Data Sheet

FEATURES

Complete supervisory and sequencing solution for up to 10 supplies
Extended temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
10 supply fault detectors enable supervision of supplies to $<0.5 \%$ accuracy at all voltages at $25^{\circ} \mathrm{C}$
$<1.0 \%$ accuracy across all voltages and temperatures
5 selectable input attenuators allow supervision of supplies to
14.4 V on VH

6 V on VP1 to VP4 (VPx)
5 dual-function inputs, VX1 to VX5 (VXx)
High impedance input to supply fault detector with thresholds between 0.573 V and 1.375 V
General-purpose logic input
10 programmable driver outputs, PDO1 to PDO10 (PDOx)
Open-collector with external pull-up
Push/pull output, driven to VDDCAP or VPx
Open collector with weak pull-up to VDDCAP or VPx
Internally charge-pumped high drive for use with external N-FET (PDO1 to PDO6 only)
Sequencing engine (SE) implements state machine control of PDOx outputs

State changes conditional on input events
Enables complex control of boards
Power-up and power-down sequence control
Fault event handling
Interrupt generation on warnings
Watchdog function can be integrated in SE
Program software control of sequencing through SMBus
Complete voltage margining solution for 6 voltage rails
12-bit ADC for readback of all supervised voltages
1 internal and 2 external temperature sensors
Reference input (REFIN) has 2 input options
Driven directly from $2.048 \mathrm{~V}(\pm 0.25 \%)$ REFOUT pin
More accurate external reference for improved ADC performance
Device powered by the highest of VPx, VH for improved redundancy
User EEPROM: 256 bytes
Industry-standard, 2-wire bus interface (SMBus)
Guaranteed PDO low with VH, VPx = 1.2 V
Available in 40 -lead, $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ LFCSP package
For more information about the ADM1063 register map, refer to the AN-698 Application Note at www.analog.com.

APPLICATIONS

Central office systems
Servers/routers
Multivoltage system line cards
DSP/FPGA supply sequencing
In-circuit testing of margined supplies

GENERAL DESCRIPTION

The ADM1063-EP is a configurable supervisory/sequencing device that offers a single-chip solution for supply monitoring and sequencing in multiple supply systems. In addition to these functions, the ADM1063-EP integrates a 12-bit ADC that can be used to accurately read back up to 12 separate voltages.
The device also provides up to 10 programmable inputs for monitoring undervoltage faults, overvoltage faults, or out-ofwindow faults on up to 10 supplies. In addition, 10 programmable outputs can be used as logic enables. Six of these programmable outputs can provide up to a 12 V output for driving the gate of an N-FET that can be placed in the path of a supply.

Rev. A
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^0]
TABLE OF CONTENTS

Features 1
Functional Block Diagram 1
Applications 1
General Description 1
Revision History 2
Detailed Block Diagram 3
Specifications 4
Absolute Maximum Ratings 7
REVISION HISTORY
8/13-Rev. 0 to Rev. A
Changes to Serial Bus Timing Parameters; Table 1 6
Updated Outline Dimensions 12
5/10-Revision 0: Initial Version
Thermal Resistance 7
ESD Caution. 7
Pin Configuration and Function Descriptions 8
Typical Performance Characteristics 9
Outline Dimensions 12
Ordering Guide 12

Temperature measurement is possible with the ADM1063-EP. The device contains one internal temperature sensor and two pairs of differential inputs for remote thermal diodes. These are measured by the 12 -bit ADC.

The logical core of the device is a sequencing engine. This state-machine-based construction provides up to 63 different states. This design enables very flexible sequencing of the outputs based on the condition of the inputs.

The device is controlled via configuration data that can be programmed into an EEPROM. The entire configuration can be programmed using an intuitive GUI-based software package provided by Analog Devices, Inc.
Full details about this enhanced product are available in the ADM1063 data sheet, which should be consulted in conjunction with this data sheet.

DETAILED BLOCK DIAGRAM

Figure 2.

SPECIFICATIONS

$\mathrm{VH}=3.0 \mathrm{~V}$ to $14.4 \mathrm{~V}^{1}, \mathrm{VPx}=3.0 \mathrm{~V}$ to $6.0 \mathrm{~V}^{1}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER SUPPLY ARBITRATION					
VH, VPx	3.0			V	Minimum supply required on one of $\mathrm{VH}, \mathrm{VPx}$
VPx			6.0	V	Maximum VDDCAP $=5.1 \mathrm{~V}$, typical
VH			14.4	V	$\mathrm{V} D D C A P=4.75 \mathrm{~V}$
VDDCAP	2.7	4.75	5.4	V	Regulated LDO output
Cvddcap	10			$\mu \mathrm{F}$	Minimum recommended decoupling capacitance
POWER SUPPLY					
Supply Current, IVH, Ivpx		4.2	6	mA	VDDCAP $=4.75 \mathrm{~V}, \mathrm{PDO} 1$ to PDO10 off, ADC off
Additional Currents					
All PDO FET Drivers On		1		mA	VDDCAP $=4.75 \mathrm{~V}$, PDO1 to PDO6 loaded with $1 \mu \mathrm{~A}$ each, PDO7 to PDO10 off
Current Available from VDDCAP			2	mA	Maximum additional load that can be drawn from all PDO pull-ups to VDDCAP
ADC Supply Current		1		mA	Running round-robin loop
EEPROM Erase Current		10		mA	1 ms duration only, VDDCAP $=3 \mathrm{~V}$
SUPPLY FAULT DETECTORS					
VH Pin					
Input Impedance		52		k Ω	
Input Attenuator Error		± 0.05		\%	Midrange and high range
Detection Ranges					
High Range	6		14.4	V	
Midrange	2.5		6	V	
VPx Pins					
Input Impedance		52		k Ω	
Input Attenuator Error		± 0.05		\%	Low range and midrange
Detection Ranges					
Midrange	2.5		6	V	
Low Range	1.25		3	V	
Ultralow Range	0.573		1.375	V	No input attenuation error
VXx Pins					
Input Impedance	1			$\mathrm{M} \Omega$	
Detection Range					
Ultralow Range	0.573		1.375	V	No input attenuation error
Absolute Accuracy			± 1	\%	VREF error + DAC nonlinearity + comparator offset error + input attenuation error
Threshold Resolution		8		Bits	
Digital Glitch Filter		0		$\mu \mathrm{s}$	Minimum programmable filter length
		100		$\mu \mathrm{s}$	Maximum programmable filter length

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
ANALOG-TO-DIGITAL CONVERTER					
Signal Range			$V_{\text {REFIN }}$	V	The ADC can convert signals presented to the VH, VPx, and VXx pins; VPx and VH input signals are attenuated depending on the selected range; a signal at the pin corresponding to the selected
range is from 0.573 V to 1.375 V at the ADC input					

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DIGITAL INPUTS (VXx, A0, A1) Input High Voltage, V_{IH} Input Low Voltage, V_{IL} Input High Current, $I_{\text {IH }}$ Input Low Current, IL Input Capacitance Programmable Pull-Down Current, Ipul-down	2.0 -1	5 20	0.8	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ pF $\mu \mathrm{A}$	Maximum $\mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V}$ Maximum $\mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V}$ $\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V} \end{aligned}$ VDDCAP $=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ if known logic state is required
SERIAL BUS DIGITAL INPUTS (SDA, SCL) Input High Voltage, $\mathrm{V}_{\mathbf{H}}$ Input Low Voltage, V_{IL} Output Low Voltage, VoL^{3}	2.0			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	Iout $=-3.0 \mathrm{~mA}$
SERIAL BUS TIMING ${ }^{4}$ Clock Frequency, fsclk Bus Free Time, t buF Start Setup Time, tsu;STA Stop Setup Time, tsu;sto Start Hold Time, thd;STA SCL Low Time, t tow SCL High Time, thigh SCL, SDA Rise Time, t_{R} SCL, SDA Fall Time, t_{F} Data Setup Time, tsu;Dat Data Hold Time, thd;Dat Input Low Current, IL	$\begin{aligned} & 1.3 \\ & 0.6 \\ & 0.6 \\ & 0.6 \\ & 1.3 \\ & 0.6 \\ & \\ & 100 \\ & 5 \end{aligned}$		400	kHz $\mu \mathrm{s}$ ns ns ns ns $\mu \mathrm{A}$	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$
SEQUENCING ENGINE TIMING State Change Time		10		$\mu \mathrm{s}$	

${ }^{1}$ At least one of the $\mathrm{VH}, \mathrm{VPx}$ pins must be $\geq 3.0 \mathrm{~V}$ to maintain the device supply on VDDCAP.
${ }^{2}$ All temperature sensor measurements are taken with round-robin loop enabled and at least one other voltage input being measured.
${ }^{3}$ Specification is not production tested but is supported by characterization data at initial product release.
${ }^{4}$ Timing specifications are guaranteed by design and supported by characterization data.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Voltage on VH Pin	16 V
Voltage on VPx Pins	7 V
Voltage on VXx Pins	-0.3 V to +6.5 V
Voltage on A0, A1 Pins	-0.3 V to +7 V
Voltage on REFIN, REFOUT Pins	5 V
Voltage on VDDCAP, VCCP Pins	6.5 V
Voltage on PDOx Pins	16 V
Voltage on SDA, SCL Pins	7 V
Voltage on GND, AGND, PDOGND, REFGND Pins	-0.3 V to +0.3 V
Voltage on DxN, DxP Pins	-0.3 V to +5 V
Input Current at Any Pin	$\pm 5 \mathrm{~mA}$
Package Input Current	$\pm 20 \mathrm{~mA}$
Maximum Junction Temperature (Ts max)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	$215^{\circ} \mathrm{C}$
\quad (Soldering Vapor Phase, 60 sec)	2000 V
ESD Rating, All Pins	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
40-Lead LFCSP	26.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic
1 to 5	VX1 to VX5 (VXx)
6 to 9	VP1 to VP4 (VPx)
10	VH
11	AGND (In a typical application, all ground pins are connected together.)
12	REFGND (In a typical application, all ground pins are connected together.)
13	REFIN
14	REFOUT
$15,16,19,20$	NC
17	SCL
18	SDA
21 to 30	PDO10 to PDO1
31	PDOGND (In a typical application, all ground pins are connected together.)
32	VCCP
33	A0
34	A1
35	D2N
36	D2P
37	D1N
38	D1P
39	VDDCAP
40	GND (In a typical application, all ground pins are connected together.)
EPAD	Exposed pad. This pad is a no connect (NC). If possible, this pad should be soldered to the board for improved mechanical stability.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. VVDDCAP Vs. VVP1

Figure 5. VVDDCAP Vs. VVH

Figure 6. Ivp1 vs. VVP1 (VP1 as Supply)

Figure 7. Ivp1 vs. Vvp1 (VP1 Not as Supply)

Figure 8. Ivh vs. Vvi (VH as Supply)

Figure 9. IVH vs. VVH (VH Not as Supply)

Figure 10. Charge-Pumped VPDO1 (FET Drive Mode) vs. ILOAD

Figure 11. VPDOI (Strong Pull-Up to VPx) vs. ILOAD

Figure 12. VPDO1 (Weak Pull-Up to VPx) vs. ILOAD

Figure 13. DNL for $A D C$

Figure 14. INL for ADC

Figure 15. ADC Noise, Midcode Input, 10,000 Reads

Figure 16. REFOUT vs. Temperature

ADM1063-EP

OUTLINE DIMENSIONS

THE EXPOSED PAD, REFER TO HE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-WJJD
Figure 17. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$6 \mathrm{~mm} \times 6 \mathrm{~mm}$ Body, Very Thin Quad
(CP-40-9)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADM1063BCPZ-EP-RL7	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$40-$ Lead LFCSP_WQ	CP-40-9

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010-2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

