

Dual-Channel, 3.3 GHz to 4.0 GHz, 20 W Receiver Front End

FEATURES

- ▶ Integrated dual-channel RF front end
 - ▶ 2-stage LNA and high power silicon SPDT switch
 - On-chip bias and matching
 - Single-supply operation
- ▶ High power handling at T_{CASE} = 105°C
 - ▶ LTE average power (9 dB PAR) full lifetime: 43 dBm
- ▶ Gain
 - ▶ High gain mode: 36 dB typical at 3.6 GHz
 - ▶ Low gain mode: 17 dB typical at 3.6 GHz
- ▶ Low noise figure
 - ▶ High gain mode: 1.05 dB typical at 3.6 GHz
 - ▶ Low gain mode: 1.05 dB typical at 3.6 GHz
- ▶ High isolation
 - ▶ RXOUT-CHA and RXOUT-CHB: 47 dB typical
 - ▶ TERM-CHA and TERM-CHB: 75 dB typical
- ▶ Low insertion loss: 0.5 dB typical at 3.6 GHz
- ▶ High OIP3: 35 dBm typical
- ▶ Power-down mode and low gain mode
- ▶ Low supply current
 - ▶ High gain mode: 95 mA typical at 5 V
 - ▶ Low gain mode: 48 mA typical at 5 V
 - Power-down mode: 13 mA typical at 5 V
- Positive logic control
- ▶ 6 mm × 6 mm, 40-lead LFCSP package
- ▶ Pin compatible with the ADRF5515 and the ADRF5519, and the 10 W versions, ADRF5545A and ADRF5549

APPLICATIONS

- ▶ Wireless infrastructure
- ▶ TDD massive multiple input and multiple output and active antenna systems
- ▶ TDD-based communication systems

FUNCTIONAL BLOCK DIAGRAM

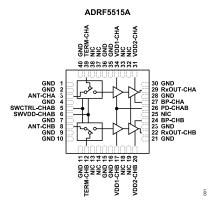


Figure 1.

GENERAL DESCRIPTION

The ADRF5515A is a dual-channel, integrated RF, front-end, multichip module designed for time division duplexing (TDD) applications. The device operates from 3.3 GHz to 4.0 GHz. The ADRF5515A is configured in dual channels with a cascading, two-stage low noise amplifier (LNA) and a high-power silicon single-pole, double-throw (SPDT) switch.

In high gain mode, the cascaded two-stage LNA and switch offer a low noise figure of 1.05 dB and a high gain of 36 dB at 3.6 GHz, with an output third-order intercept (OIP3) point of 35 dBm (typical). In low gain mode, one stage of the two-stage LNA is in bypass, providing 17 dB of gain at a lower current of 48 mA. In power-down mode, the LNAs are turned off and the device draws 13 mA.

In transmit operation, when RF inputs are connected to a termination pin (TERM-CHA or TERM-CHB), the switch provides low insertion loss of 0.5 dB and handles long-term evolution (LTE) average power (9 dB peak to average ratio (PAR)) of 43 dBm for full lifetime operation.

The device comes in an RoHS-compliant, compact, 6 mm × 6 mm, 40-lead lead frame chip scale package (LFCSP).

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Specifications	3
Electrical Specifications	3
Absolute Maximum Ratings	
Thermal Resistance	5
Electrostatic Discharge (ESD) Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Interface Schematics	

Typical Performance Characteristics	ŏ
Receive Operation, High Gain Mode	8
Receive Operation, Low Gain Mode	10
Transmit Operation	12
Theory of Operation	13
Signal Path Select	13
Biasing Sequence	13
Applications Information	14
Outline Dimensions	15
Ordering Guide	15
Evaluation Boards	15

REVISION HISTORY

6/2021—Revision 0: Initial Version

analog.com Rev. 0 | 2 of 15

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

VDD1-CHA, VDD1-CHB, VDD2-CHA, VDD2-CHB, and SWVDD-CHAB = 5 V, SWCTRL-CHAB = 0 V or SWVDD-CHAB, BP-CHA = VDD1-CHA or 0 V, BP-CHB = VDD1-CHB or 0 V, PD-CHAB = 0 V or VDD1-CHA, case temperature $(T_{CASE}) = 25^{\circ}C$, and a 50 Ω system, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGE		3.3		4.0	GHz
GAIN ¹	Receive operation at 3.6 GHz				
High Gain Mode			36		dB
Low Gain Mode			17		dB
GAIN FLATNESS ¹	Receive operation in any 100 MHz bandwidth				
High Gain Mode			0.6		dB
Low Gain Mode			0.2		dB
NOISE FIGURE (NF) ¹	Receive operation at 3.6 GHz				
High Gain Mode	,		1.05		dB
Low Gain Mode			1.05		dB
OUTPUT THIRD-ORDER INTERCEPT POINT (OIP3)1					
High Gain Mode	Receive operation, two-tone output power = 11 dBm per tone at 1 MHz tone spacing		35		dBm
Low Gain Mode	Receive operation, two-tone output power = -10 dBm per tone at 1 MHz tone spacing		23.5		dBm
OUTPUT 1 dB COMPRESSION (OP1dB)					
High Gain Mode			19		dBm
Low Gain Mode			12.5		dBm
INSERTION LOSS ¹	Transmit operation at 3.6 GHz		0.5		dB
CHANNEL TO CHANNEL ISOLATION ¹	At 3.6 GHz				
Between RXOUT-CHA and RXOUT-CHB	Receive operation		47		dB
Between TERM-CHA and TERM-CHB	Transmit operation		75		dB
SWITCH ISOLATION					
ANT-CHA to TERM-CHA and ANT-CHB to TERM-CHB ¹	Receive operation		15		dB
SWITCHING CHARACTERISTICS (t _{ON} , t _{OFF})					
	50% control voltage to 90%, 10% of RXOUT-CHA or RXOUT-CHB in receive operation		600		ns
	50% control voltage to 90%, 10% of TERM-CHA or TERM-CHB in transmit operation		600		ns
DIGITAL INPUT					
SWCTRL-CHAB, PD-CHAB, BP-CHA, BP-CHB					
Low (V _{IL})		0		0.63	V
High (V _{IH})		1.17		V_{DD}	V
SUPPLY CURRENT (I _{DD})	VDD1-CHx and VDD2-CHx = 5 V per channel				
High Gain	·		95		mA
Low Gain			48		mA
Power-Down Mode			13		mA
Transmit Current (Switch)	SWVDD-CHAB = 5 V		1.4		mA
DIGITAL INPUT CURRENTS	SWCTRL-CHAB, PD-CHAB, BP-CHA, BP-CHB = 5 V per channel				
SWCTRL-CHAB			0.075		mA
PD-CHAB			0.3		mA
BP-CHA, BP-CHB			0.15		mA

analog.com Rev. 0 | 3 of 15

SPECIFICATIONS

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
RECOMMENDED OPERATING CONDITIONS					
Supply Voltage (V _{DD}) Range	VDD1-CHA, VDD1-CHB, VDD2-CHA, VDD2-CHB, SWVDD-CHAB	4.75	5	5.25	V
Control Voltage Range	SWCTRL-CHAB, BP-CHA, BP-CHB, PD-CHAB	0		V_{DD}	V
RF Input Power at ANT-CHA, ANT-CHB	SWCTRL-CHAB = 5 V, PD-CHAB = 5 V, BP-CHA = BP-CHB = 0 V, T_{CASE}^2 = 105°C				
	Continuous wave			43	dBm
	9 dB PAR LTE full lifetime average			43	dBm
	7 dB PAR LTE single event (<10 sec) average ³			46	dBm
Case Temperature Range $(T_{CASE})^2$ Junction Temperature at Maximum T_{CASE}^2		-40		+105	°C
	Receive operation ¹			132	°C
	Transmit operation ¹			134	°C

¹ See Table 6 and Table 7.

analog.com Rev. 0 | 4 of 15

² Measured at EPAD.

 $^{^3}$ PAR > 7 dB has not been validated due to measurement setup limited to a maximum RF power of 53 dBm.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Positive Supply Voltage	
VDD1-CHA, VDD1-CHB, VDD2-CHA, VDD2-CHB	7 V
SWVDD-CHAB	5.4 V
Digital Control Input Voltage	
SWCTRL-CHAB	$-0.3 \text{ V to V}_{DD}^1 + 0.3 \text{ V}$
BP-CHA, BP-CHB, PD-CHAB	$-0.3 \text{ V to V}_{DD}^2 + 0.3 \text{ V}$
Digital Control Input Current	
SWCTRL-CHAB, BP-CHA, BP-CHB, PD-CHAB	20 mA
RF Input Power	
Transmit Input Power (LTE Peak, 9 dB PAR)	53 dBm
Receive Input Power (LTE Peak, 9 dB PAR)	25 dBm
Temperature	
Storage	-65°C to +150°C
Reflow (Moisture Sensitivity Level 3 (MSL3) Rating)	260°C

¹ V_{DD} is the voltage of the SWVDD-CHAB pin.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operation environment. Careful attention to PCB thermal design is required.

 θ_{JC} is the junction to case bottom (channel to package bottom) thermal resistance.

Table 3. Thermal Resistance

Package Type	θ_{JC}	Unit
CP-40-15		
High Gain Mode, Receive Operation	25	°C/W
Low Gain Mode, Receive Operation	36	°C/W
Power-Down Mode, Transmit Operation	6	°C/W

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

Table 4. ADRF5515A, 40-Lead LFCSP

ESD Model	Withstand Threshold (V)	Class
HBM	1000	1C
CDM	750	C2

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. 0 | 5 of 15

 $^{^{2}}$ V_{DD} is the voltage of the VDD1-CHA, VDD1-CHB, VDD2-CHA, and VDD2-CHB pins.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 2, 4, 7, 9 to 11, 15, 16, 21, 23, 28, 30, 35, 36, 40	GND	Ground.
3	ANT-CHA	RF Input to Channel A.
5	SWCTRL-CHAB	Control Voltage for Switches on Channel A and Channel B.
6	SWVDD-CHAB	Supply Voltage for Switches on Channel A and Channel B.
8	ANT-CHB	RF Input to Channel B.
12	TERM-CHB	Termination Output. This pin is the transmitter path for Channel B.
13, 14, 18, 19, 25, 32, 33, 37, 38	NIC	Not Internally Connected. It is recommended to connect NIC to the RF ground of the PCB.
17	VDD1-CHB	Supply Voltage for Stage 1 LNA on Channel B.
20	VDD2-CHB	Supply Voltage for Stage 2 LNA on Channel B.
22	RXOUT-CHB	RF Output. This pin is the receiver path for Channel B. The RXOUT-CHB pin is ac-matched to 50 Ω . No matching component is required. A dc blocking capacitor is required.
24	BP-CHB	Bypass Second Stage LNA of Channel B.
26	PD-CHAB	Power Down All Stages of LNA for Channel A and Channel B.
27	BP-CHA	Bypass Second Stage LNA of Channel A.
29	RXOUT-CHA	RF Output. This pin is the receiver path for Channel A. The RXOUT-CHA pin is ac matched to 50 Ω . No matching component is required. A dc blocking capacitor is required.
31	VDD2-CHA	Supply Voltage for Stage 2 LNA on Channel A.
34	VDD1-CHA	Supply Voltage for Stage 1 LNA on Channel A.
39	TERM-CHA	Termination Output. This pin is the transmitter path for Channel A.
	EPAD	Exposed Pad. The exposed pad must be connected to RF or dc ground.

analog.com Rev. 0 | 6 of 15

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

INTERFACE SCHEMATICS

Figure 3. GND Interface

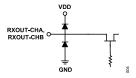


Figure 4. RXOUT-CHx Interface

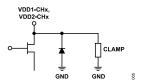


Figure 5. VDD1-CHx, VDD2-CHx Interface

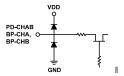


Figure 6. PD-CHAB, BP-CHx Interface

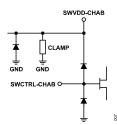


Figure 7. SWCTRL-CHAB, SWVDD-CHAB Interface

analog.com Rev. 0 | 7 of 15

TYPICAL PERFORMANCE CHARACTERISTICS

RECEIVE OPERATION, HIGH GAIN MODE

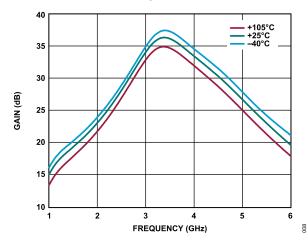


Figure 8. Gain vs. Frequency at Various Temperatures

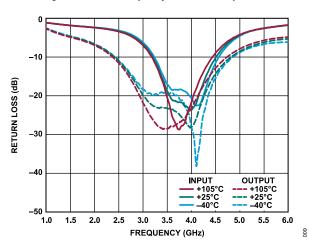


Figure 9. Return Loss vs. Frequency

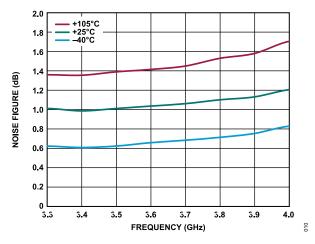


Figure 10. Noise Figure vs. Frequency

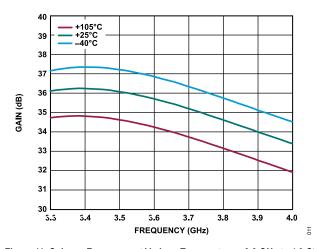


Figure 11. Gain vs. Frequency at Various Temperatures, 3.3 GHz to 4.0 GHz

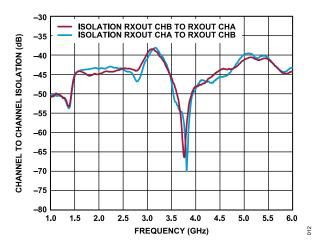


Figure 12. Channel to Channel Isolation vs. Frequency

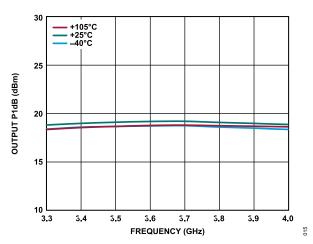


Figure 13. Output P1dB vs. Frequency

analog.com Rev. 0 | 8 of 15

TYPICAL PERFORMANCE CHARACTERISTICS

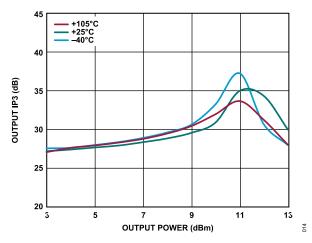


Figure 14. Output IP3 vs. Output Power, 3.6 GHz

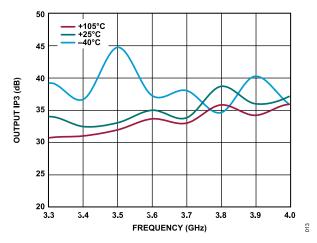


Figure 15. Output IP3 vs. Frequency, 11 dBm Output Tone Power

analog.com Rev. 0 | 9 of 15

TYPICAL PERFORMANCE CHARACTERISTICS

RECEIVE OPERATION, LOW GAIN MODE

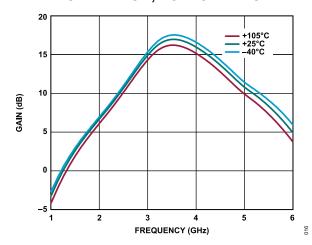


Figure 16. Gain vs. Frequency at Various Temperatures

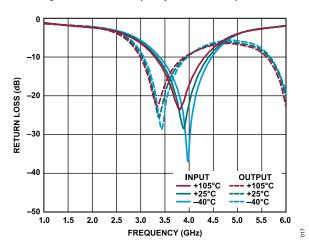


Figure 17. Return Loss vs. Frequency

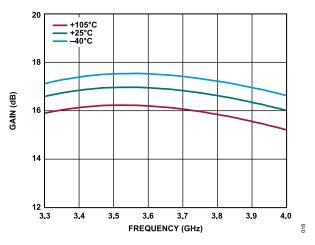


Figure 18. Gain vs. Frequency at Various Temperatures, 3.3 GHz to 4.0 GHz

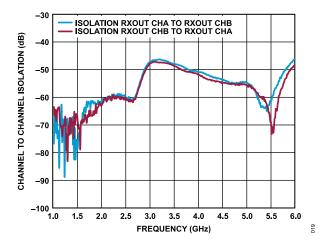


Figure 19. Channel to Channel Isolation vs. Frequency

analog.com Rev. 0 | 10 of 15

TYPICAL PERFORMANCE CHARACTERISTICS

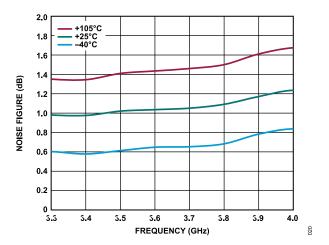


Figure 20. Noise Figure vs. Frequency at Various Temperatures

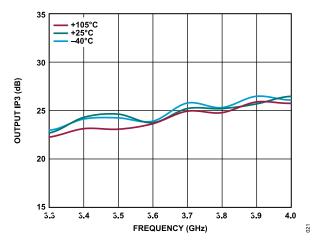


Figure 21. Output IP3 vs. Frequency at -10 dBm Output Tone Power

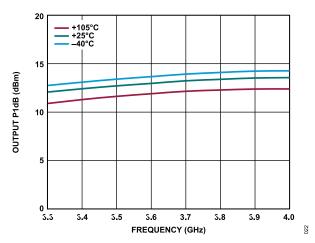


Figure 22. Output P1dB vs. Frequency

analog.com Rev. 0 | 11 of 15

TYPICAL PERFORMANCE CHARACTERISTICS

TRANSMIT OPERATION

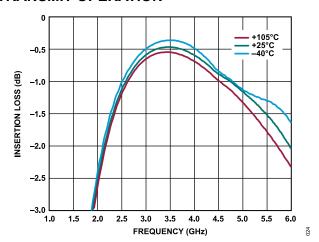


Figure 23. Insertion Loss vs. Frequency at Various Temperatures

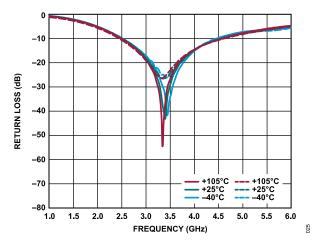


Figure 24. Return Loss vs. Frequency

Figure 25. TERM-CHA to TERM-CHB Isolation vs. Frequency

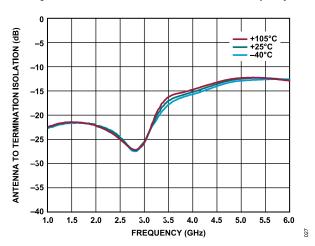


Figure 26. Antenna to Termination Isolation vs. Frequency, LNA On

analog.com Rev. 0 | 12 of 15

THEORY OF OPERATION

The ADRF5515A requires a positive supply voltage applied to the VDD1-CHA pin, VDD2-CHA pin, VDD1-CHB pin, VDD2-CHB pin, and SWVDD-CHAB pin. Use bypassing capacitors on the supply lines to filter noise.

SIGNAL PATH SELECT

The ADRF5515A supports transmit operations when 5 V is applied to SWCTRL-CHAB. In transmit operation, when an RF input is applied to ANT-CHA and ANT-CHB, the signal paths are connected from ANT-CHA to TERM-CHA and from ANT-CHB to TERM-CHB.

The ADRF5515A supports receive operations when 0 V is applied to SWCTRL-CHAB. In receive operation, an RF input applied at ANT-CHA and ANT-CHB connects ANT-CHA to RXOUT-CHA and ANT-CHB to RXOUT-CHB.

Receive Operation

The ADRF5515A supports high gain mode, low gain mode, power-down high isolation mode, and power-down low isolation mode in receive operation, as detailed in Table 7.

When 0 V is applied to PD-CHAB, the LNA is powered up and the user can select high gain mode or low gain mode. To select high gain mode, apply 0 V to BP-CHA or BP-CHB. To select low gain mode, apply 5 V to BP-CHA or BP-CHB.

When 5 V is applied to PD-CHAB, the ADRF5515A enters power-down mode. To select power-down high isolation mode, apply 0 V to BP-CHA or BP-CHB. To select power-down low isolation mode, apply 5 V to BP-CHA or BP-CHB.

BIASING SEQUENCE

To bias up the ADRF5515A, perform the following steps:

- 1. Connect any GND pin to ground.
- **2.** Bias up VDD1-CHA, VDD2-CHA, VDD1-CHB, VDD2-CHB, and SWVDD-CHAB.
- 3. Bias up SWCTRL-CHAB.
- 4. Bias up PD-CHAB.
- 5. Bias up BP-CHA and BP-CHB.
- **6.** Apply an RF input signal.

To bias down, perform these steps in the reverse order.

Table 6. Truth Table: Signal Path

	Signal Path Select		
SWCTRL-CHAB	Transmit Operation ¹	Receive Operation	
Low	Off	On	
High	On	Off	

¹ See the signal path descriptions in Table 7.

Table 7. Truth Table: Receive Operation, SWCTRL-CHAB = 0 V

Operation	PD-CHAB	BP-CHA, BP-CHB	Signal Path
Receive Operation			ANT-CHA to RXOUT-CHA, ANT-CHB to RXOUT-CHB
High Gain Mode	Low	Low	
Low Gain Mode	Low	High	
Power-Down High Isolation Mode	High	Low	
Power-Down Low Isolation Mode	High	High	

analog.com Rev. 0 | 13 of 15

APPLICATIONS INFORMATION

To generate the evaluation PCB used in a typical application circuit, use proper RF circuit design techniques. Signal lines at the RF port must have a 50 Ω impedance, and the package ground leads and the backside ground slug must connect directly to the ground plane. Use 300 Ω series resistors on the BP-CHx and PD-CHAB digital control pins for glitch and overcurrent protection.

It is possible to tune the ADRF5515A to obtain better return loss between 3.3 GHz to 3.8 GHz or 3.7 GHz to 4.2 GHz frequency bands. An additional low impedance RF trace at the TERM-CHx pin and a shunt capacitor at the ANT-CHx pin allows better return loss for receive high gain mode, receive low gain mode and transmit mode at the same time. It is possible to switch frequency bands by adding/removing the shunt capacitor at the ANT-CHx pin. When the shunt capacitor at the ANT-CHx pin is mounted, the device is tuned to the 3.3 GHz to 3.8 GHz frequency band (low band). When the capacitor is not mounted, the device is tuned to the 3.7 GHz to 4.2 GHz frequency band (high band).

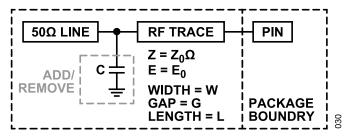


Figure 27. External Matching Topology

The details of the external tuning network can be found in Table 8 and Figure 27. RF trace characteristic impedance and electrical length can be applied to any different substrate of choice. Also in Table 8, dimensions for an example grounded coplanar waveguide implementation with 10 mil Rogers 4350 is shown.

Table 8. Matching Components

Matching Components	ANT-CHx Pin	TERM-CHx Pin
Series RF Trace	Ζ ₀ = 50 Ω	Ζ ₀ = 40 Ω
	$E_0 = \lambda/20 at 3.6$ GHz Width = 18 mil $Gap = 13 \text{ mil}$ $Length = 100 \text{ mil}$	$E_0 = \lambda/4 at 3.6$ GHz Width = 26 mil $Gap = 13 \text{ mil}$ $Length = 500 \text{ mil}$
Shunt Capacitor	Capacitor = 0.3 pF Low band tuning Capacitor = do not insert (DNI) High band tuning	Not applicable

Simulated return losses for receive high gain mode, receive low gain mode, and transmit mode are seen in Figure 28 and Figure 29. For high gain mode, the return loss is better than 15 dB, and for low gain mode, the return loss is better than 14 dB. For transmit mode, the return loss is better than 18 dB.

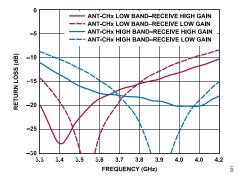


Figure 28. ANT-CHx Return Loss at Receive High Gain and Receive Low Gain Mode for Low Band and High Band Tuning

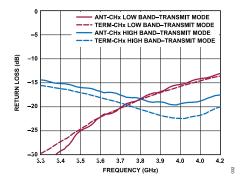


Figure 29. ANT-CHx and TERM-CHx Return Loss at Transmit Mode Compared with and Without External Tuning

analog.com Rev. 0 | 14 of 15

OUTLINE DIMENSIONS

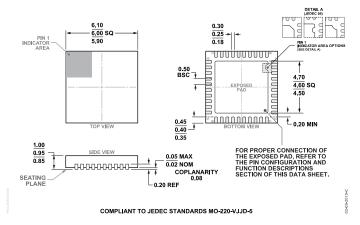


Figure 30. 40-Lead Lead Frame Chip Scale Package [LFCSP]
6 mm × 6 mm Body and 0.95 mm Package Height
(CP-40-15)

Dimensions shown in millimeters

Updated: April 09, 2021

ORDERING GUIDE

				Package
Model ¹	Temperature Range	Package Description	Packing Quantity	Option
ADRF5515ABCPZN	-40°C to +105°C	40-Lead LFCSP (6mm × 6mm w/ EP)	Reel, 0	CP-40-15
ADRF5515ABCPZN-R7	-40°C to +105°C	40-Lead LFCSP (6mm × 6mm w/ EP)	Reel, 750	CP-40-15
ADRF5515ABCPZN-RL	-40°C to +105°C	40-Lead LFCSP (6mm × 6mm w/ EP)	Reel, 2500	CP-40-15

¹ Z = RoHS Compliant Part

EVALUATION BOARDS

Model	Description
ADRF5515A-EVALZ	ADRF5515A Evaluation Board

