end-point electrical parameters	1, 4 <u>3</u> /

TABLE IIA – ELECTRICAL TEST REQUIREMENTS

Table IIA Notes:

<u>1</u>/ PDA applies to Table I sub-group 1 and Table IIB delta parameters.
 <u>2</u>/ See Table IIB for delta parameters
 <u>3</u>/ Parameters noted in Table I are not tested post irradiation.

Parameter	Test Conditions	Symbol	Delta	Units
Supply Current	Vcc = 5.0 V	laa	10	04
Supply Current	No RF	lcc	±10	%
	Vcc = 5.0 V			
	F _{IN} = 1 GHz, P _{IN} = -15 dBm			
	$F_{IN} = 1 \text{ GHz}, P_{IN} = +10 \text{ dBm}$		±1	dB
	F _{IN} = 6 GHz, P _{IN} = -15 dBm			
Output Power <u>3</u> /	$F_{IN} = 6 \text{ GHz}, P_{IN} = +10 \text{ dBm}$	Pout		
	F _{IN} = 8 GHz, P _{IN} = -10 dBm			
	$F_{IN} = 8 \text{ GHz}, P_{IN} = +5 \text{ dBm}$			
	$F_{IN} = 12 \text{ GHz}, P_{IN} = -10 \text{ dBm}$			
	$F_{IN} = 12 \text{ GHz}, P_{IN} = 0 \text{ dBm}$			

TABLE IIB – BURN-IN/ LIFE TEST DELTA LIMITS 1/2/

TABLE IIB Notes:

1/ 240 hour burn in and 1000 hour life test (Group C) end point electrical parameters. 2/ Deltas are performed at $T_A = +25$ °C only. 3/ Apply for both pin 5 and pin 7. Output power is single-ended.

5.0 Burn-In, Life Test, and Radiation

- 5.1. Burn-In Test Circuit, Life Test Circuit
 - 5.1.1.The test conditions and circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 test condition D of MIL –STD-883.
 - 5.1.2.HTRB is not applicable for this drawing.

5.2. Radiation Exposure Circuit

5.2.1.The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A.

6.0 MIL-PRF-38535 QMLV Exceptions

6.1. Wafer Fabrication

Foundry information is available upon request.

6.2. <u>Group D</u>

Group D-5 Salt Atmosphere testing is not performed.

7.0 Application Notes

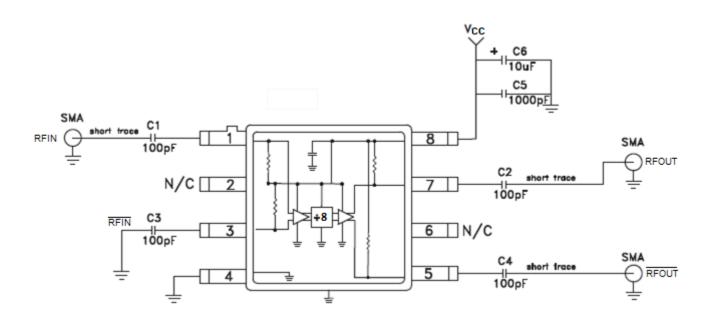


Figure 3 – Application Circuit

ASD0016584 Rev. D | Page 6 of 7

8.0 Package Outline Dimensions

The G8 package and outline dimensions can be found at http://www.analog.com or upon request.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADH363R701G8	–40 °C to +85 °C	8 Lead Glass/Metal Hermetic SMT	G8 (FR-8-2)

Revision History				
Rev	Description of Change	Date		
А	Initial Release	7/8/2020		
В	Corrected Typo In Table IIB	8/4/2020		
С	Corrected Typo In Table IIB, Added HBM ESD Level	12/9/2020		
D	Revise Sections 1 & 6.2 and Table I, IIA & IIB	01/27/2021		

© 2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 01/21

www.analog.com

ASD0016584 Rev. D | Page 7 of 7