GaAs, pHEMT, MMIC, Single Positive Supply, DC to 10 GHz Power Amplifier

Data Sheet

FEATURES

OP1dB: 29 dBm typical
Gain: up to 15 dB typical
OIP3: up to 43 dBm typical
Self biased at $V_{D D}=12 \mathrm{~V}$ at 385 mA typical with an optional bias control on $V_{G G 1}$ for loq adjustment
50Ω matched input/output
32-lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP

APPLICATIONS

Military and space

Test instrumentation

FUNCTIONAL BLOCK DIAGRAM

ADPA9002

Figure 1.

GENERAL DESCRIPTION

The ADPA9002 is a gallium arsenide (GaAs), pseudomorphic high electron mobility transistor (pHEMT), monolithic microwave integrated circuit (MMIC), power amplifier that operates between dc and 10 GHz . The amplifier provides 15 dB of gain, 42 dBm of OIP3, and 31.5 dBm of saturated output power ($\mathrm{P}_{\text {SAT }}$) while requiring 385 mA from a 12 V supply. The ADPA9002 is self biased in normal operation and has an optional bias control for supply quiescent current (I_{DQ}) adjustment. The amplifier is ideal for military and space and
test equipment applications. The ADPA9002 also features inputs and outputs that are internally matched to 50Ω, housed in a RoHS compliant, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP premolded cavity package, making it compatible with high volume surface-mount technology (SMT) assembly equipment.
Note that throughout this data sheet, multifunction pins, such as RFOUT/ $V_{D D}$, are referred to either by the entire pin name or by a single function of the pin, for example, $V_{D D}$, when only that function is relevant.

ADPA9002

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
DC to 2 GHz 3
2 GHz to 5 GHz 3
5 GHz to 10 GHz 4
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics 7
Typical Performance Characteristics 8
Constant $I_{D D}$ Operation 16
Theory of Operation 17
Applications Information 18
Typical Application Circuit. 18
Outline Dimensions 19
Ordering Guide 19

REVISION HISTORY

10/2019—Revision 0: Initial Version

SPECIFICATIONS

DC TO 2 GHz

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=385 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GG}}=\mathrm{GND}$ for nominal self biased operation, and frequency range $=$ dc to 2 GHz , with a 50Ω matched input and output, unless otherwise noted.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE		DC		2	GHz	
GAIN Gain Variation Over Temperature			$\begin{aligned} & 14.5 \\ & \pm 0.01 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
NOISE FIGURE			5		dB	
RETURN LOSS Input Output			$\begin{aligned} & 18 \\ & 14 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
OUTPUT Output Power for 1 dB Compression Saturated Output Power Output Third-Order Intercept	$\begin{aligned} & \text { OP1dB } \\ & \text { PSAT } \\ & \text { OIP3 } \end{aligned}$		$\begin{aligned} & 29 \\ & 31 \\ & 43 \end{aligned}$		dBm dBm dBm	Measurement taken at output power (Pout) per tone $=$ 14 dBm
SUPPLY Quiescent Current Drain Voltage	IDQ $V_{D D}$	10	$\begin{aligned} & 385 \\ & 12 \end{aligned}$	15	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~V} \end{aligned}$	For external bias control, adjust $\mathrm{V}_{G G 1}$ between -2 V and +0.5 V to achieve the desired l_{DQ}

2 GHz TO 5 GHz

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=385 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GG1}}=\mathrm{GND}$ for nominal self biased operation, and frequency range $=2 \mathrm{GHz}$ to 5 GHz , unless otherwise noted. 50Ω matched input/output.

Table 2.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Min \& Typ \& Max \& Unit \& Test Conditions/Comments \\
\hline FREQUENCY RANGE \& \& 2 \& \& 5 \& GHz \& \\
\hline GAIN Gain Variation Over Temperature \& \& 13 \& \[
\begin{aligned}
\& 15 \\
\& \pm 0.008
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
\(\mathrm{dB} /{ }^{\circ} \mathrm{C}\)
\end{tabular} \& \\
\hline NOISE FIGURE \& \& \& 3 \& \& dB \& \\
\hline RETURN LOSS Input Output \& \& \& \[
\begin{aligned}
\& 14 \\
\& 15
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \mathrm{dB} \\
\& \mathrm{~dB}
\end{aligned}
\] \& \\
\hline \begin{tabular}{l}
OUTPUT \\
Output Power for 1 dB Compression \\
Saturated Output Power Output Third-Order Intercept
\end{tabular} \& \[
\begin{aligned}
\& \text { OP1dB } \\
\& \text { PSAT }^{\text {OIP3 }}
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 29 \\
\& 31.5 \\
\& 42
\end{aligned}
\] \& \& \begin{tabular}{l}
dBm \\
dBm \\
dBm
\end{tabular} \& Measurement taken at Pout per tone \(=14 \mathrm{dBm}\) \\
\hline \begin{tabular}{l}
SUPPLY \\
Quiescent Current Drain Voltage
\end{tabular} \& IDQ

V DD \& 10 \& \[
$$
\begin{aligned}
& 385 \\
& 12
\end{aligned}
$$

\] \& 15 \& | mA |
| :--- |
| V | \& For external bias control, adjust $\mathrm{V}_{\mathrm{GG1}}$ between -2 V and +0.5 V to achieve the desired l_{D}

\hline
\end{tabular}

5 GHz TO 10 GHz

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=385 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GG1}}=\mathrm{GND}$ for nominal self biased operation, and frequency range $=5 \mathrm{GHz}$ to 10 GHz , with a 50Ω matched input and output, unless otherwise noted.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE		5		10	GHz	
GAIN Gain Variation Over Temperature			$\begin{aligned} & 15.5 \\ & \pm 0.016 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} /{ }^{\circ} \mathrm{C} \end{aligned}$	
NOISE FIGURE			4		dB	
RETURN LOSS Input Output			$\begin{aligned} & 19 \\ & 13 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
OUTPUT Output Power for 1 dB Compression Saturated Output Power Output Third-Order Intercept	$\begin{aligned} & \text { OP1dB } \\ & \text { PSAT } \\ & \text { OIP3 } \end{aligned}$		28 31 40.5		dBm dBm dBm	Measurement taken at Pout/tone $=14 \mathrm{dBm}$
SUPPLY Quiescent Current Drain Voltage	IDQ $V_{D D}$	10	$\begin{aligned} & 385 \\ & 12 \\ & \hline \end{aligned}$	15	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~V} \end{aligned}$	For external bias control, adjust $\mathrm{V}_{\text {GG1 }}$ between -2 V and +0.5 V to achieve the desired I_{D}

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
$V_{\text {DD }}$	16 V
VGG1	-2.5 V to +1 V
RFIN	25 dBm
Continuous Power Dissipation (Poiss), $\mathrm{T}=85^{\circ} \mathrm{C}$ (Derate $113.64 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $85^{\circ} \mathrm{C}$)	10.2 W
Output Load Voltage Standing Wave Ratio (VSWR)	7:1
Temperature	
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Peak Reflow (Moisture Sensitivity Level (MSL) 3)	$260^{\circ} \mathrm{C}$
Junction to Maintain 1 Million Hour Mean Time to Failure (MTTF)	$175^{\circ} \mathrm{C}$
Nominal Junction ($\mathrm{T}=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$)	$125.7^{\circ} \mathrm{C}$
ESD Sensitivity	
Human Body Model (HBM)	Class 1B, passed $500 \mathrm{~V}$

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required. θ_{JC} is the junction to case thermal resistance.

Table 5. Thermal Resistance

Package	$\boldsymbol{\theta}_{\text {sc }}$	Unit
CG-32-2	8.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. NIC = NOT INTERNALLY CONNECTED. THESE PINS

MUST BE CONNECTED TO RF AND DC GROUND
2. EXPOSED PAD. THE EXPOSED PAD MUST BE

CONNECTED TO RF AND DC GROUND.
Figure 2. Pin Configuration
Table 6. Pin Function Descriptions

Data Sheet ADPA9002

INTERFACE SCHEMATICS

Figure 3. GND Interface Schematic

Figure 4. ACG3 Interface Schematic

Figure 5. RFOUT/VDD, ACG1, ACG2 Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. S22, S21, and S11 vs. Frequency, 10 MHz to 500 MHz , Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 9. Gain vs. Frequency for Various Temperatures, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 10. Gain vs. Frequency for Various $I_{D C,}$ Externally Biased Mode, $V_{D D}=12$ V, Controlled $V_{G G 1}$

Figure 11. S22, S21, and S11 vs. Frequency, 500 MHz to 16 GHz , Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 12. Gain vs. Frequency for Various VDD and Quiescent Currents, Self Biased Mode, $V_{G G 1}=G N D$

Figure 13. Input Return Loss vs. Frequency for Various Temperatures, Self Biased Mode, V $V_{D D}=12$ V, $V_{G G 1}=G N D$

Figure 14. Input Return Loss vs. Frequency for Various VDD and Quiescent Currents, Self Biased Mode, $V_{G G 1}=G N D$

Figure 15. Output Return Loss vs. Frequency for Various Temperatures, Self Biased Mode, VDD $=12$ V, $V_{G G 1}=G N D$

Figure 16. Output Return Loss vs. Frequency for Various $I_{D Q}$, External Biased Condition, VDD $=12$ V, Controlled VGG1

Figure 17. Input Return Loss vs. Frequency for Various $I_{D O}$, Externally Biased Mode, $V_{D D}=12 \mathrm{~V}$, Controlled $V_{G G 1}$

Figure 18. Output Return Loss vs. Frequency for Various V $V_{D D}$ and Quiescent Currents, Self Biased Mode, $V_{G G 1}=G N D$

Figure 19. Reverse Isolation vs. Frequency for Various Temperatures, Self Biased Mode, VDD $=12$ V, $V_{G G 1}=G N D$

Figure 20. Noise Figure vs. Frequency, 10 MHz to 100 MHz , for Various Temperatures, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 21. OP1dB vs. Frequency, 10 MHz to 1 GHz for Various Temperatures, Self Biased Mode, $V_{D D}=12$ V, $V_{G G 1}=G N D$

Figure 22. OP1dB vs. Frequency for Various VDD and Quiescent Currents, Self Biased Mode, $V_{G G 1}=G N D$

Figure 23. Noise Figure vs. Frequency, 100 MHz to 12 GHz , for Various Temperatures, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 24. OP1dB vs. Frequency, 1 GHz to 12 GHz for Various Temperatures, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 25. $O P 1 d B$ vs. Frequency for Various $I_{D Q}$, Externally Biased Mode, VDD $=12$ V, Controlled $V_{G G 1}$

Figure 26. PSAT Vs. Low Frequency, 10 MHz to 1 GHz for Various Temperatures, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 27. PSAT vs. Frequency for Various VDD and Quiescent Currents, Self Biased Mode, $V_{G G 1}=G N D$

Figure 28. Power Added Efficiency (PAE) vs. Frequency for Various Temperatures, Self Biased Mode, $V_{D D}=12$ V, $V_{G G I}=G N D$, PAE Measured at $P_{S A T}$

Figure 29. P SAT Vs. Frequency, 1 GHz to 12 GHz for Various Temperatures, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 30. Psat vs. Frequency for Various IDQ, Externally Biased Mode, $V_{D D}=12 \mathrm{~V}$, Controlled $V_{G G 1}$

Figure 31. PAE vs. Frequency for Various VDD and Quiescent Currents, Self Biased Mode, $V_{G G 1}=G N D$, PAE Measured at PSAT

Figure 32. PAE vs. Frequency for Various $I_{D Q}$, Externally Biased Mode, $V_{D D}=12$ V, Controlled $V_{G G 1}$, PAE Measured at PSAT

Figure 33. Pout, Gain, PAE, Supply Current (IDD) vs. Input Power, 3 GHz, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 34. Pout, Gain, PAE, IDD vs. Input Power, 8 GHz, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{G G 1}=G N D$

Figure 35. Pout, Gain, PAE, IDD vs. Input Power, 1 GHz, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 36. Pout, Gain, PAE, IDD vs. Input Power, 6 GHz, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 37. Pout, Gain, PAE, IDD vs. Input Power, 10 GHz, Self Biased Mode, V $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 38. Power Dissipation vs. Input Power for Various Frequencies at $T_{A}=$ $85^{\circ} \mathrm{C}$, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 39. OIP3 vs. Frequency for Various VDD and Quiescent Currents, Self Biased Mode, $V_{G G 1}=G N D$, Pout per Tone $=14 \mathrm{dBm}$

Figure 40. OIP3 vs. Frequency for Various Pout per Tone, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 41. OIP3 vs. Frequency for Various Temperatures,
Pout per Tone $=14 \mathrm{dBm}$, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 42. OIP3 vs. Frequency for Various $I_{D Q}$, Externally Biased Mode, $V_{D D}=12 \mathrm{~V}$, Controlled $V_{G G 1}$, Pout per Tone $=14 \mathrm{dBm}$

Figure 43. Third-Order Intermodulation Distortion Relative to Carrier (IM3) vs. Pout per Tone for Various Frequencies, Self Biased Mode, VDD $=10 \mathrm{~V}$, $V_{G G 1}=G N D$

Figure 44. IM3 vs. Pout per Tone for Various Frequencies, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, V_{G G I}=G N D$

Figure 45. OIP2 vs. Frequency for Various Temperatures, Pout per Tone $=14 \mathrm{dBm}$, Self Biased, $V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 46. OIP2 vs. Frequency for Various IDQ, Externally Biased Mode, $V_{D D}=12 \mathrm{~V}$, Controlled $V_{G G 1}$, Pout per Tone $=14 \mathrm{dBm}$

Figure 47. IM3 vs. Pоut per Tone for Various Frequencies, Self Biased Mode,
$V_{D D}=15 \mathrm{~V}, V_{G G I}=G N D$

Figure 48. OIP2 vs. Frequency for Various VDD and Quiescent Currents, Self Biased Mode, $V_{G G 1}=G N D$, Pout per Tone $=14 \mathrm{dBm}$

Figure 49. OIP2 vs. Frequency for Various Pout per Tone, Self Biased Mode,
$V_{D D}=12 \mathrm{~V}, V_{G G 1}=G N D$

Figure 50. I ID vs. Input Power for Various Frequencies, Self Biased Mode, $V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{G G 1}=G N D$

Figure 51. Gate 1 Current (IGG1) vs. Input Power for Various Frequencies, $V_{D D}=12 \mathrm{~V}, I_{D Q}=400 \mathrm{~mA}$, Controlled $V_{G G 1}$

Figure 52. IDQ Vs. $V_{G G I}, V_{D D}=12$ V, Externally Biased Mode

Figure 53. IDD vs. Input Power for Various Frequencies, $V_{D D}=12 \mathrm{~V}, I_{D Q}=400 \mathrm{~mA}$, Controlled $V_{G G 1}$

Figure 54. $I_{D Q}$ vs. $V_{D D}, V_{G G 1}=G N D$, Self Biased Mode

CONSTANT IDD OPERATION

Biased with the HMC980LP4E active bias controller for constant I_{DD} operation. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{DQ}}=400 \mathrm{~mA}$ for nominal operation, unless otherwise noted.

Figure 55. $O P 1 d B$ vs. Frequency for Various Temperatures, $V_{D D}=12 \mathrm{~V}$, Constant $I_{D D}=400 \mathrm{~mA}$

Figure 56. $O P 1 d B$ vs. Frequency for Various Constant $I_{D D}, V_{D D}=12 \mathrm{~V}$

Figure 57. PSAT Vs. Frequency for Various Supply Voltages, Constant $I_{D D}=400 \mathrm{~mA}$

Figure 58. OP1dB vs. Frequency for Various Supply Voltages, Constant $I_{D D}=400 \mathrm{~mA}$

Figure 59. $P_{S A T}$ Vs. Frequency for Various Temperatures, $V_{D D}=12 \mathrm{~V}$, Constant $I_{D D}=400 \mathrm{~mA}$

Figure 60. $P_{S A T}$ vs. Frequency for Various Constant $I_{D D}, V_{D D}=12 \mathrm{~V}$

THEORY OF OPERATION

The ADPA9002 is a GaAs, MMIC, pHEMT, cascode distributed power amplifier. The cascode distributed architecture of the ADPA9002 uses a fundamental cell consisting of a stack of two field effect transistors (FETs) with the source of the upper FET connected to the drain of the lower FET. The fundamental cell is then duplicated several times with an RFIN transmission line interconnecting the gates of the lower FETs and an RFOUT transmission line interconnecting the drains of the upper FETs.

Figure 61. Simplified Schematic of the Cascode Distributed Amplifier
Additional circuit design techniques are used around each cell to optimize the overall bandwidth, output power, and noise figure. The major benefit of this architecture is that a high output level is maintained across a bandwidth far greater than a single instance of the fundamental cell provides. A simplified schematic of this architecture is shown in Figure 61.

For simplified biasing without the need for a negative voltage rail, $\mathrm{V}_{\mathrm{GG} 1}$ can be connected directly to GND. With $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$ and $V_{G G 1}$ grounded, a quiescent drain current of 385 mA (typical) results. An externally generated $V_{G G 1}$ can optionally be applied,
allowing adjustment of the quiescent drain current above and below the 385 mA nominal. As an example, Figure 52 shows that, by adjusting V_{GG} from approximately -0.3 V to +0.3 V , quiescent drain currents from 250 mA to 450 mA can be obtained.

The ADPA9002 has single-ended input and output ports whose impedances are nominally equal to 50Ω over the dc to 10 GHz frequency range. Consequently, the ADPA9002 can be directly inserted into a 50Ω system with no required impedance matching circuitry. Similarly, the input and output impedances are sufficiently stable across variations in temperature and supply voltage so that no impedance matching compensation is required. The RF output port additionally functions as the $V_{D D}$ bias, requiring an RF choke through which dc bias is applied. Though the device operates down to dc, blocking capacitors are recommended at the RF input and output ports to prevent damages on the RF stages when loading the dc bias supplies. The RF choke and blocking capacitor at the RF output together constitute a bias tee. In practice, the external RF choke and dc blocking capacitor selections limit the lowest frequency of operation.
ACG1 through ACG3 are nodes at which ac terminations (capacitors) to ground can be provided. The use of such terminations serves to roll off the gain at frequencies below 200 MHz , allowing the flattest possible gain response to be obtained over various frequencies.
It is critical to supply low inductance ground connections to the GND pins and to the package base exposed pad to ensure stable operation. To achieve optimal performance from the ADPA9002 and to prevent damage to the device, do not exceed the absolute maximum ratings.

APPLICATIONS INFORMATION

Capacitive bypassing is required for V_{DD} and $\mathrm{V}_{\mathrm{GGI}}$, as shown in Figure 62. Both the RFIN and RFOUT/VDD pins are dc-coupled. Use of an external dc blocking capacitor at RFIN is recommended. Use of an external RF choke plus a dc blocking capacitor (for example, a bias tee) at the RFOUT/VDD pin is required. For wideband applications, ensure that the frequency responses of the external biasing and blocking components are adequate for use across the entire frequency range of the application.
The ADPA9002 operates in either self biased or externally biased mode. Ground the $\mathrm{V}_{\mathrm{GG1}}$ pin to operate the device in self biased mode. For the externally biased configuration, adjust the $\mathrm{V}_{\mathrm{GG1}}$ pin within -2 V to +0.5 V to set the target drain.
The recommended bias sequence during power-up for self biased operation is as follows:

1. Connect the $\mathrm{V}_{\mathrm{GG} 1}$ pin to ground and ground all GND pins.
2. Set $V_{D D}$ to 12 V .
3. Apply the RF signal to the RFIN pin.

The recommended bias sequence during power-down for self biased operation is as follows:

1. Turn off the RFIN signal.
2. Set $V_{D D}$ to 0 V .

The recommended bias sequence during power-up for externally biased operation is as follows:

1. Connect all GND pins to ground.
2. Set the $\mathrm{V}_{\mathrm{GG1}}$ pin to -2 V .
3. Increase the $\mathrm{V}_{\mathrm{GGl}}$ pin to achieve the I_{DQ}.
4. Apply the RF signal to the RFIN pin.

The recommended bias sequence during power-down for externally biased operation is as follows:

1. Turn off the RFIN signal.
2. Decrease the $\mathrm{V}_{\mathrm{GG1}}$ pin to -2 V to achieve a typical I_{DQ} of 0 mA .
3. Set $V_{D D}$ to 0 V .
4. Set the $\mathrm{V}_{\mathrm{GGI}}$ pin to 0 V .

Take care to ensure adherence to the values shown in the Absolute Maximum Ratings section.

Unless otherwise noted, all measurements and data shown were taken using the typical application circuit (see Figure 62) and biased per the conditions in this section. The bias conditions described in this section are the operating points recommended to optimize the overall device performance. Operation using other bias conditions may result in performance that differs from what is shown in the Typical Performance Characteristics section. To obtain optimal performance while not damaging the device, follow the recommended biasing sequences described in this section.

TYPICAL APPLICATION CIRCUIT

In Figure 62, the drain voltage (V_{DD}) must be applied through an external broadband bias tee connected at the RFOUT/VDD pin and connect an external dc block to the RFIN pin. Use optional capacitors if the device is operated below 200 MHz .
3. Set V_{DD} to 12 V .

NOTES

1. DRAIN VOLTAGE (V_{DD}) MUST BE APPLIED THROUGH AN ETERNAL BIAS TEE CONNECTED AT THE RFOUT/VDD PIN AND AN EXTERNAL DC BLOCK MUST BE CONNECTED AT THE RFIN PIN.
2. USE OPTIONAL CAPACITORS IF THE DEVICE IS OPERATED BELOW 200MHz.

OUTLINE DIMENSIONS

Figure 63. 32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV] $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body and 1.25 mm Package Height (CG-32-2)
Dimensions shown in millimeters
ORDERING GUIDE

Model $^{\mathbf{1}}$	Temperature	MSL Rating ${ }^{2}$	Description ${ }^{3}$	Package Option
ADPA9002ACGZN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3	32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV] ADPG-32-2 ADead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]	CG-32-2
ADPA9002-EVALZ-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	3	Evaluation Board	

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ See the Absolute Maximum Ratings section for additional information.
${ }^{3}$ The lead finish of the ADPA9002ACGZN and the ADPA9002ACGZN-R7 is nickel palladium gold (NiPdAu).

