

AN-655 APPLICATION NOTE

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106 • Tel: 781/329-4700 • Fax: 781/326-8703 • www.analog.com

# Tunable Laser Reference Design for Designers with the ADuC832/ADN8830/ADN2830

by Nobuhiro Matsuzoe

### FEATURES

Single Board Solution for Tunable Lasers 8-Channel Selectable Wavelength Control Wavelength Locking at 25 GHz/50 GHz Spacing AutoPower Control (APC) AutoTemperature Control (ATC) AutoFrequency Control (AFC) Laser Bias, Temperature Monitoring EEPROM-Based Autorestoring Serial Interfaces (SPI®/I<sup>2</sup>C®/RS-232) to Host System Wavelength Stability < 2 pm (typ) LD Temperature Stability < 0.01°C

### APPLICATIONS

DWDMTransmission System Optical Instrumentation

### **GENERAL DESCRIPTION**

This tunable laser reference design offers a single board solution with complete control requirements for DFB tunable laser subsystems. Designed to work from +3 V/-5 V power supplies, it provides a low cost, low power tunable laser solution designed for ease of use with standard serial control interfaces.

A mixed-signal monolithic microprocessor, the ADuC832based wave locker feedback loop is designed to meet the requirements of ITU-T grid spacing in a 50 GHz/25 GHz system. An integrated 12-bit ADC with an 8-channel multiplexer allows users to monitor laser bias current and laser temperature via SPI, I<sup>2</sup>C, or RS-232C serial interfaces. The ADN2830 laser bias controller can sink up to 200 mA (single)/400 mA (dual) and its integrated feedback control loop can maintain output optical power constant over temperature changes during wave locking. The ADN8830 TEC controller enables excellent laser temperature stability and precise wavelength control with 1 pm resolution. A patented PWM/linear based TEC drive architecture enables high efficiency and minimizes external filtering components.



# FUNCTIONAL BLOCK DIAGRAM





Figure 1. Typical Block Diagram of Optical Transmitter with DFB Laser Module

### **WAVELENGTH TUNING**

Because an optical transmitter requires a small formfactor design, use of the refractive index of a semiconductor laser is commonly used to alter the wavelength. As the refractive index can be changed by both the temperature and the density of carriers, transmitter designers can choose from two different types of the wavelength-tunable laser modules-distributed feedback (DFB) lasers and distributed Bragg reflector (DBR) lasers. In general, the DBR laser is capable of a fast tuning speed and a wide tuning range. However, it requires multiple programmable current sources for wavelength control, which results in a complex system design. In contrast, the DFB lasers can be controlled by temperature of the laser chip, which results in a lower system cost and higher reliability since the DFB lasers are widely used today. The wavelength of the DFB laser is related to temperature with a typical temperature coefficient of 0.1 nm/K. By using a thermoelectric cooler (TEC) and a thermistor with a built-in module, the laser chip temperature can be adjusted, thus wavelength is controlled. Figure 1 shows a simplified block diagram of an optical transmitter designed with the DFB laser. The wavelength tuning range of the DFB laser is limited by an allowable operating temperature range. In fact, DFB lasers provide a tuning range of a couple of nanometers which is equivalent to 8 to 16 ITU-T grid channels depending on the channel-to-channel spacing of the wavelength.

### WAVELENGTH LOCKING

The internal or external wavelength locker generates two monitor signals corresponding to the wavelength and optical output power respectively. The wavelength locker consists of the wavelength selective element and the photodetector diode as shown in Figure 2a. The builtin Fabry Perot etalon works as a wavelength filter which has a periodic characteristic similar to a comb filter. The peak-to-peak range of the etalon filter, referred to as the Free Spectral Range (FSR) cycle F<sub>S</sub>, is precalibrated by the manufacturer to align with the ITU grid spacing as shown in Figure 2b. Because the monitor signal has periodic cycles, the algorithm of wavelength locking requires two different tuning methods, coarse tuning, and fine tuning. During the first phase, the laser temperature must settle to the particular temperature corresponding to the target wavelength, where the wavelength is assumed within the capture range. In the case of Figure 2b, there are two locking points on both slopes, positive slope and negative slope, within a single FSR. Thus, the capture range must be half of the SFR. Feedforward control with a look-up table is used in this coarse tuning phase. After the wavelength settles within the capture range, the fine tuning phase acquires the wave length errors between the target wavelength and actual wavelength by monitoring the wave locker signal. Then the wavelength errors will be fed back to the temperature control circuit. The fine tuning phase maintains the wavelength within an allowable wavelength deviation range over ambient temperature changes. The ITU-T recommendation specifies wavelength stability as a frequency deviation in G.692. This deviation is defined as the difference between the nominal central frequency and the actual central frequency (Figure 2c). A maximum frequency deviation is given by

> $\Delta f < (F_S - 2.0B)/4$ where:  $F_S$  is the frequency slot B is the bit rate.

In 10 Gbps transmit applications with 50 GHz Grid spacing, the frequency deviation  $\Delta f$  must be less than 7.5 GHz which means wavelength deviation  $\Delta \lambda$  must be less than 67 pm. The test result of the wavelength deviation taken by the reference design is shown in Figure 2d.



Figure 2a. Wavelength Locker Block Diagram



Figure 2b. Wavelength Locker Characteristics



Figure 2c. Frequency Slots and Allowable Frequency Deviation



NOTES

1. 1-HOUR WAVELENGTH STABILITY AT 25°C, WAVE LOCKER ENABLED, 2 SEC INTERVAL.

2. ΔF: LOCK POINT ±1.5pm MAX TO MIN: 3pm.

3. LASER: FLD5F15CA, FUJITSU QUANTUM DEVICES LTD.

4. THE WAVELENGTH STABILITY IS MEASURED IN ±3pm ACCURACY. 5. AFC STABILITY IS AFFECTED BY ACCUMULATIVE ERRORS OF APC AND ATC CONTROL LOOP.

Figure 2d. AFC Typical Performance

### **DEMONSTRATION BOARD**

The tunable laser reference design board (demo board) demonstrates autopower control (APC), autotemperature control (ATC) and autofrequency control (AFC). Figure 3 shows simplified setup of the demo board. The demo board has a mount space for a tunable DFB laser module in a 14-lead butterfly package. The demo board also provides a power supply terminal, analog I/O ports, and a serial port. To mount laser modules, a power photodetector must be floating within the laser module package as seen in Figure 4.



Figure 3. Demo Board Setup



Figure 4. Laser Module Pin Assignment (reference: Fujitsu Quantum Devices, FLD5F6CA Data Sheet)

### **GETTING STARTED**

To ensure proper operation, follow the steps below.

1) Calculate the target voltages of the wavelength lock point according to the following equation:

$$V_{LOCKPOINT} = V_{REF} - (R_{46} \times I_{m2})[V]$$
  
where:  
$$V_{REF} = 2.50[V]$$
  
$$R_{46} = 2490[\Omega]$$

The photo current  $I_{m2}$  needs to be solved at each lock point, because the  $I_{m2}$  may differ from lock point to lock point, laser to laser. Table 1 is an example of the calculation result from the 8-channel wavelength tunable laser module.

| Wave | Wavelength         Im2         V <sub>LOCKPOINT</sub> Lock Point ADC Code |          |       |       |       |       |  |  |  |
|------|---------------------------------------------------------------------------|----------|-------|-------|-------|-------|--|--|--|
| [nm] |                                                                           | [THz]    | [mA]  | [V]   | [Dec] | [Hex] |  |  |  |
| λ0   | 1582.439                                                                  | 189.4496 | 521.4 | 1.202 | 1969  | 07B1  |  |  |  |
| λ1   | 1582.851                                                                  | 189.4003 | 573.4 | 1.072 | 1757  | 06DD  |  |  |  |
| λ2   | 1583.265                                                                  | 189.3508 | 511.4 | 1.227 | 2010  | 07DA  |  |  |  |
| λ3   | 1583.692                                                                  | 189.2997 | 563.4 | 1.097 | 1798  | 0706  |  |  |  |
| λ4   | 1584.110                                                                  | 189.2498 | 527.4 | 1.187 | 1944  | 0798  |  |  |  |
| λ5   | 1584.529                                                                  | 189.1997 | 556.8 | 1.114 | 1824  | 0720  |  |  |  |
| λ6   | 1584.942                                                                  | 189.1504 | 524.3 | 1.194 | 1957  | 07A5  |  |  |  |
| λ7   | 1585.365                                                                  | 189.1000 | 553.3 | 1.122 | 1839  | 072F  |  |  |  |

Table 1.

2) Calculate the voltage setpoint for ADN8830 according to the following equation:

$$\begin{split} V_{DAC} &= \left(G \times T_{LASER}\right) - V_{OFFSET} \begin{bmatrix} V \end{bmatrix} \\ where: \\ T_{LASER} \text{ is target temperature of the thermistor in Celsius.} \\ G &= 0.0658 \\ V_{OFFSET} &= -0.659 \begin{bmatrix} V \end{bmatrix} \end{split}$$

Table 2 is an example of the calculation result from the 8-channel wavelength tunable laser module.

|                                                                                           | Table 2. |          |       |        |       |       |       |          |
|-------------------------------------------------------------------------------------------|----------|----------|-------|--------|-------|-------|-------|----------|
| Wavelength         RTH         T <sub>LASER</sub> V <sub>DAC</sub> DAC Code         Curve |          |          |       |        |       |       |       |          |
| [nm]                                                                                      |          | [THz]    | [Ω]   | [°C]   | [V]   | [Dec] | [Hex] |          |
| λ0                                                                                        | 1582.439 | 189.4496 | 16810 | 12.191 | 0.144 | 236   | 00EC  | Positive |
| λ1                                                                                        | 1582.851 | 189.4003 | 14370 | 15.941 | 0.390 | 639   | 027F  | Negative |
| λ2                                                                                        | 1583.265 | 189.3508 | 12350 | 19.658 | 0.634 | 1040  | 0410  | Positive |
| λ3                                                                                        | 1583.692 | 189.2997 | 10630 | 23.433 | 0.883 | 1447  | 05A7  | Negative |
| λ4                                                                                        | 1584.110 | 189.2498 | 9220  | 27.106 | 1.125 | 1843  | 0733  | Positive |
| λ5                                                                                        | 1584.529 | 189.1997 | 8040  | 30.728 | 1.363 | 2233  | 08B9  | Negative |
| λ6                                                                                        | 1584.942 | 189.1504 | 7060  | 34.247 | 1.594 | 2612  | 0A34  | Positive |
| λ7                                                                                        | 1585.365 | 189.1000 | 6210  | 37.802 | 1.828 | 2996  | 0BB4  | Negative |

- 3) Compile and download the software to the ADuC832. To select the download/debug mode, position the switch (S5) to DEBUG, and then press the reset button (S3). This sets the ADuC832 to download mode. To select the normal mode, position the switch (S5) to NORMAL and press the reset button (S3). ADuC832 executes downloaded program after reset.
- 4) Mount the laser module to the mount pads labeled U13. The ADN2830 is capable of sinking a current up to 200 mA. The maximum TEC voltage limit is set at 3.5 V ±5% by default. To change the TEC voltage limiter, change the value of R24 and R25 which is configured as a voltage divider to set the voltage to the VLIM pin of ADN8830. Maximum TEC voltage can be given by:

Maximum TEC voltage = 
$$(1.5 V - VLIM) \times 4[V]$$

- 5) Set JP1 and JP2. To protect the laser module from accidental damage, it is recommended to close JP1 and JP2 if the program has been changed. Shorting JP1 enables the ADN8830 to shut down mode regardless of control signals from the ADuC832. Shorting JP2 enables the ADN2830 to ALS (Automatic Laser Shutdown) mode regard less of control signals from ADuC832.
- 6) Apply +3 V and –5 V to the power supply terminal block (J1) located at the top of the demo board.
- 7) Leave JP2 open. ADN2830 starts to drive the laser diode.
- 8) Calibrate the optical output power by adjusting the multiturn potentiometer (R48).
- 9) Leave JP1 open. ADN8830 starts to control the laser temperature to the initial temperature setpoint selected by switch (S4).
- 10) Press S1 or S2 buttons to change the wavelength lock point. S1 increments and S2 decrements the wavelength point by 1.
- 11) To change the target wavelength lock point directly, configure the 3-bit DIP switch (S4) according to Table 3. This change is effective only when the ADuC832 is powered up or after reset.

| Table 3.             |     |     |     |  |  |  |  |
|----------------------|-----|-----|-----|--|--|--|--|
| λCh# S4(1) S4(2) S4( |     |     |     |  |  |  |  |
| 0                    | OFF | OFF | OFF |  |  |  |  |
| 1                    | ON  | OFF | OFF |  |  |  |  |
| 2                    | OFF | ON  | OFF |  |  |  |  |
| 3                    | ON  | ON  | OFF |  |  |  |  |
| 4                    | OFF | OFF | ON  |  |  |  |  |
| 5                    | ON  | OFF | ON  |  |  |  |  |
| 6                    | OFF | ON  | ON  |  |  |  |  |
| 7                    | ON  | ON  | ON  |  |  |  |  |

12) 7-segment LED (DS1) displays the selected wavelength and DS1 blinks until the laser temperature is set.TEMPLOCK LED (D1) is lit when the laser temperature is settled within the capture range. WL\_LOCK LED (D2) is lit when the wavelength is locked within ITU grid ±12pm.

### INTERFACING WAVELENGTH MONITOR PD

Figure 5 shows the current-to-voltage conversion circuit on the demo board. The conversion gain is set by R46. The input range of the wavelength monitor current  $I_{m2}$  is up to 1.0 mA by default. The wavelength monitor voltage,  $V_{im2}$ , is calculated by:



Figure 5. I/V Conversion Circuit

#### INTERFACING 12-BIT DAC AND ADN8830

By using the interface circuit shown in Figure 6, the laser temperature is controlled by DAC output voltage. This scales the DAC voltage range from 0 V to 2.5 V for temperature range from 10°C to 50°C. The interface circuit linearizes the thermistor transfer function. The TEMPSET pin of ADN8830 is fixed at 1.25 V. The THERMIN pin is connected to the resistor network which includes the thermistor. The characteristic of voltage-to-temperature is shown in Figure 7.



Figure 6. Application Circuit Using DAC Control Voltage



Figure 7. V-to-Temperature Characteristic

To maintain optimal linearity over the required temperature range, the value of the thermistor resistance should be calculated at the lowest and the highest operating temperature according to the following equation:

$$R_{TH} = R_{25} \times exp\left\{B\left(\frac{1}{T_x} - \frac{1}{T_{25}}\right)\right\}$$

where:

 $R_{25}$  is thermistor resistance at 25°C. B is thermistor constant  $T_{25}$  is temperature in K. Typically, B = 3450 and  $R_{25}$  = 10K

R1, R2, and R3 are given by:

$$R1 = \frac{2R_{low}'R_{high}'}{R_{low}' - R_{high}'}$$

$$R2 = \frac{2R_{low}'R_{high}'}{R_{low}' + R_{high}'}$$

$$R3 = \frac{R_{mid}R_{high} + R_{mid}R_{low} - 2R_{high}R_{low}}{R_{high} + R_{low} - 2R_{mid}}$$
where:  

$$R_{high}' = R_{high} + R3$$

$$R_{low}' = R_{low} + R3$$

#### IMPLEMENTING THE WAVELENGTH LOCK

As the first phase, the program executes the coarse tuning with the ADN8830 TEC controller. The program reads S4 switch position, then generates the fixed control voltage to let the ADN8830 settle the laser temperature corresponding to the selected wavelength set by S4. Because the ADN8830 has a local control loop for the temperature control, the program waits for the temperature locked signal from the ADN8830. After the laser temperature is settled within the capture range of the wavelength lock, the program starts the fine tuning. This phase uses the monitor signal from the wavelength locker. The program reads the actual wavelength and compares with the target wavelength being stored in the memory. Then the program adjusts the temperature control voltage, which corresponds to the error amount between the target wavelength and the monitored wavelength. Figure 8 shows the overview of the program flow including the course and fine tuning. Details of the course and fine tuning are shown in Figure 9 and Figure 10 respectively.



Figure 8. Overview of Program Flow Chart



Figure 9. Coarse Tuning Flow Chart



Figure 10. Fine Tuning Flow Chart

### ADuC832 SOFTWARE

The demo software is written in i8051 assembly that uses 1.2 kB out of 62 kB on-chip EE/Flash and 80 bytes out of 256 bytes of on-chip RAM in ADuC832. The transaction time of the wavelength lock routine is approximately 0.3 ms at 4 MHz of the CPU core clock setting. The essential part of the program is listed below. The first control phase is labeled FF\_Tune (Feed-Forward Tuning), and second control phase is labeled L\_Lock (Lambda Lock).

| - | N / A I N I |          |
|---|-------------|----------|
|   | IVIAIIN     | PRUNRAIN |
|   |             |          |

| MAIN: |                         | ; ===cpu configure===                          |
|-------|-------------------------|------------------------------------------------|
|       | SETB ALS                | ; Shutdown laser driver, ADN2830 (ACTIVE HIGH) |
|       | CLR SD                  | ; Shutdown TEC, ADN8830 (ACTIVE LOW)           |
|       | MOV ADCCON1, #11001100b | ; Select Ext. Vref, single conversion          |
|       | MOV DACCON, #00011111b  | ; DAC0 On, 12bit, Asynchronous                 |
|       | MOV DAC0H, #007h        | ; DAC0 to 4th WL, Set TEMP =28.033degC         |
|       | MOV DAC0L, #096h        | ;                                              |
|       | MOV PLLCON, #00000000b  | ; Set core clock to 16MHz                      |
|       | SETB EA                 | ; Enable Interrupt                             |
|       | MOV P0, #00101000b      | ;Turn on 7SEG display with '8'                 |
|       | CLR LLOCK_LED           | ;Turn off WL Lock LED                          |
|       | MOV CALN_L, #020h       | ; Lock point calib. value at neg. slope        |
|       | MOV CALN_H, #000h       | ;                                              |
|       | MOV CALP_L, #010h       | ; Lock point calib. value at pos. slope        |
|       | MOV CALP_H, #000h       | ;                                              |
|       | MOV CALDAC_L, #000h     | ; DAC initial value calib. low byte            |
|       | MOV CALDAC_H, #000h     | ; DAC initial value calib. high byte           |

# AN-655

|         | CALL DACDATA          | ; Load DAC data table to ram (30h to 3Fh)        |
|---------|-----------------------|--------------------------------------------------|
|         | CALL LP_DATA          | ; Load lock point data table to ram (40h to 4Fh) |
|         | CALL SW_DETECT        | ; Read 3-bit DIP SW position                     |
|         | CALL ADCCAL           | ; ADC Gain and Offset calib.                     |
|         | CALL AUTO_DEMO        | ; Enable Auto demo if S1/S2 pushed               |
|         | MOV ECON, #06H        | ; Erase all pages of data Flash/EE               |
|         | CALL REV_WRITE        | ;Write board and firm revision to Flash/EE       |
| FF TUNE | Ē                     | : ===Feed-forward tuning (coarse-tune)===        |
|         | SETB ALS              | :Turn off Laser. Active High                     |
|         | CLR SD                | ;Turn offTEC, Active LOW                         |
|         | CLR PBFLAG            | ; Clear PBFLAG                                   |
|         | CLR P3.6              | ;Turn offTemp lock LED                           |
|         | CALL CH_LOAD          | ; Load selected DAC initial value                |
|         | CALL LP_LOAD          | ; Load selected Lock point value                 |
|         | CALL SLOPE_CHECK      | ; Check slope polarity                           |
|         | MOV P0, WL_SEL        | ; display selected wavelength ch# on 7seg        |
|         | SETB LEDBI            | ;Turn on 7seg display                            |
|         | SETB LEDLE            | ; 7seg Latch enabled                             |
|         | CALL LP_CAL           | ; Lock point offset calibration                  |
|         | CALL DAC_CAL          | ; DAC initial value calibration                  |
|         | MOV DAC0H, DACINT_H   | ; Update DAC to target temp                      |
|         | MOV DAC0L, DACINT_L   | ; Update DAC to target temp                      |
|         | SETB SD               | ;Turn on TEC                                     |
|         | CLR ALS               | ;Turn on Laser                                   |
|         | CLRTMPLKFLAG          | ; Clear temp lock indicate flag                  |
|         | MOV R0, #00H          | ; SET Page Pointer ADDRESS                       |
|         | MOV R1, #03H          | ; SET Byte Location ADDRESS                      |
|         | MOV R2, WL_SEL        | ; SET 1byte Value to write                       |
|         | CALL EE_WRITE         | ; Call Flash/EE Write routine                    |
|         | CALL TEMP_LOCK        | ; Sit here until FF_Tune completion              |
| L_LOCK: |                       | ; ===Lambda lock Loop (fine tune)===             |
|         | SETB LEDBI            | ;Turn on 7seg display                            |
|         | MOV A, #07h           | ; Set delay time, A*12.5msec                     |
|         | CALL DELAY            | ; Call delay program, 100msec                    |
|         | JNB SLOPEFLAG, LL_POS | ; Check slope polarity, positive or negative     |
|         | LL_NEG:               | ; ==Lambda locking at Negative slope==           |
|         | CALL PB_DETECT        | ; Detect push-button sw                          |
|         | JNB PBFLAG, LOOP_N    | ; Jump LOOP_N if PB is not pushed                |
|         | JMP FF_TUNE           | ; if PBFLAG=1(PB detected), back to FF_TUNE      |
|         | LOOP_N:               |                                                  |
|         | MOV A, #40d           | ; Set delay time, A * 12.5msec                   |
|         |                       |                                                  |

|         | CLR P2.7              | ;Test signal for cpu transaction monitoring |
|---------|-----------------------|---------------------------------------------|
|         | CALL DELAY            | ; Call delay program                        |
|         | SETB P2.7             | ;Test signal for cpu transaction monitoring |
|         | CALL ADC              | ;Take 8 * samples                           |
|         | CALL AVR              | ; Averaging                                 |
|         | CALL SUBTRACT         | ; Subtract (LOCKPOINT - ADCDATA)            |
|         | CALL LOCK_INDICATE    | ;Turn LED on if result is in lock range     |
|         | CALL GAIN_DECISION    | ; Check if error amount is <2LSB, <16LSB    |
|         | CALL ADJUST_N         | ; Call dac update routine                   |
|         | CALL LD_BIAS_MONITOR  | ; Monitor Laser Bias on ADC1                |
|         | CALL LD_TEMP_MONITOR  | ; Convert DAC0H/L code to temperature value |
|         | CALL CPU_TEMP_MONITOR | ; Monitor on-chip temp sensor               |
|         | JMP LL_NEG            | ; Back to loop top                          |
| LL_POS: |                       | ; ==Lambda locking at Positive slope==      |
|         | CALL PB_DETECT        | ; Detect push-button sw                     |
|         | JNB PBFLAG, LOOP_P    | ; Jump LOOP_P if PB is not pushed           |
|         | JMP FF_TUNE           | ; if PBFLAG=1(PB detected), back to FF_TUNE |
|         | LOOP_P:               |                                             |
|         | MOV A, #40d           | ; Set delay time, A * 12.5msec              |
|         | CLR P2.7              | ;Test signal for cpu transaction monitoring |
|         | CALL DELAY            | ; Call delay program                        |
|         | SETB P2.7             | ;Test signal for cpu transaction monitoring |
|         | CALL ADC              | ;Take 8 * samples                           |
|         | CALL AVR              | ; Averaging                                 |
|         | CALL SUBTRACT         | ; Subtract (LOCKPOINT - ADCDATA)            |
|         | CALL LOCK_INDICATE    | ;Turn LED on if result is in lock range     |
|         | CALL GAIN_DECISION    | ; Check if error amount is <2LSB, <16LSB    |
|         | CALL ADJUST_P         | ; Call dac update routine                   |
|         | CALL LD_BIAS_MONITOR  | ; Monitor Laser Bias on ADC1                |
|         | CALL LD_TEMP_MONITOR  | ; Convert DAC0H/L code to temperature value |
|         | CALL CPU_TEMP_MONITOR | ; Monitor on-chip temp sensor               |
|         | JMP LL_POS            | ; Back to loop top                          |
|         |                       | ; END OF MAIN PROGRAM                       |

# AN-655

### SOFTWARE MEMORY MAP

| Byte Address | Byte Name     | Byte Description                                       |
|--------------|---------------|--------------------------------------------------------|
| 00 to 1F     | -             | Reserved                                               |
| 20           | Control Flags | Detailed in Bit Memory Map                             |
| 21           | WL_SEL        | Wavelength select                                      |
| 22           | CALDAC_L      | Offset calibration for DAC                             |
| 23           | CALDAC_H      |                                                        |
| 24           | CALP_H        | Offset calibration for positive locking points         |
| 25           | CALP_L        |                                                        |
| 26           | CALN_H        | Offset calibration for positive locking points         |
| 27           | CALN_L        |                                                        |
| 28           | DACINT_H      | DAC initial voltage                                    |
| 29           | DACINT_L      |                                                        |
| 2A           | LOCKPOINT_H   | Wave lock point being selected                         |
| 2B           | LOCKPOINT_L   |                                                        |
| 2C           | RES_H         | Errors between actual wavelength and target wavelength |
| 2D           | RES_L         |                                                        |
| 2E           | DACNEW_L      | Updated DAC output data                                |
| 2F           | DACNEW_H      |                                                        |
| 30 to 4F     | -             | Not used                                               |
| 50           | AVR_H         | Averaged wave locker output value                      |
| 51           | AVR_L         |                                                        |
| 52           | SUM_H         | Accumulated wave locker output value                   |
| 53           | SUM_L         |                                                        |
| 54           | GAIN          | Temperature control gain                               |
| 58           | SMPL1_H       | ADC raw data #1                                        |
| 59           | SMPL1_L       |                                                        |
| 5A           | SMPL2_H       | ADC raw data #2                                        |
| 5B           | SMPL2_L       |                                                        |
| 5C           | SMPL3_H       | ADC raw data #3                                        |
| 5D           | SMPL3_L       |                                                        |
| 5E           | SMPL4_H       | ADC raw data #4                                        |
| 5F           | SMPL4_L       |                                                        |
| 60           | SMPL5_H       | ADC raw data #5                                        |
| 61           | SMPL5_L       |                                                        |
| 62           | SMPL6_H       | ADC raw data #6                                        |
| 63           | SMPL6_L       |                                                        |
| 64           | SMPL7_H       | ADC raw data #7                                        |
| 65           | SMPL7_L       |                                                        |
| 66           | SMPL8_H       | ADC raw data #8                                        |
| 67           | SMPL8_L       |                                                        |

Table 4. Internal RAM, Lower 128 Bytes

| Byte Address | Byte Name | Byte description                   |
|--------------|-----------|------------------------------------|
| 80           | MSB       | DAC initial data for channel 1     |
| 81           | LSB       |                                    |
| 82           | MSB       | DAC initial data for channel 2     |
| 83           | LSB       |                                    |
| 84           | MSB       | DAC initial data for channel 3     |
| 85           | LSB       |                                    |
| 86           | MSB       | DAC initial data for channel 4     |
| 87           | LSB       |                                    |
| 88           | MSB       | DAC initial data for channel 5     |
| 89           | LSB       |                                    |
| 8A           | MSB       | DAC initial data for channel 6     |
| 8B           | LSB       |                                    |
| 8C           | MSB       | DAC initial data for channel 7     |
| 8D           | LSB       |                                    |
| 8E           | MSB       | DAC initial data for channel 8     |
| 8F           | LSB       |                                    |
| 90           | MSB       | Wave lock point data for channel 1 |
| 91           | LSB       |                                    |
| 92           | MSB       | Wave lock point data for channel 2 |
| 93           | LSB       |                                    |
| 94           | MSB       | Wave lock point data for channel 3 |
| 95           | LSB       |                                    |
| 96           | MSB       | Wave lock point data for channel 4 |
| 97           | LSB       |                                    |
| 98           | MSB       | Wave lock point data for channel 5 |
| 99           | LSB       |                                    |
| 9A           | MSB       | Wave lock point data for channel 6 |
| 9B           | LSB       |                                    |
| 9C           | MSB       | Wave lock point data for channel 7 |
| 9D           | LSB       |                                    |
| 9E           | MSB       | Wave lock point data for channel 8 |
| 9F           | LSB       |                                    |

| Table 5. Internal RAM, Upper 128 Bytes |
|----------------------------------------|
|----------------------------------------|

| Byte | Bit Address | Bit Name   | <b>Bit Value</b> | Description                  |
|------|-------------|------------|------------------|------------------------------|
| 20h  | 00h         | SLOPEFLAG  | 1                | Negative Lock curve          |
|      |             |            | 0                | Positive Lock curve          |
|      | 01h         | RESFLAG    | 1                | Lock Point < ADCDATA         |
|      |             |            | 0                | Lock Point > ADCDATA         |
|      | 02h         | TEMPLKFLAG | 1                | Laser Temperature locked     |
|      |             |            | 0                | Laser Temperature not locked |
|      | 03h         | PBFLAG     | 1                | Button is pushed             |
|      |             |            | 0                | Button is not pushed         |
|      | 04h         | -          |                  | Not used                     |
|      |             |            |                  | -                            |
|      | 05h         | -          |                  | Not used                     |
|      |             |            |                  | -                            |
|      | 06h         | -          |                  | Not used                     |
|      |             |            |                  |                              |
|      | 07h         | -          |                  | Not used                     |
|      |             |            |                  | -                            |

### Table 6. Internal RAM Bit Memory Map

### Table 7. Internal DATA Flash/EE ROM

|          | Byte1      | Byte2      | Byte3           | Byte4      |
|----------|------------|------------|-----------------|------------|
| Page 000 | Board rev  | Farm rev   | Wavelength Grid |            |
| Page 001 | Laser bias | Laser bias | Laser temp      | Laser temp |
| Page 002 | CPU temp   | CPU temp   |                 |            |
| Page 003 | Not used   |            |                 |            |
| :        | -          |            |                 |            |
| Page 3FF |            |            |                 |            |

### APPENDIX [A-1] SCHEMATIC-CPU



# APPENDIX [A-2] SCHEMATIC-TEC CONTROL



Figure 12. Schematic–TBC Control

### APPENDIX [A-3] SCHEMATIC-LASER CONTROL



Figure 13. Schematic–Laser Control

## APPENDIX [A] SCHEMATIC-POWER SUPPLY



Figure 14. Schematic–Power Supply

APPENDIX [B] PCB LAYOUT



Figure 15. Top Layer



Figure 16. AGND/PGND Planes



Figure 17. Bottom Layer



Figure 18. AVDD/PVDD/VSS Planes



Figure 19. Top Overlay

# APPENDIX [C] BILL OF MATERIALS

Provided as a software copy.

## APPENDIX [D] SOFTWARE SOURCE CODE

Provided as a software copy.

# REFERENCES

Analog Devices, ADuC832 Data Sheet Analog Devices, ADN8830 Data Sheet Analog Devices, ADN2830 Data Sheet Fujitsu Quantum Devices, FLD5F6CA Data Sheet Fujitsu Quantum Devices, FLD5F15CA Data Sheet ITU-T G.692

Purchase of licensed I<sup>2</sup>C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I<sup>2</sup>C Patent Rights to use these components in an I<sup>2</sup>C system, provided that the system conforms to the I<sup>2</sup>C Standard Specification as defined by Philips.