
 

Rev. 0 | Page 1 of 3 

 

AN-1382 
APPLICATION NOTE 

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com 

 
ADP1055 EEPROM Programming 

by Navdeep Singh Dhanjal and Subodh Madiwale 

 
INTRODUCTION 
The ADP1055 offers a register map and an EEPROM that are 
programmed with settings for a specific application. This appli-
cation note focuses on the software procedure to program the 
ADP1055. Depending on the application environment, some steps, 
such as entering password and writing board settings, are unnec-
essary and can be skipped.  

SCANNING FOR ADP1055 
The ADP1055 can be programmed to respond to 64 different 
device addresses from 0x40 to 0x7F. This is set by the combination 
of the resistor value on the ADD pin and the value of Bits[5:4] in 
Register 0xD0.  

• Start with Device 0x40 and increment it all the way until 
0x7F.  

• For each device address, try to read from Register 0xD0.  
• If a no acknowledge is received, the ADP1055 does not 

exist at that device address. 
• If an acknowledge is received and Bits[7:6] in Register 0xD0 

return data = 1, then the ADP1055 exists at that device 
address. 

• When the device address of the connected ADP1055 is 
known, use that same address for all communications to 
the device. 

KEY CODE UNLOCKING AND DATA WRITE 
PREPARATION 
The device needs to be unlocked and the command masking 
must be programmed to write mode to allow writing to the 
commands. 

Changing the Key Code Password 

When the device is shipped from the Analog Devices, Inc., 
factory, the default key code password is 0xFFFFFFFF. At the 
end of the programming, it is highly recommended that the key 
code be changed to a new key code to protect the IP.  

To change the key code password, write four bytes of the old key 
code to Register 0xD7 (KEY_CODE command) and then write 
four bytes of the new key code to Register 0xD7. 

Additionally, to further protect the IP, the commands are ready 
for writing when shipped from the factory, allowing the masking 
of certain or all commands to protect them from accidental 
writes and intentional reads. 

Unlocking the Device 

If the key code is not going to be changed, use the default 
0xFFFFFFFF to perform a block write of four bytes using the 
KEY_CODE command to Register 0xD7 to unlock the device. 
Next, perform a block read of five bytes to Register 0xD7: the 
first four bytes are the password, the fifth byte is 1. This ensures 
that the device is unlocked.  

If the key code is changed, use the new key code to unlock the 
device in the same manner as previously described for unlocking 
the device without changing the key code.  

Data Write Preparation 

To enable read/write access to all the commands, perform a block 
write of 32 bytes with Data 0xFF for each byte to COMMAND_ 
MASK, Register 0xF4 to enable read/write access to all PMBus 
commands. Perform another block write of 21 bytes with Data 0xFF 
for each byte to EXTCOMMAND_MASK (Register 0xF5) to 
enable read/write access to all the manufacture specific commands. 

EEPROM PASSWORD AND UNLOCKING  
When the device is shipped from the Analog Devices factory, 
the default EEPROM password is 0xFF. Similar to the key code, 
to protect the IP, it is highly recommended to change the EEPROM 
password at the end of the programming.  

Changing the EEPROM Password 

To change the EEPROM password, write the old password to 
Register 0xD5 then write the new password to Register 0xD5. 

Unlocking the EEPROM 

If the EEPROM password is not going to be changed, write 
0xFF to Register 0xD5 twice to unlock the EEPROM. 

If the EEPROM password was changed, use this new password 
to unlock the EEPROM by writing the new password to 
Command 0xD5 twice. To check that the EEPROM is unlocked, 
conduct a word read from Command 0xFE94; if Bit 15 = 1, the 
EEPROM is unlocked. 

SAVING DATA AND LOCKING EEPROM 
To save data to the EEPROM and to lock the EEPROM, take the 
following steps: 

1. Execute a send command to Command 0x15, to upload the 
data in the commands to the EEPROM. 

2. Wait for 50 ms for the upload to complete. 

http://www.analog.com/ADP1055?doc=AN-1382.pdf
http://www.analog.com/ADP1055?doc=AN-1382.pdf
http://www.analog.com/ADP1055?doc=AN-1382.pdf
http://www.analog.com/ADP1055?doc=AN-1382.pdf
http://www.analog.com/ADP1055?doc=AN-1382.pdf
http://www.analog.com/ADP1055?doc=AN-1382.pdf
http://www.analog.com/ADP1055?doc=AN-1382.pdf
http://www.analog.com/ADP1055?doc=AN-1382.pdf


AN-1382 Application Note 
 

Rev. 0 | Page 2 of 3 

3. To lock the EEPROM, write any other data, except for the 
password, to Command 0xD5. 

WRITING DATA TO THE DEVICE 
1. Prior to writing data to the device, read the command 

settings from the “.55s” file that is generated using the 
ADP1055 graphical user interface (GUI).  

2. Using I2C, perform byte writes to the following commands 
of the device:  

0x01 to 0x02 
0x10 
0x20 
0x41 
0x45 
0x47 
0x49 
0x4C 
0x50 
0x56 
0x5A 
0x5C 
0x63 
0x69 
0xD0 
0xFE01 to 0xFE0C 
0xFE1D to 0xFE2F 
0xFE34 to 0xFE43 
0xFE48 to 0xFE57 
0xFE5A to 0xFE67 

3. Next, perform word writes to the following commands of 
the device, via I2C: 

0x21 to 0x24 
0x27 to 0x2A 
0x33 
0x35 to 0x40 
0x42 to 0x44 
0x46 
0x48 
0x4A to 0x4B 
0x4F 
0x51 
0x55 
0x59 
0x5B 
0x5E to 0x62 
0x64 to 0x66 
0x68 
0xFE0D to 0xFE1C 
0xFE30 to 0xFE33 
0xFE44 to 0xFE47 
0xFE58 to 0xFE59 

The SMBALERT mask command is written uniquely, as follows: 

1. Execute eight word writes to Command 0x1B. 
2. Split the data in the .55s file for Register 0x1B into eight 

words and each word must be written to 0x1B (refer to the 
PMBus specification for additional details). 

3. Perform a block write of 32 bytes with data from the .55s 
file to Command 0xF4. 

4. Perform a block write of 21 bytes with data from the .55s 
file to Command 0xF5.  

PEC CONTROL 
If the programmer has the capability to recognize acknowledges 
and no acknowledges in the I2C communication, use the PEC 
byte for all the writes to ensure proper data transfer. 

The PMBus controller implements packet error checking to 
improve reliability and communication robustness. Packet error 
checking is implemented by appending a PEC byte at the end of 
the message transfer. The PEC byte is calculated using a CRC-8 
algorithm on all ADDR, command, and data bytes from the 
start to stop bit, excluding acknowledge (ACK), no 
acknowledge (NACK), start, restart, and stop bits.  

The PEC byte is appended to the end of the message by the 
device that supplied the last data byte. The receiver of the PEC 
byte is responsible for calculating its internal packet error code 
and comparing it to the received PEC byte.  

The PMB slave device can communicate with master PMBus 
devices that support PEC as well as those that do not support 
PEC. If a PEC byte is available, the PMB checks the PEC byte 
and acknowledges if it is correct. If the PEC byte comparison 
fails, the PMB device does not acknowledge the PEC byte and 
does not process the command sent from the master.  

The PMB uses built-in hardware to calculate the PEC code 
using the CRC-8 polynomial 

C(x) = x8 + x2 + x1 + 1 

The PEC code is calculated one byte at a time, in the order that 
it is received. In a read transaction, the PMB appends the PEC 
byte following the last data byte. In a write transaction, the PMB 
compares the received PEC byte to the internally calculated 
PEC code. 

 

http://www.analog.com/ADP1055?doc=AN-1382.pdf


Application Note AN-1382 
 

Rev. 0 | Page 3 of 3 

BOARD SETTINGS 
The board settings in the .55s file are used for the proper 
functioning of the ADP1055 GUI. Additionally, during the 
evaluation process, these settings are stored in Page 5 of the 
EEPROM. In production for standalone mode operation, the 
device does not need these board settings to be saved to the 
device.  

To calculate the command value from the resistor value in the 
board settings, follow the example procedure shown in Figure 1. 

11kΩ
RESISTOR

DIVIDER RATIO = 12

1kΩ VOUT_SCALE_LOOP
NUMBER = 1/12

13
69

9-
00

1

 
Figure 1. Calculating the Command Value 

Due to the flexibility of PMBus, several different combinations 
can result in the same final value of a particular component. For 

example, when calculating the resistor value for board settings 
from the command value, if too many combinations are used, 
they may give the same number, as shown in Figure 2. 

?

NOTES
1. ? INDICATES AN ERROR VALUE.

RESISTOR
DIVIDER RATIO = 12

?

VOUT_SCALE_LOOP
NUMBER = 1/12

13
69

9-
00

2

 
Figure 2. Combinations with the Same Value 

If such a case exists during production, as shown in Figure 2, 
then immediately upon connecting the device, the GUI notices 
that the board settings are missing from Page 5 of the EEPROM. 
A prompt is then sent to load the corresponding board settings 
from a .55s file (see Figure 3).  

 

COMMAND VALUE TO
RESPECTIVE COMMAND LOCATION

EG: VOUT_SCALE_LOOP TO 0x29

RESISTOR VALUES
TO EEPROM PAGE 5

13
69

9-
00

3

 
Figure 3. ADP1055 GUI, Main Setup Window 

 

©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
 registered trademarks are the property of their respective owners. 
  AN13699-0-10/15(0)  

 

http://www.analog.com/ADP1055?doc=AN-1382.pdf
http://www.analog.com/ADP1055?doc=AN-1382.pdf

	INTRODUCTION
	SCANNING FOR ADP1055
	KEY CODE UNLOCKING AND DATA WRITE PREPARATION
	Changing the Key Code Password
	Unlocking the Device
	Data Write Preparation

	EEPROM PASSWORD AND UNLOCKING 
	Changing the EEPROM Password
	Unlocking the EEPROM
	SAVING DATA AND LOCKING EEPROM

	WRITING DATA TO THE DEVICE
	PEC CONTROL
	BOARD SETTINGS

