Silicon SPDT Switch, Reflective, 100 MHz to 44 GHz

Data Sheet

FEATURES

Ultrawideband frequency range: 100 MHz to 44 GHz

Reflective design

Low insertion loss with impedance match
1.0 dB typical to 18 GHz
1.4 dB typical to $\mathbf{4 0} \mathbf{~ G H z}$
1.7 dB typical to $\mathbf{4 4} \mathbf{~ G H z}$

Low insertion loss without impedance match
0.9 dB typical to $\mathbf{1 8} \mathbf{~ G H z}$
1.7 dB typical to 40 GHz
2.1 dB typical to 44 GHz

High input linearity
P1dB: 27.5 dBm typical
IP3: $\mathbf{5 0} \mathbf{~ d B m}$ typical
High RF input power handling
Through path: $\mathbf{2 7}$ dBm
Hot switching: $\mathbf{2 7}$ dBm

No low frequency spurious

RF settling time ($\mathbf{5 0 \%} \mathbf{V}_{\text {cTRL }}$ to 0.1 dB of final RF output): $\mathbf{1 7} \mathbf{~ n s}$
12-terminal, $2.25 \mathrm{~mm} \times 2.25 \mathrm{~mm}$ LGA package

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Product change notification
Qualification data available on request

APPLICATIONS

Industrial scanners

Test and instrumentation
Cellular infrastructure: 5G mmWave
Military radios, radars, electronic counter measures (ECMs)
Microwave radios and very small aperture terminals (VSATs)

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

GENERAL DESCRIPTION

The ADRF5024-EP is a reflective, SPDT switch manufactured in the silicon process.

This switch operates from 100 MHz to 44 GHz with $>1.7 \mathrm{~dB}$ of insertion loss and $>35 \mathrm{~dB}$ of isolation. The ADRF5024-EP has an RF input power handling capability of 27 dBm for both the through path and hot switching.
The ADRF5024-EP draws a low current of $14 \mu \mathrm{~A}$ on the positive supply of +3.3 V and $120 \mu \mathrm{~A}$ on negative supply of -3.3 V . The device employs complementary metal-oxide semiconductor (CMOS)-/low voltage transistor to transistor logic (LVTTL)compatible controls.

The ADRF5024-EP RF ports are designed to match a characteristic impedance of 50Ω. For ultrawideband products, impedance matching on the RF transmission lines can further optimize high frequency insertion loss and return loss characteristics. Refer to the Electrical Specifications section, the Typical Performance Characteristics section, and the ADRF5024 data sheet for more details.

The ADRF5024-EP comes in a 12-terminal, $2.25 \mathrm{~mm} \times 2.25 \mathrm{~mm}$, RoHS-compliant, land grid array (LGA) package and can operate between $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Additional application and technical information can be found in the ADRF5024 data sheet.

ADRF5024-EP

TABLE OF CONTENTS

Features.. 1
Enhanced Product Features .. 1
Applications .. 1
Functional Block Diagram .. 1
General Description ... 1
Revision History .. 2
Specifications ... 3
Electrical Specifications ... 3
Absolute Maximum Ratings .. 5

REVISION HISTORY

10/2020—Revision 0: Initial Version

Thermal Resistance ... 5
Power Derating Curve 5
Electrostatic Discharge (ESD) Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics 6
Typical Performance Characteristics 7
Insertion Loss and Return Loss. 7
Outline Dimensions 8
Ordering Guide 8

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

$\mathrm{VDD}=3.3 \mathrm{~V}$, VSS $=-3.3 \mathrm{~V}$, digital control voltage $\left(\mathrm{V}_{\mathrm{CTRL}}\right)=0 \mathrm{~V}$ or VDD , and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ for a 50Ω system, unless otherwise noted.
Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		100		44,000	MHz
INSERTION LOSS Between RFC and RF1/RF2 (On) With Impedance Match Without Impedance Match		See Figure 6 100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz See Figure 7 100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz		$\begin{aligned} & 1.0 \\ & 1.4 \\ & 1.4 \\ & 1.4 \\ & 1.7 \\ & \\ & 0.9 \\ & 1.1 \\ & 1.5 \\ & 1.7 \\ & 2.1 \end{aligned}$		dB dB
RETURN LOSS RFC and RF1/RF2 (On) With Impedance Match Without Impedance Match		See the ADRF5024 data sheet for the figure 100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz See the ADRF5024 data sheet for the figure 100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz		$\begin{aligned} & 17 \\ & 13 \\ & 13 \\ & 18 \\ & 12 \end{aligned}$		dB dB
ISOLATION Between RFC and RF1/RF2 Between RF1 and RF2		100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz 100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz		$\begin{aligned} & 42 \\ & 41 \\ & 38 \\ & 36 \\ & 35 \\ & 47 \\ & 45 \\ & 44 \\ & 42 \\ & 38 \end{aligned}$		dB dB

ADRF5024-EP

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
SWITCHING CHARACTERISTICS Rise and Fall Time On and Off Time RF Settling Time $\begin{aligned} & 0.1 \mathrm{~dB} \\ & 0.05 \mathrm{~dB} \\ & \hline \end{aligned}$	$\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {fall }}$ ton, toff	10% to 90% of RF output $50 \% \mathrm{~V}_{\text {стRL }}$ to 90% of RF output $50 \% \mathrm{~V}$ стRL to 0.1 dB of final RF output 50% VствL to 0.05 dB of final RF output		$\begin{aligned} & 2 \\ & 10 \\ & 17 \\ & 22 \end{aligned}$		ns ns ns ns
INPUT LINEARITY ${ }^{1}$ 1 dB Power Compression Third-Order Intercept	$\begin{aligned} & \text { P1dB } \\ & \text { IP3 } \end{aligned}$	$200 \mathrm{MHz} \text { to } 40 \mathrm{GHz}$ Two tone input power $=12 \mathrm{dBm}$ each tone, $\Delta \mathrm{f}=1 \mathrm{MHz}$		$\begin{aligned} & 27.5 \\ & 50 \end{aligned}$		dBm dBm
SUPPLY CURRENT Positive Supply Current Negative Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{SS}} \end{aligned}$	VDD and VSS pins		$\begin{aligned} & 14 \\ & 120 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
DIGITAL CONTROL INPUTS Voltage Low High Current Low and High	$\mathrm{V}_{\mathrm{INL}}$ $V_{\text {INH }}$ $\mathrm{I}_{\mathrm{INL},} \mathrm{I}_{\mathrm{INH}}$	CTRL pin	$\begin{aligned} & 0 \\ & 1.2 \end{aligned}$	<1	$\begin{aligned} & 0.8 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
RECOMMENDED OPERATING CONDITONS Supply Voltage Positive Negative Digital Control Voltage RF Input Power ${ }^{2}$ Through Path Hot Switching	VDD $V_{s s}$ VCtRL Pin	Frequency $=200 \mathrm{MHz}$ to $40 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{3}$ RF signal is applied to RFC or through connected RF1/RF2 RF signal is present at RFC while switching between RF1 and RF2	$\begin{aligned} & 3.15 \\ & -3.45 \\ & 0 \end{aligned}$		3.45 -3.15 VDD 27 27	V V V dBm dBm
Case Temperature	CASE		-55		+105	

[^0]
ABSOLUTE MAXIMUM RATINGS

For the recommended operating conditions, see Table 1.
Table 2.

Parameter	Rating
Positive Supply Voltage	-0.3 V to +3.6 V
Negative Supply Voltage	-3.6 V to +0.3 V
Digital Control Input Voltage	
Voltage	-0.3 V to VDD +0.3 V
Current	3 mA
$\begin{aligned} & \text { RF Input Power }{ }^{1}(\mathrm{f}=200 \mathrm{MHz} \text { to } 40 \mathrm{GHz} \text {, } \\ & \left.\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{2}\right) \end{aligned}$	
Through Path	27.5 dBm
Hot Switching	27.5 dBm
RF Input Power Under Unbiased Condition ${ }^{1}$ (VDD, VSS $=0 \mathrm{~V}$)	21 dBm
Temperature	
Junction, $\mathrm{T}_{\text {J }}$	$135^{\circ} \mathrm{C}$
Storage Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow	$260^{\circ} \mathrm{C}$
${ }^{1}$ For power derating vs. frequency, see the ADRF5024 data sheet. This power derating is applicable for the insertion loss path and the hot switching power specifications.	
${ }^{2}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrad specification by 3 dB .	from the $T_{c}=85^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to the printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
$\theta_{\text {JC }}$ is the junction to case bottom (channel to package bottom) thermal resistance.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\text {J }}$	Unit
CC-12-3, Through Path	352	${ }^{\circ} \mathrm{C} / \mathrm{W}$

POWER DERATING CURVE

Figure 2. Maximum Power Dissipation vs. Case Temperature
For more information on power derating curves, see the ADRF5024 data sheet.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDDEC JS-001.
Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.
ESD Ratings ADRF5024-EP
Table 4. ADRF5024-EP, 12-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
HBM		
RFC, RF1, and RF2 Pins	500	1B
Digital Pins	2000	1B
CDM	1250	IV

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

1. EXPOSED PAD MUST BE CONNECTED
TO THE RF AND DC GROUND OF THE PCB.
Figure 3. Pin Configuration (Top View)

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 3, 4, 6, 10, 12	GND	Ground. The GND pins must be connected to the RF and dc ground of the PCB.
2	RFC	RF Common Port. RFC is dc-coupled to 0 V and ac matched to 50Ω. When the RF line potential is equal to 0 V dc , a dc blocking capacitor is not necessary. See Figure 4 for the interface schematic.
5	RF1	RF Port 1. RF1 is dc-coupled to 0 V and ac matched to 50Ω. When the RF line potential is equal to 0 V dc , a dc blocking capacitor is not necessary. See Figure 4 for the interface schematic.
7	VDD	Positive Supply Voltage. See Figure 5 for the interface schematic.
8	CTRL	Control Input Voltage. See Figure 5 for the interface schematic.
9	VSS	Negative Supply Voltage.
11	RF2	RF Port 2. RF2 is dc-coupled to 0 V and ac matched to 50Ω. When the RF line potential is equal to 0 V dc , a dc blocking capacitor is not necessary. See Figure 4 for the interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.

INTERFACE SCHEMATICS

Figure 4. RFx Pins Interface Schematic

Figure 5. CTRL Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS AND RETURN LOSS
$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VSS}=-3.3 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}=0 \mathrm{~V}$ or VDD, and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ for a 50Ω system, unless otherwise noted.
Insertion loss and return loss are measured on the probe matrix board using ground-signal-ground (GSG) probes close to the RFx pins. See the ADRF5024 data sheet for details on the evaluation and probe matrix boards.

Figure 6. Insertion Loss vs. Frequency with Impedance Match

Figure 7. Insertion Loss vs. Frequency Without Impedance Match

ADRF5024-EP

OUTLINE DIMENSIONS

Figure 8. 12-Terminal Land Grid Array [LGA]
$2.25 \mathrm{~mm} \times 2.25 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CC-12-3)
Dimensions shown in millimeters

ORDERING GUIDE
Model 1
:---
ADRF5024SCCZ-EP
ADRF5024SCCZ-EPR7

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ For input linearity performance vs. frequency, see the ADRF5024 data sheet.
 ${ }^{2}$ For power derating vs. frequency, see the ADRF5024 data sheet.
 ${ }^{3}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

