Micropower, Step-Up/Step-Down Switching Regulator Adjustable and Fixed $5 \mathrm{~V}, 12 \mathrm{~V}$

FEATURES

Operates at Supply Voltages from 1.0 V to 30 V
Step-Up or Step-Down Mode Minimal External Components Required Low Battery Detector
User-Adjustable Current Limiting
Fixed or Adjustable Output Voltage Versions
8-Pin Plastic DIP or SO-8 Package

GENERAL DESCRIPTION

The ADP1110 is part of a family of step-up/step-down switching regulators that operate from an input voltage supply of as little as 1.0 V . This very low input voltage allows the AD P 1110 to be used in applications that use a single cell as the primary power source.
The ADP1110 can be configured to operate in either step-up or step-down mode, but for input voltages greater than 3 V , the ADP1111 would be a more effective solution.
An auxiliary gain amplifier can serve as a low battery detector as well as a linear regulator.
The quiescent current of $300 \mu \mathrm{~A}$ makes the AD P1110 useful in remote or battery powered applications.
The 70 kHz frequency operation also allows for the use of surface mount external capacitors and inductors.
Battery protection circuitry limits the effect of reverse current to safe levels at reverse voltages up to 1.6 V .
-

FUNCTIONAL BLOCK DIAGRAM

*F or outline information see Package Information section.

PIN CONFIGURATIONS

8-Lead SOIC
(SO-8)

NOTES

*D enotes the specifications that apply over the full operating temperature range.
${ }^{1} \mathrm{~T}$ his specification guarantees that both the high and low trip point of the comparator fall within the 210 mV to 230 mV range.
${ }^{2}$ T his specification guarantees that the output voltage of the fixed versions will always fall within the specified range. The waveform at the sense pin will exhibit a sawtooth shape due to the comparator hysteresis.
${ }^{3} 100 \mathrm{k} \Omega$ resistor connected between a 5 V source and the A 0 pin.
${ }^{4}$ The AD P1110 is guaranteed to withstand continuous application of +1.6 V applied to the GND and SW2 pins while V_{IN}, $\mathrm{I}_{\text {LIM }}$, and $\operatorname{SW} 1$ pins are grounded.
Specifications subject to change without notice.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

