ADSP-2101

SUMMARY

16-Bit Fixed-Point DSP Microprocessors with On-Chip Memory
Enhanced Harvard Architecture for Three-Bus Performance: Instruction Bus \& Dual Data Buses Independent Computation Units: ALU, Multiplier/ Accumulator, and Shifter
Single-Cycle Instruction Execution \& Multifunction Instructions
On-Chip Program Memory RAM or ROM \& Data Memory RAM
Integrated I/O Peripherals: Serial Ports, Timer, Host Interface Port (ADSP-2111 Only)

FEATURES

25 MIPS, 40 ns Maximum Instruction Rate
Separate On-Chip Buses for Program and Data Memory
Program Memory Stores Both Instructions and Data (Three-Bus Performance)
Dual Data Address Generators with Modulo and Bit-Reverse Addressing
Efficient Program Sequencing with Zero-Overhead Looping: Single-Cycle Loop Setup
Automatic Booting of On-Chip Program Memory from Byte-Wide External Memory (e.g., EPROM)
Double-Buffered Serial Ports with Companding Hardware, Automatic Data Buffering, and Multichannel Operation
ADSP-2111 Host Interface Port Provides Easy Interface to 68000, 80C51, ADSP-21xx, Etc.
Automatic Booting of ADSP-2111 Program Memory Through Host Interface Port
Three Edge- or Level-Sensitive Interrupts
Low Power IDLE Instruction
PGA, PLCC, PQFP, and TQFP Packages
MIL-STD-883B Versions Available

GENERAL DESCRIPTION

The ADSP-2100 Family processors are single-chip microcomputers optimized for digital signal processing (DSP) and other high speed numeric processing applications. The AD SP-21xx processors are all built upon a common core. Each processor combines the core DSP architecture-computation units, data address generators, and program sequencer-with differentiating features such as on-chip program and data memory RAM , a programmable timer, one or two serial ports, and, on the AD SP-2111, a host interface port.

FUNCTIONAL BLOCK DIAGRAM

This data sheet describes the following AD SP-2100 Family processors:
ADSP-2101
ADSP-2103 3.3 V Version of A D SP-2101
ADSP-2105 Low Cost DSP
ADSP-2111 DSP with H ost Interface Port
ADSP-2115
AD SP-2161/62/63/64 Custom R OM -programmed DSPS
The following AD SP-2100 F amily processors are not included in this data sheet:
ADSP-2100A DSP M icroprocessor
ADSP-2165/66 ROM -programmed ADSP-216x processors with powerdown and larger on-chip memories (12K Program M emory ROM , 1K Program M emory RAM, 4K Data M emory RAM)
ADSP-21msp5x $\quad M$ ixed-Signal DSP Processors with integrated on-chip A/D and D/A plus powerdown
AD SP-2171 Speed and feature enhanced ADSP-2100 Family processor with host interface port, powerdown, and instruction set extensions for bit manipulation, multiplication, biased rounding, and global interrupt masking
ADSP-2181
ADSP-21xx processor with ADSP-2171 features plus 80 K bytes of on-chip RAM configured as 16 K words of program memory and 16 K words of data memory.
Refer to the individual data sheet of each of these processors for further information.

REV.C

[^0]© Analog Devices, Inc., 1996

ADSP-2101

F abricated in a high speed, submicron, double-layer metal CM OS process, the highest-performance ADSP-21xx processors operate at 25 M Hz with a 40 ns instruction cycle time. Every instruction can execute in a single cycle. F abrication in CM OS results in low power dissipation.

The AD SP-2100 Family's flexible architecture and comprehensive instruction set support a high degree of parallelism.
In one cycle the ADSP-21xx can perform all of the following operations:

- G enerate the next program address
- F etch the next instruction
- Perform one or two data moves
- U pdate one or two data address pointers
- Perform a computation
- Receive and transmit data via one or two serial ports
- Receive and/or transmit data via the host interface port (AD SP-2111 only)
The AD SP-2101, AD SP-2105, and AD SP-2115 comprise the basic set of processors of the family. Each of these three devices contains program and data memory RAM, an interval timer, and one or two serial ports. The AD SP-2103 is a 3.3 volt power supply version of the ADSP-2101; it is identical to the AD SP-2101 in all other characteristics. Table I shows the features of each AD SP-21xx processor.
The ADSP-2111 adds a 16-bit host interface port (HIP) to the basic set of AD SP-21xx integrated features. The host port provides a simple interface to host microprocessors or microcontrollers such as the 8031,68000 , or ISA bus.

TABLE OF CONTENTS

GENERAL DESCRIPTION . 1
D evelopment Tools . 4
Additional Information 4
ARCHITECTURE OVERVIEW 4
Serial Ports 5
H ost Interface Port (ADSP-2111) . 6
Interrupts . 6
Pin Definitions . 7
SYSTEM INTERFACE 7
Clock Signals . 7
Reset . 8
Program M emory Interface . 10
Program M emory M aps . 10
D ata M emory Interface . 12
D ata M emory M ap . 12
Boot M emory Interface . 12
Bus Interface . 12
Low Power IDLE Instruction 13
AD SP-216x Prototyping . 13
Ordering Procedure for ADSP-216x ROM Processors 13
Wafer Products . 14
Functional Differences for Older Revision D evices 14
Instruction Set . 15
SPECIFICATIONS
(ADSP-2101/2105/2115/2161/2163) 17
Recommended Operating Conditions 17
Electrical Characteristics . 17
Supply C urrent \& Power (AD SP-2101/2161/2163) 18
Power Dissipation Example . 19
Environmental Conditions . 19
Capacitive Loading . 19
Test Conditions . 20
SPECIFICATIONS
(ADSP-2111) 21
Recommended Operating Conditions 21
Electrical Characteristics . 21
Supply Current \& Power . 22
Power Dissipation Example . 23
Environmental Conditions . 23
C apacitive Loading 23
T est Conditions 24
SPECIFICATIONS (ADSP-2103/2162/2164) 25
Recommended Operating Conditions 25
Electrical Characteristics 25
Supply Current \& Power 26
Power Dissipation Example 27
Environmental Conditions 27
C apacitive Loading 27
Test Conditions 28
TIMIN G PARAM ETERS
(AD SP-2101/2105/2111/2115/2161/2163) 29
Clock Signals 30
Interrupts \& Flags 31
Bus Request-Bus Grant 32
M emory Read 33
M emory W rite 34
Serial Ports 35
H ost Interface Port (AD SP-2111) 36
TIMING PARAMETERS (AD SP-2103/2162/2164) 44
C lock Signals 45
Interrupts \& Flags 46
Bus Request-Bus Grant 47
M emory Read 48
M emory W rite 49
Serial Ports 50
PIN CONFIGURATIONS
68-Pin PGA (AD SP-2101) 51
68-L ead PLCC (ADSP-2101/2103/2105/2115/216x) 52
80-L ead PQFP (ADSP-2101/2103/2115/216x) 53
80-L ead TQF P (AD SP-2115) 53
100-Pin PGA (ADSP-2111) 54
100-L ead PQFP (ADSP-2111) 55
PACKAGE OUTLINE DIMENSIONS56
68-L ead PLCC 57
80-L ead PQFP, 80-L ead T QFP 58
100-Pin PGA 59
100-L ead PQFP 60
ORDERING GUIDE 61-62

Table I. ADSP-21xx Processor Features

Feature	2101	2103	2105	2115	2111
D ata M emory (RAM)	1K	1K	$1 / 2 \mathrm{~K}$	$1 / 2 \mathrm{~K}$	1 K
Program M emory (RAM)	2K	2K	1 K	1 K	2K
Timer	\bullet	\bullet	\bullet	-	\bullet
Serial Port 0 (M ultichannel)	\bullet	\bullet	-	\bullet	\bigcirc
Serial Port 1	\bullet	\bullet	\bullet	\bullet	\bullet
H ost Interface Port	-	-	-	-	\bullet
Speed Grades (Instruction Cycle Time) $10.24 \mathrm{M} \mathrm{~Hz}(76.9 \mathrm{~ns})$	-	\bullet	-	-	-
$13.0 \mathrm{M} \mathrm{Hz}(76.9 \mathrm{~ns})$	-	-	-	-	-
$13.824 \mathrm{M} \mathrm{Hz}(72.3 \mathrm{~ns})$	-	-	\bullet		
16.67 M Hz (60 ns)	\bullet	-	-	-	
20.0 M Hz (50 ns)	\bullet	-	\bullet		
$25 \mathrm{MHz}(40 \mathrm{~ns})$	\bullet	-	-		
Supply Voltage	5 V	3.3 V	5 V	5 V	5 V
Packages					
68-Pin PGA	\bullet		-		-
68-L ead PLCC	\bullet	\bigcirc	\bullet	-	-
80-L ead PQFP	\bullet	-		-	-
80-L ead T QFP	-			\bigcirc	-
100-Pin PGA	-	-		-	\bullet
100-L ead PQF P	-			-	-
T emperature Grades					
K Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-		-	\bigcirc	\bigcirc
B Industrial $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-	-	\bullet	\bullet	\bigcirc
T E xtended $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			-	-	\bigcirc

Table II. ADSP-216x ROM-Programmed Processor Features

Feature	2161	2162	2163	2164
D ata M emory (RAM)	$1 / 2 \mathrm{~K}$			
Program M emory (ROM)	8 K	8K	4K	4K
Program M emory (RAM)	-	-	-	-
Timer	0	\bullet	\bullet	0
Serial Port 0 (M ultichannel)	\bullet	\bullet	\bullet	\bullet
Serial Port 1	\bullet	-	\bullet	\bullet
Supply Voltage	5 V	3.3 V	5 V	3.3 V
Speed Grades (Instruction Cycle Time)				
$10.24 \mathrm{M} \mathrm{Hz}(97.6 \mathrm{~ns})$	-	-	-	\bullet
16.67 M Hz (60 ns)	\bullet	-	0	-
25 M Hz (40 ns)	-	-	-	-
Packages				
68-L ead PLCC	\bullet	\bigcirc	\bigcirc	\bigcirc
80-L ead PQFP	\bullet	\bullet	\bullet	\bullet
T emperature Grades				
K Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	\bullet	\bigcirc	\bullet	\bigcirc
B Industrial $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

ADSP-2101

The ADSP-216x series are memory-variant versions of the AD SP-2101 and ADSP-2103 that contain factory-programmed on-chip ROM program memory. These devices offer different amounts of on-chip memory for program and data storage. Table II shows the features available in the AD SP-216x series of custom ROM -coded processors.
The AD SP-216x products eliminate the need for an external boot EPROM in your system, and can also eliminate the need for any external program memory by fitting the entire application program in on-chip ROM. These devices thus provide an excellent option for volume applications where board space and system cost constraints are of critical concern.

Development Tools

The AD SP-21xx processors are supported by a complete set of tools for system development. T he AD SP-2100 Family D evelopment Software includes C and assembly language tools that allow programmers to write code for any of the AD SP-21xx processors. The ANSI C compiler generates ADSP-21xx assembly source code, while the runtime C library provides AN SI-standard and custom DSP library routines. The ADSP21xx assembler produces object code modules which the linker combines into an executable file. T he processor simulators provide an interactive instruction-level simulation with a reconfigurable, windowed user interface. A PROM splitter utility generates PROM programmer compatible files.
EZ-ICE ${ }^{\circledR}$ in-circuit emulators allow debugging of ADSP-21xx systems by providing a full range of emulation functions such as modification of memory and register values and execution breakpoints. EZ-LAB ${ }^{\circledR}$ demonstration boards are complete DSP systems that execute EPROM-based programs.

The EZ-K it Lite is a very low-cost evaluation/development platform that contains both the hardware and software needed to evaluate the ADSP-21xx architecture.
Additional details and ordering information is available in the A DSP-2100 F amily Software \& H ardware Development Tools data sheet (AD DS-21xx-T OOLS). This data sheet can be requested from any A nalog D evices sales office or distributor.

Additional Information

This data sheet provides a general overview of ADSP-21xx processor functionality. For detailed design information on the architecture and instruction set, refer to the A DSP-2100 F amily U ser's M anual, available from A nalog D evices.

ARCHITECTURE OVERVIEW

Figure 1 shows a block diagram of the AD SP-21xx architecture. The processors contain three independent computational units: the ALU , the multiplier/accumulator (MAC), and the shifter. The computational units process 16-bit data directly and have provisions to support multiprecision computations. T he ALU performs a standard set of arithmetic and logic operations; division primitives are also supported. The M AC performs single-cycle multiply, multiply/add, and multiply/subtract operations. T he shifter performs logical and arithmetic shifts, normalization, denormalization, and derive exponent operations. The shifter can be used to efficiently implement numeric format control including multiword floating-point representations.

T he internal result (R) bus directly connects the computational units so that the output of any unit may be used as the input of any unit on the next cycle.
A powerful program sequencer and two dedicated data address generators ensure efficient use of these computational units. The sequencer supports conditional jumps, subroutine calls, and returns in a single cycle. With internal loop counters and loop stacks, the AD SP-21xx executes looped code with zero overhead-no explicit jump instructions are required to maintain the loop.
T wo data address generators (DAGs) provide addresses for simultaneous dual operand fetches (from data memory and program memory). Each DAG maintains and updates four address pointers. Whenever the pointer is used to access data (indirect addressing), it is post-modified by the value of one of four modify registers. A length value may be associated with each pointer to implement automatic modulo addressing for circular buffers. T he circular buffering feature is also used by the serial ports for automatic data transfers to (and from) onchip memory.
Efficient data transfer is achieved with the use of five internal buses:

- Program M emory Address (PM A) Bus
- Program M emory D ata (PM D) Bus
- D ata M emory Address (DM A) Bus
- D ata M emory D ata (DMD) Bus
- Result (R) Bus

The two address buses (PM A, D M A) share a single external address bus, allowing memory to be expanded off-chip, and the two data buses (PM D, DM D) share a single external data bus. The $\overline{\mathrm{BMS}}, \overline{\mathrm{DMS}}$, and $\overline{\text { PMS }}$ signals indicate which memory space is using the external buses.
Program memory can store both instructions and data, permitting the AD SP-21xx to fetch two operands in a single cycle, one from program memory and one from data memory. The processor can fetch an operand from on-chip program memory and the next instruction in the same cycle.
The memory interface supports slow memories and memorymapped peripherals with programmable wait state generation. External devices can gain control of the processor's buses with the use of the bus request/grant signals ($\overline{\mathrm{BR}}, \overline{\mathrm{BG}}$).

Figure 1. ADSP-21xx Block Diagram

One bus grant execution mode (GO M ode) allows the ADSP21xx to continue running from internal memory. A second execution mode requires the processor to halt while buses are granted.
Each ADSP-21xx processor can respond to several different interrupts. There can be up to three external interrupts, configured as edge- or level-sensitive. Internal interrupts can be generated by the timer, serial ports, and, on the ADSP-2111, the host interface port. T here is also a master $\overline{\text { RESET }}$ signal.
Booting circuitry provides for loading on-chip program memory automatically from byte-wide external memory. After reset, three wait states are automatically generated. This allows, for example, a 60 ns ADSP- 2101 to use a 200 ns EPROM as external boot memory. M ultiple programs can be selected and loaded from the EPROM with no additional hardware.
The data receive and transmit pins on SPORT 1 (Serial Port 1) can be alternatively configured as a general-purpose input flag and output flag. Y ou can use these pins for event signalling to and from an external device. The AD SP-2111 has three additional flag outputs whose states are controlled through software.
A programmable interval timer can generate periodic interrupts. A 16-bit count register (TCOUNT) is decremented every n cycles, where $n-1$ is a scaling value stored in an 8 -bit register (TSCALE). When the value of the count register reaches zero, an interrupt is generated and the count register is reloaded from a 16-bit period register (TPERIOD).

Serial Ports

The AD SP-21xx processors include two synchronous serial ports ("SPORT s") for serial communications and multiprocessor communication. All of the AD SP-21xx processors have two serial ports (SPORT 0, SPORT 1) except for the AD SP-2105, which has only SPORT 1.
The serial ports provide a complete synchronous serial interface with optional companding in hardware. A wide variety of framed or frameless data transmit and receive modes of operation are available. Each SPORT can generate an internal programmable serial clock or accept an external serial clock.
Each serial port has a 5-pin interface consisting of the following signals:

Signal Name	Function
SCLK	Serial Clock (I/O)
RFS	Receive F rame Synchronization (I/O)
TFS	Transmit Frame Synchronization (I/O)
DR	Serial D ata Receive
DT	Serial D ata T ransmit

The ADSP-21xx serial ports offer the following capabilities:
Bidirectional-Each SPORT has a separate, double-buffered transmit and receive function.
Flexible Clocking-E ach SPORT can use an external serial clock or generate its own clock internally.

Flexible Framing-The SPORT s have independent framing for the transmit and receive functions; each function can run in a frameless mode or with frame synchronization signals internally generated or externally generated; frame sync signals may be active high or inverted, with either of two pulse widths and timings.
Different Word Lengths-E ach SPORT supports serial data word lengths from 3 to 16 bits.
Companding in Hardware-E ach SPORT provides optional A-law and μ-law companding according to CCIT T recommendation G. 711 .
Flexible Interrupt Scheme-R eceive and transmit functions can generate a unique interrupt upon completion of a data word transfer.
Autobuffering with Single-C ycle Overhead-E ach SPORT can automatically receive or transmit the contents of an entire circular data buffer with only one overhead cycle per data word; an interrupt is generated after the transfer of the entire buffer is completed.
Multichannel Capability (SPORTO Only)-SPORT 0 provides a multichannel interface to selectively receive or transmit a 24 -word or 32-word, time-division multiplexed serial bit stream; this feature is especially useful for T 1 or CEPT interfaces, or as a network communication scheme for multiple processors. (N ote that the AD SP-2105 includes only SPORT 1, not SPORT 0, and thus does not offer multichannel operation.)
Alternate Configuration-SPORT 1 can be alternatively configured as two external interrupt inputs ($\overline{\mathrm{IRQ} 0}, \overline{\mathrm{IRQ1}})$ and the Flag In and Flag Out signals (FI, FO).

Host Interface Port (ADSP-2111)

The AD SP-2111 includes a H ost Interface Port (HIP), a parallel I/O port that allows easy connection to a host processor. Through the HIP, the AD SP-2111 can be accessed by the host processor as a memory-mapped peripheral. T he host interface port can be thought of as an area of dual-ported memory, or mailbox registers, that allows communication between the computational core of the ADSP-2111 and the host computer. The host interface port is completely asynchronous. T he host processor can write data into the HIP while the AD SP-2111 is operating at full speed.
Three pins configure the HIP for operation with different types of host processors. The HSIZE pin configures HIP for 8- or 16bit communication with the host processor. H M D 0 configures the bus strobes, selecting either separate read and write strobes or a single read/write select and a host data strobe. H M D 1 selects either separate address (3-bit) and data (16-bit) buses or a multiplexed 16-bit address/data bus with address latch enable. Tying these pins to appropriate values configures the ADSP2111 for straight-wire interface to a variety of industry-standard microprocessors and microcomputers.
The H IP contains six data registers (H D R5-0) and two status registers (HSR7-6) with an associated HMASK register for masking interrupts from individual HIP data registers. The HIP data registers are memory-mapped in the internal data memory
of the ADSP-2111. The two status registers provide status information to both the ADSP-2111 and the host processor. H SR 7 contains a software reset bit which can be set by both the ADSP-2111 and the host.
HIP transfers can be managed using either interrupts or polling. The HIP generates an interrupt whenever an HDR register receives data from a host processor write. It also generates an interrupt when the host processor has performed a successful read of any HDR. The read/write status of the HDRs is also stored in the H SR registers.
The HM ASK register bits can be used to mask the generation of read or write interrupts from individual H DR registers. Bits in the IM ASK register enable and disable all HIP read interrupts or all HIP write interrupts. So, for example, a write to H DR4 will cause an interrupt only if both the HDR 4 W rite bit in HMASK and the HIP Write interrupt enable bit in IM ASK are set.
The HIP provides a second method of booting the ADSP-2111 in which the host processor loads instructions into the HIP. The AD SP-2111 automatically transfers the data, in this case opcodes, to internal program memory. The BM ODE pin determines whether the ADSP-2111 boots from the host processor through the HIP or from external EPROM over the data bus.

Interrupts

The AD SP-21xx's interrupt controller lets the processor respond to interrupts with a minimum of overhead. U p to three external interrupt input pins, $\overline{\mathrm{IRQ}} 0, \overline{\mathrm{IRQ1}}$, and $\overline{\mathrm{IRQ}} 2$, are provided. $\overline{\mathrm{IRQ}}$ is always available as a dedicated pin; $\overline{\mathrm{IRQ}}$ and $\overline{\overline{I R Q} 0}$ may be alternately configured as part of Serial Port 1. The AD SP-21xx also supports internal interrupts from the timer, the serial ports, and the host interface port (on the ADSP-2111). The interrupts are internally prioritized and individually maskable (except for RESET which is non-maskable). The $\overline{\text { IRQx }}$ input pins can be programmed for either level- or edgesensitivity. The interrupt priorities for each ADSP-21xx processor are shown in T able III.
The AD SP-21xx uses a vectored interrupt scheme: when an interrupt is acknowledged, the processor shifts program control to the interrupt vector address corresponding to the interrupt received. Interrupts can be optionally nested so that a higher priority interrupt can preempt the currently executing interrupt service routine. Each interrupt vector location is four instructions in length so that simple service routines can be coded entirely in this space. L onger service routines require an additional JUM P or CALL instruction.
Individual interrupt requests are logically AN D ed with the bits in the IM ASK register; the highest-priority unmasked interrupt is then selected.
The interrupt control register, ICN TL, allows the external interrupts to be set as either edge- or level-sensitive. Depending on bit 4 in ICN T L, interrupt service routines can either be nested (with higher priority interrupts taking precedence) or be processed sequentially (with only one interrupt service active at a time).

The interrupt force and clear register, IF C, is a write-only register that contains a force bit and a clear bit for each interrupt (except for level-sensitive interrupts and the ADSP-2111 HIP interrupts-these cannot be forced or cleared in software).
When responding to an interrupt, the ASTAT, M ST AT, and IM ASK status registers are pushed onto the status stack and the PC counter is loaded with the appropriate vector address. The status stack is seven levels deep (nine levels deep on the ADSP-2111) to allow interrupt nesting. The stack is automatically popped when a return from the interrupt instruction is executed.

Pin Definitions

T able IV (on next page) shows pin definitions for the AD SP$21 x x$ processors. Any inputs not used must be tied to $V_{D D}$.

Table III. Interrupt Vector Addresses \& Priority

ADSP-2105 Interrupt Source	Interrupt Vector Address
$\overline{\text { RESET Startup }}$	0×0000
$\overline{\text { IRQ22 }}$	0×0004 (High Priority)
SPORT 1 T ransmit or $\overline{\text { IRQ1 }}$	0×0010
SPORT 1 Receive or $\overline{\text { IRQ0 }}$	0×0014
T imer	0×0018 (L ow Priority)

ADSP-2101/2103/2115/216x Interrupt Source	Interrupt Vector Address
RESET Startup	0×0000
$\overline{\text { IRQ2 }}$	0x0004 (High Priority)
SPORT 0 T ransmit	0×0008
SPORT0 Receive	$0 \times 000 \mathrm{C}$
SPORT 1 T ransmit or $\overline{\overline{\text { IRQ1 }}}$	0×0010
SPORT 1 Receive or $\overline{\text { IRQ0 }}$	0×0014
T imer	0x0018 (L ow Priority)
ADSP-2111 Interrupt Interrupt Source Vector Address	
RESET Startup	0x0000
$\overline{\text { IRQ2 }}$	0x0004 (High Priority)
HIP W rite from Host	0×0008
HIP Read to Host	$0 \times 000 \mathrm{C}$
SPORT 0 T ransmit	0×0010
SPORT0 Receive	0×0014
SPORT 1 T ransmit or $\overline{\text { IRQ1 }}$	0×0018
SPORT 1 Receive or IRQ0	0x001C
T imer	0x0020 (L ow Priority)

SYSTEM INTERFACE

Figure 3 shows a typical system for the ADSP-2101, ADSP2115, or ADSP-2103, with two serial I/O devices, a boot EPROM , and optional external program and data memory. A total of 15 K words of data memory and 16 K words of program memory is addressable for the ADSP-2101 and ADSP-2103. A total of 14.5 K words of data memory and 15 K words of program memory is addressable for the AD SP-2115.
Figure 4 shows a system diagram for the ADSP-2105, with one serial I/O device, a boot EPROM, and optional external program and data memory. A total of 14.5 K words of data memory and 15 K words of program memory is addressable for the AD SP-2105.
Figure 5 shows a system diagram for the ADSP-2111, with two serial I/O devices, a host processor, a boot EPROM , and optional external program and data memory. A total of 15 K words of data memory and 16K words of program memory is addressable.
Programmable wait-state generation allows the processors to easily interface to slow external memories.
The AD SP-2101, AD SP-2103, AD SP-2115, and AD SP-2111 processors also provide either: one external interrupt ($\overline{\mathrm{IRQ} 2}$) and two serial ports (SPORT0, SPORT 1), or three external interrupts (IRQ2, IRQ1, $\overline{\mathrm{IRQ} 0}$) and one serial port (SPORT0). The ADSP-2105 provides either: one external interrupt ($\overline{\mathrm{IRQ} 2}$) and one serial port (SPORT 1), or three external interrupts ($\overline{\mathrm{IRQ} 2}, \overline{\mathrm{IRQ} 1}, \overline{\mathrm{IRQ} 0}$) with no serial port.

Clock Signals

The ADSP-21xx processors' CLKIN input may be driven by a crystal or by a TTL-compatible external clock signal. T he CLKIN input may not be halted or changed in frequency during operation, nor operated below the specified low frequency limit.
If an external clock is used, it should be a T T L-compatible signal running at the instruction rate. The signal should be connected to the processor's CLK IN input; in this case, the XTAL input must be left unconnected.
Because the AD SP-21xx processors include an on-chip oscillator circuit, an external crystal may also be used. T he crystal should be connected across the CLKIN and XTAL pins, with two capacitors connected as shown in Figure 2. A parallelresonant, fundamental frequency, microprocessor-grade crystal should be used.

Figure 2. External Crystal Connections

ADSP-2101

A clock output signal (CLK OUT) is generated by the processor, synchronized to the processor's internal cycles.

Reset

The $\overline{\text { RESET }}$ signal initiates a complete reset of the ADSP-21xx. The RESET signal must be asserted when the chip is powered up to assure proper initialization. If the RESET signal is applied during initial power-up, it must be held long enough to allow the processor's internal clock to stabilize. If $\overline{\operatorname{RESET}}$ is activated at any time after power-up and the input clock frequency does not change, the processor's internal clock continues and does not require this stabilization time.

The power-up sequence is defined as the total time required for the crystal oscillator circuit to stabilize after a valid $V_{D D}$ is applied to the processor and for the internal phase-locked loop (PLL) to lock onto the specific crystal frequency. A minimum of $2000 \mathrm{t}_{\mathrm{CK}}$ cycles will ensure that the PLL has locked (this does not, however, include the crystal oscillator start-up time). D uring this power-up sequence the RESET signal should be held low. On any subsequent resets, the $\overline{\text { RESET }}$ signal must meet the minimum pulse width specification, $\mathrm{t}_{\text {RSP }}$.
To generate the $\overline{\text { RESET }}$ signal, use either an RC circuit with an external Schmidt trigger or a commercially available reset IC. (Do not use only an RC circuit.)

Table IV. ADSP-21xx Pin Definitions

Pin Name(s)	\# of Pins	Input / Output	Function
Address	14	0	Address outputs for program, data and boot memory.
D ata ${ }^{1}$	24	I/0	D ata I/O pins for program and data memories. Input only for boot memory, with two M SBs used for boot memory addresses. U nused data lines may be left floating.
RESET	1	I	Processor Reset Input
$\overline{\mathrm{IRQ}}{ }^{2}$	1	I	External Interrupt Request \#2
$\overline{\mathrm{BR}}^{2}$	1	1	External Bus R equest Input
$\overline{\mathrm{BG}}$	1	0	External Bus Grant Output
PMS	1	0	External Program M emory Select
$\overline{\text { DMS }}$	1	0	External D ata M emory Select
BMS	1	0	Boot M emory Select
$\overline{\mathrm{RD}}$	1	0	External M emory Read Enable
$\overline{\mathrm{WR}}$	1	0	External M emory Write Enable
M M AP	1	1	M emory M ap Select Input
CLKIN, XTAL	2		External Clock or Quartz Crystal Input
CLKOUT	1	0	Processor Clock Output
$V_{\text {D }}$			Power Supply Pins
GND			Ground Pins
SPORT 0^{3}	5	1/0	Serial Port 0 Pins (TFS0, RFS0, DT0, DR0, SCLK 0)
SPORT 1	5	1/0	Serial Port 1 Pins(TFS1, RFS1, DT1, DR1, SCLK 1)
or Interrupts \& Flags:			
$\overline{\overline{I R Q 0}}$ (RFS1)	1	I	External Interrupt Request \#0
$\overline{\mathrm{IRQ1}}$ (TFS1)	1	1	External Interrupt Request \#1
FI (DR1)		1	Flag Input Pin
FO (DT1)	1	0	Flag Output Pin
FL2-0 (AD SP-2111 Only)	3	0	G eneral Purpose Flag Output Pins
H ost Interface Port			
(ADSP-2111 Only)			
HSEL	1	1	HIP Select Input
HACK	1	0	HIP Acknowledge Output
HSIZE	1	1	$8 / 16$-B it Host Select ($0=16$ - it , $1=8$ - Bit)
BM ODE	1	I	Boot M ode Select ($0=$ Standard EPROM B ooting, $1=$ HIP B ooting
HMDO	1	I	Bus Strobe Select ($0=\overline{\mathrm{RD}} / \overline{\mathrm{WR}}, 1=\mathrm{RW} / \overline{\mathrm{DS}}$)
HMD1	1	I	HIP Address/D ata M ode Select ($0=$ Separate, $1=$ M ultiplexed)
HRD/H RW	1	I	HIP Read Strobe or Read/W rite Select
HWR/ $/ \mathrm{HDS}$	1	1	HIP W rite Strobe or H ost D ata Strobe Select
HD 15-0/H AD 15-0	16	1/0	HIP D ata or HIP D ata and Address
HA2/ALE	1	,	H ost Address 2 Input or Address L atch Enable Input
HA1-0/U nused	2	I	Host Address 1 and 0 Inputs

NOTES

${ }^{1}$ U nused data bus lines may be left floating.
${ }^{2} \overline{\mathrm{BR}}$ must be tied high (to $\mathrm{V}_{D D}$) if not used.
${ }^{3}$ AD SP-2105 does not have SPORT 0. (SPORT 0 pins are No Connects on the AD SP-2105.)

THE TWO MSBs OF THE DATA BUS (D_{23-22}) ARE USED TO SUPPLY THE TWO MSBS OF THE BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.

Figure 3. ADSP-2101/ADSP-2103/ADSP-2115 System

THE TWO MSBs OF THE DATA BUS (D_{23-22}) ARE USED TO SUPPLY THE TWO MSBs OF THE BOOT MEMORY EPROM ADDRESS. THIS IS ONLY REQUIRED FOR THE 27256 AND 27512.

Figure 4. ADSP-2105 System

Figure 5. ADSP-2111 System

The $\overline{\text { RESET }}$ input resets all internal stack pointers to the empty stack condition, masks all interrupts, and clears the M ST AT register. When $\overline{\text { RESET }}$ is released, the boot loading sequence is performed (provided there is no pending bus request and the chip is configured for booting, with M M AP =0). The first instruction is then fetched from internal program memory location 0x0000.

Program Memory Interface

The on-chip program memory address bus (PM A) and on-chip program memory data bus (PM D) are multiplexed with the onchip data memory buses (DMA, DM D), creating a single external data bus and a single external address bus. The external data bus is bidirectional and is 24 bits wide to allow instruction fetches from external program memory. Program memory may contain code and data.
The external address bus is 14 bits wide. F or the ADSP-2101, AD SP-2103, and AD SP-2111, these lines can directly address up to 16 K words, of which 2 K are on-chip. For the AD SP-2105 and AD SP-2115, the address lines can directly address up to 15 K words, of which 1 K is on-chip.

The data lines are bidirectional. The program memory select ($\overline{\text { PMS }}$) signal indicates accesses to program memory and can be used as a chip select signal. The write ($\overline{\mathrm{WR}})$ signal indicates a write operation and is used as a write strobe. The read ($\overline{\mathrm{RD}}$) signal indicates a read operation and is used as a read strobe or output enable signal.
The ADSP-21xx processors write data from their 16-bit registers to 24-bit program memory using the PX register to provide the lower eight bits. When the processor reads 16 -bit data from 24-bit program memory to a 16-bit data register, the lower eight bits are placed in the PX register.
The program memory interface can generate 0 to 7 wait states for external memory devices; default is to 7 wait states after RESET.

Program Memory Maps

Program memory can be mapped in two ways, depending on the state of the M M AP pin. Figure 6 shows the two program memory maps for the AD SP-2101, ADSP-2103, and ADSP-2111. Figure 8 shows the program memory maps for the ADSP-2105 and AD SP-2115. Figures 7 and 9 show the program memory maps for the ADSP-2161/62 and ADSP-2163/ 64 , respectively.

ADSP-2101/ADSP-2103/ADSP-2111

When M MAP $=0$, on-chip program memory RAM occupies 2 K words beginning at address 0×0000. Off-chip program memory uses the remaining 14K words beginning at address 0×0800. In this configuration-when M M AP $=0$-the boot loading sequence (described below in "Boot M emory Interface") is automatically initiated when RESET is released.
When M M AP $=1,14 \mathrm{~K}$ words of off-chip program memory begin at address 0×0000 and on-chip program memory RAM is located in the upper 2 K words, beginning at address 0×3800. In this configuration, program memory is not booted although it can be written to and read under program control.

Figure 6. ADSP-2101/ADSP-2103/ADSP-2111 Program Memory Maps

ADSP-2105/ADSP-2115

When M M AP $=0$, on-chip program memory RAM occupies 1 K words beginning at address 0×0000. Off-chip program memory uses the remaining 14 K words beginning at address 0×0800. In this configuration-when $\mathrm{M} \mathrm{M} \mathrm{AP}=0$-the boot loading sequence (described below in "Boot M emory Interface") is automatically initiated when RESET is released.
When M M AP $=1,14 \mathrm{~K}$ words of off-chip program memory begin at address 0×0000 and on-chip program memory RAM is located in the 1K words between addresses 0x3800-0x3BFF. In this configuration, program memory is not booted although it can be written to and read under program control.

Figure 8. ADSP-2105/ADSP-2115 Program Memory Maps

Figure 7. ADSP-2161/62 Program Memory Maps

Figure 9. ADSP-2163/64 Program Memory Maps

ADSP-2101

Data Memory Interface

The data memory address bus (D M A) is 14 bits wide. The bidirectional external data bus is 24 bits wide, with the upper 16 bits used for data memory data (D M D) transfers.
The data memory select ($\overline{\mathrm{DMS}}$) signal indicates access to data memory and can be used as a chip select signal. The write ($\overline{\mathrm{WR}}$) signal indicates a write operation and can be used as a write strobe. The read ($\overline{\mathrm{RD}}$) signal indicates a read operation and can be used as a read strobe or output enable signal.
The ADSP-21xx processors support memory-mapped I/O, with the peripherals memory-mapped into the data memory address space and accessed by the processor in the same manner as data memory.

Data Memory Map

ADSP-2101/ADSP-2103/ADSP-2111

For the ADSP-2101, ADSP-2103, and ADSP-2111, on-chip data memory RAM resides in the 1 K words beginning at address 0×3800, as shown in Figure 10. D ata memory locations from $0 \times 3 \mathrm{C} 00$ to the end of data memory at $0 \times 3 \mathrm{FFF}$ are reserved. C ontrol and status registers for the system, timer, wait-state configuration, and serial port operations are located in this region of memory.

ADSP-2105/ADSP-2115

For the AD SP-2105 and AD SP-2115, on-chip data memory RAM resides in the 512 words beginning at address 0×3800, also shown in Figure 10. D ata memory locations from $0 \times 3 \mathrm{~A} 00$ to the end of data memory at 0x3F FF are reserved. Control and status registers for the system, timer, wait-state configuration, and serial port operations are located in this region of memory.

All Processors

T he remaining 14K of data memory is located off-chip. This external data memory is divided into five zones, each associated with its own wait-state generator. This allows slower peripherals to be memory-mapped into data memory for which wait states are specified. By mapping peripherals into different zones, you can accommodate peripherals with different wait-state requirements. All zones default to seven wait states after $\overline{\text { RESET. }}$

Boot Memory Interface

On the AD SP-2101, AD SP-2103, and AD SP-2111, boot memory is an external 64 K by 8 space, divided into eight separate 8 K by 8 pages. On the ADSP-2105 and ADSP-2115, boot memory is a 32 K by 8 space, divided into eight separate 4 K by 8 pages. T he 8 -bit bytes are automatically packed into 24-bit instruction words by each processor, for loading into onchip program memory.

Three bits in the processors' System C ontrol Register select which page is loaded by the boot memory interface. A nother bit in the System Control Register allows the forcing of a boot loading sequence under software control. B oot loading from Page 0 after RESET is initiated automatically if M M AP $=0$.
The boot memory interface can generate zero to seven wait states; it defaults to three wait states after RESET. This allows the AD SP-21xx to boot from a single low cost EPROM such as a 27C256. Program memory is booted one byte at a time and converted to 24-bit program memory words.

The $\overline{\mathrm{BMS}}$ and $\overline{\mathrm{RD}}$ signals are used to select and to strobe the boot memory interface. Only 8-bit data is read over the data bus, on pins D 8-D 15. T o accommodate up to eight pages of boot memory, the two M SBs of the data bus are used in the boot memory interface as the two M SBs of the boot memory address: D 23, D 22, and A13 supply the boot page number.

The ADSP-2100 Family Assembler and Linker allow the creation of programs and data structures requiring multiple boot pages during execution.
The $\overline{\mathrm{BR}}$ signal is recognized during the booting sequence. The bus is granted after loading the current byte is completed. $\overline{\mathrm{BR}}$ during booting may be used to implement booting under control of a host processor.

Bus Interface

The ADSP-21xx processors can relinquish control of their data and address buses to an external device. When the external device requires control of the buses, it asserts the bus request signal ($\overline{\mathrm{BR}}$). If the AD SP-21xx is not performing an external memory access, it responds to the active $\overline{\mathrm{BR}}$ input in the next cycle by:

- Three-stating the data and address buses and the $\overline{\text { PMS, }}$ $\overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ output drivers,
- Asserting the bus grant ($\overline{\mathrm{BG}})$ signal,
- and halting program execution.

If the G o mode is set, however, the ADSP-21xx will not halt program execution until it encounters an instruction that requires an external memory access.

Figure 10. Data Memory Map (All Processors)

If the AD SP-21xx is performing an external memory access when the external device asserts the $\overline{\mathrm{BR}}$ signal, it will not threestate the memory interfaces or assert the $\overline{\mathrm{BG}}$ signal until the cycle after the access completes (up to eight cycles later depending on the number of wait states). The instruction does not need to be completed when the bus is granted; the AD SP-21xx will grant the bus in between two memory accesses if an instruction requires more than one external memory access.
When the $\overline{\mathrm{BR}}$ signal is released, the processor releases the $\overline{\mathrm{BG}}$ signal, re-enables the output drivers and continues program execution from the point where it stopped.
The bus request feature operates at all times, including when the processor is booting and when RESET is active. If this feature is not used, the $\overline{\mathrm{BR}}$ input should be tied high (to V_{DD}).

Low Power IDLE Instruction

The ID LE instruction places the ADSP-21xx processor in low power state in which it waits for an interrupt. When an interrupt occurs, it is serviced and execution continues with instruction following ID LE. T ypically this next instruction will be a JU M P back to the IDLE instruction. This implements a low-power standby loop.
The IDLE n instruction is a special version of IDLE that slows the processor's internal clock signal to further reduce power consumption. The reduced clock frequency, a programmable fraction of the normal clock rate, is specified by a selectable divisor, n, given in the ID LE instruction. The syntax of the instruction is:

> IDLE n;
where $\mathrm{n}=16,32,64$, or 128 .
The instruction leaves the chip in an idle state, operating at the slower rate. While it is in this state, the processor's other internal clock signals, such as SCLK, CLK OUT, and the timer clock, are reduced by the same ratio. U pon receipt of an enabled interrupt, the processor will stay in the IDLE state for up to a maximum of n CLKIN cycles, where n is the divisor specified in the instruction, before resuming normal operation.
When the IDLE n instruction is used, it slows the processor's internal clock and thus its response time to incoming interruptsthe 1-cycle response time of the standard IDLE state is increased by n, the clock divisor. When an enabled interrupt is received, the ADSP-21xx will remain in the IDLE state for up to a maximum of n CLKIN cycles (where $n=16,32,64$, or 128) before resuming normal operation.

When the IDLE n instruction is used in systems that have an externally generated serial clock (SCLK), the serial clock rate may be faster than the processor's reduced internal clock rate. U nder these conditions, interrupts must not be generated at a faster rate than can be serviced, due to the additional time the processor takes to come out of the IDLE state (a maximum of n CLKIN cycles).

ADSP-216x Prototyping

Y ou can prototype your ADSP-216x system with either the AD SP-2101 or AD SP-2103 RAM -based processors. When code is fully developed and debugged, it can be submitted to Analog

D evices for conversion into a AD SP-216x ROM product. The ADSP-2101 EZ-ICE emulator can be used for development of AD SP-216x systems. F or the 3.3 V ADSP-2162 and ADSP-2164, a voltage converter interface board provides 3.3 V emulation.
Additional overlay memory is used for emulation of ADSP2161/62 systems. It should be noted that due to the use of offchip overlay memory to emulate the AD SP-2161/62, a performance loss may be experienced when both executing instructions and fetching program memory data from the off-chip overlay memory in the same cycle. This can be overcome by locating program memory data in on-chip memory.
Ordering Procedure for ADSP-216x ROM Processors T o place an order for a custom ROM -coded AD SP-2161, AD SP-2162, AD SP-2163, or AD SP-2164 processor, you must:

1. Complete the following forms contained in the ADSP ROM O rdering Package, available from your Analog D evices sales representative:
ADSP-216x ROM Specification Form
ROM Release Agreement
ROM NRE Agreement \& M inimum Quantity Order (M QO) Acceptance A greement for Pre-Production ROM Products
2. Return the forms to Analog Devices along with two copies of the M emory Image File (.EXE file) of your ROM code. The files must be supplied on two $3.5^{\prime \prime}$ or $5.25^{\prime \prime}$ floppy disks for the IBM PC (DOS 2.01 or higher).
3. Place a purchase order with Analog Devices for non-recurring engineering changes (NRE) associated with ROM product development.
After this information is received, it is entered into Analog Devices' ROM M anager System which assigns a custom ROM model number to the product. T his model number will be branded on all prototype and production units manufactured to these specifications.
To minimize the risk of code being altered during this process, Analog Devices verifies that the .EXE files on both floppy disks are identical, and recalculates the checksums for the EXE file entered into the ROM M anager System. The checksum data, in the form of a ROM M emory M ap, a hard copy of the EXE file, and a ROM D ata Verification form are returned to you for inspection.

ADSP-2101

A signed ROM Verification Form and a purchase order for production units are required prior to any product being manufactured. Prototype units may be applied toward the minimum order quantity.
U pon completion of prototype manufacture, A nalog D evices will ship prototype units and a delivery schedule update for production units. An invoice against your purchase order for the NRE charges is issued at this time.
There is a charge for each ROM mask generated and a minimum order quantity. C onsult your sales representative for details. A separate order must be placed for parts of a specific package type, temperature range, and speed grade.

Functional Differences for Older Revision Devices

Older revisions of the AD SP-21xx processors have slight differences in functionality. The two differences are as follows:

- Bus G rant $(\overline{\mathrm{BG}})$ is asserted in the same cycle that Bus Request ($\overline{\mathrm{BR}}$) is recognized (i.e. when setup and hold time requirements are met for the $\overline{\mathrm{BR}}$ input). Bus Request input is a synchronous input rather than asynchronous. (In newer revision devices, $\overline{\mathrm{BG}}$ is asserted in the cycle after $\overline{\mathrm{BR}}$ is recognized.)
- Only the standard ID LE instruction is available, not the clock-reducing ID LE n instruction.
To determine the revision of a particular AD SP-21xx device, inspect the marking on the device. For example, an ADSP-2101 of revision 6.0 will have the following marking:

The revision codes for the older versions of each ADSP-21xx device are as follows:

Processor	Old Functionality	New Functionality
AD SP-2101	Revision Code ≤ 5.0	Revision Code ≥ 6.0
AD SP-2105	N o R evision Code	Revision Code ≥ 1.0
AD SP-2115	Revision Code <1.0	Revision Code ≥ 1.0
AD SP-2111	RevisionCode <2.0	Revision Code ≥ 2.0
ADSP-2103	Revision code ≤ 5.0	Revision code ≥ 6.0

Instruction Set

The AD SP-21xx assembly language uses an algebraic syntax for ease of coding and readability. The sources and destinations of computations and data movements are written explicitly in each assembly statement, eliminating cryptic assembler mnemonics.

Every instruction assembles into a single 24-bit word and executes in a single cycle. The instructions encompass a wide variety of instruction types along with a high degree of
operational parallelism. There are five basic categories of instructions: data move instructions, computational instructions, multifunction instructions, program flow control instructions and miscellaneous instructions. M ultifunction instructions perform one or two data moves and a computation.

The instruction set is summarized below. The A D SP-2100 F amily U sers M anual contains a complete reference to the instruction set.

ALU Instructions

[IF cond] AR\|AF	$\begin{aligned} & =\text { xop + yop }[+C] ; \\ & =\text { xop -yop }[+C-1] ; \\ & =\text { yop -xop }[+C-1] ; \\ & =\text { xop AND yop; } \\ & =\text { xop OR yop; } \\ & =\text { xop XOR yop; } \\ & =\text { PASS xop; } \\ & =- \text { xop ; } \\ & =\text { NOT xop; } \\ & =\text { ABS xop; } \\ & =\text { yop +1; } \\ & =\text { yop -1; } \\ & =\text { DIVS yop, xop; } \\ & =\text { DIVQ xop ; } \end{aligned}$

Add/Add with Carry
Subtract X - Y/Subtract X - Y with B orrow
Subtract Y - $X /$ Subtract Y - X with B orrow AND
OR
XOR
Pass, Clear
N egate
NOT
A bsolute V alue
Increment
D ecrement
Divide

M ultiply
M ultiply/A ccumulate
Multiply/Subtract
Transfer M R
Clear
Conditional M R Saturation

A rithmetic Shift
Logical Shift
A rithmetic Shift Immediate
L ogical Shift Immediate
Derive Exponent
Block Exponent A djust
N ormalize

Register-to-R egister M ove

L oad Register Immediate
D ata M emory Read (D irect A ddress)
D ata M emory Read (Indirect Address)
Program M emory R ead (Indirect Address)
D ata M emory W rite (D irect A ddress)
D ata M emory W rite (Indirect A ddress)
Program M emory W rite (Indirect Address)

Multifunction Instructions

<ALU $>\mid<$ M AC $>\mid<$ SHIFT $>$, dreg = dreg	Computation with R egister-to-R egister M ove
<ALU $>\mid<$ A AC $>\mid<$ SHIFT $>$, dreg = DM ($1 \mathrm{x}, \mathrm{My}$) ;	C omputation with M emory Read
$<A L U>\mid<$ M AC $>1<$ SHIFT $>$, dreg = PM ($\mid x, \mathrm{My}$) ;	Computation with M emory Read
DM ($1 \mathrm{x}, \mathrm{M} \mathrm{y}$) $=$ dreg, $<$ ALU $\rangle \mid<$ M AC $>\mid<$ SHIFT $>$;	Computation with M emory W rite
PM ($1 \mathrm{x}, \mathrm{M} \mathrm{y}$) $=$ dreg, \langle ALU $>\|<M A C>\mid<S H I F T>$;	Computation with M emory W rite
dreg = DM (Ix, M y) , dreg = PM (Ix, M y) ;	Data \& Program M emory Read
$<A L U\rangle \mid<M A C>, d r e g=D M(I x, M y), d r e g=P M(1 x, M y)$;	ALU/M AC with D ata \& Program M emory R ead

ADSP-2101

Program Flow Instructions

DO <addr> [UNTIL term];	D o Until Loop	
[IF cond] JUMP (Ix) ;	Jump	
[IF cond] JU M P <addr>;		
[IF cond] CALL (Ix) ;	Call Subroutine	
[IF cond] CALL <addr>;		
IF [NOT] FLAG_IN JUMP <addr>;	Jump/Call on Flag In Pin	
IF [NOT] FLAG IN CALL <addr>;		
[IF cond] SET\|RĒSET	TOGGLE FLAG_OUT [,...] ;	M odify F lag Out Pin
[IF cond] RTS ;	R eturn from Subroutine	
[IF cond] RTI;	R eturn from Interrupt Service R outine	
IDLE [(n)];	Idle	

Miscellaneous Instructions

NOP;
MODIFY (Ix, M y);
[PU SH STS][, POP CNTR][, POP PC][, POP LOOP] ;
No O peration

ENA|DIS SEC REG [,...];
BIT_REV
AV LATCH
$A R^{-}{ }^{-} A T$
M MODE
TIMER
G_MODE

Notation Conventions

Ix Index registers for indirect addressing
My M odify registers for indirect addressing
<data> Immediate data value
<addr> Immediate address value
<exp> Exponent (shift value) in shift immediate instructions (8-bit signed number)
<ALU> Any ALU instruction (except divide)
<M AC> Any multiply-accumulate instruction
<SHIFT> Any shift instruction (except shift immediate)
cond \quad Condition code for conditional instruction
term Termination code for DO UNTIL loop
dreg D ata register (of ALU, M AC, or Shifter)
reg Any register (including dregs)
; A semicolon terminates the instruction
, Commas separate multiple operations of a single instruction
[] Optional part of instruction
[, ...] Optional, multiple operations of an instruction
option1 | option2 List of options; choose one.

Assembly Code Example

The following example is a code fragment that performs the filter tap update for an adaptive filter based on a least-mean-squared algorithm. N otice that the computations in the instructions are written like algebraic equations.
adapt:

```
```

```
MF=MX0 *MY1 (RND), MX0=DM(I2,M1); {MF=error*beta }
```

```
MF=MX0 *MY1 (RND), MX0=DM(I2,M1); {MF=error*beta }
MR=MX0 * MF (RND), AY0=PM(I6,M5);
MR=MX0 * MF (RND), AY0=PM(I6,M5);
DO adapt UNTIL CE;
DO adapt UNTIL CE;
    AR=MR1+AY0, MX0=DM(I2,M1), AY0=PM(I6,M7);
    AR=MR1+AY0, MX0=DM(I2,M1), AY0=PM(I6,M7);
```

 PM(I6,M6)=AR, MR=MX0 * MF (RND);
    ```
    PM(I6,M6)=AR, MR=MX0 * MF (RND);
MODIFY(I2,M3);
{Point to oldest data}
MODIFY(I6,M7); {Point to start of data}
```

| Parameter | | K Grade | | B Grade | | T Grade | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min | Max | Min | Max | Min | Max | |
| $V_{\text {D }}$ | Supply Voltage | 4.50 | 5.50 | 4.50 | 5.50 | 4.50 | 5.50 | V |
| $\mathrm{T}_{\text {AM B }}$ | Ambient O perating T emperature | 0 | +70 | -40 | +85 | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |

See "Environmental Conditions" for information on thermal specifications.

ELECTRICAL CHARACTERISTICS

| Parameter | | Test Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | Hi-L evel Input Voltage ${ }^{3,5}$ | @ $\mathrm{V}_{\text {DD }}=\max$ | 2.0 | | V |
| $\mathrm{V}_{\text {IH }}$ | Hi-Level CLKIN Voltage | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}$ | 2.2 | | V |
| $\mathrm{V}_{\text {IL }}$ | Lo-L evel Input V oltage ${ }^{1,3}$ | @ $V_{D D}=\min$ | | 0.8 | V |
| $\mathrm{V}_{\text {OH }}$ | Hi-L evel Output Voltage ${ }^{\text {2, 3, } 7}$ | @ $V_{D D}=\min , I_{O H}=-0.5 m A$
 $@ V_{D D}=m i n, I_{O H}=-100 \mu A^{8}$ | $\stackrel{2.4}{V_{D D}}-0$ | | $\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$ |
| $\mathrm{V}_{\text {OL }}$ | Lo-Level Output Voltage ${ }^{2,3,7}$ | $@ V_{D D}=\min , \mathrm{I}_{0 L}=2 \mathrm{~mA}$ | | 0.4 | V |
| $\mathrm{I}_{\text {IH }}$ | Hi -L evel Input C urrent ${ }^{1}$ | @ $V_{\text {DD }}=m a x, V_{\text {IN }}=V_{\text {DD }} \max$ | | 10 | $\mu \mathrm{A}$ |
| $I_{\text {IL }}$ | Lo-L evel Input C urrent ${ }^{1}$ | @ $V_{\text {DD }}=m a x, V_{\text {IN }}=0 V$ | | 10 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {OzH }}$ | T ristate L eakage C urrent ${ }^{4}$ | @ $V_{D D}=\max , \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}} \mathrm{max}^{6}$ | | 10 | $\mu \mathrm{A}$ |
| Iozl | T ristate L eakage C urrent ${ }^{4}$ | @ $\mathrm{V}_{\text {DD }}=\mathrm{max}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}^{6}$ | | 10 | $\mu \mathrm{A}$ |
| C_{1} | Input Pin Capacitance ${ }^{1,8,9}$ | @ $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {IN }}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ | | 8 | pF |
| C_{0} | Output Pin Capacitance ${ }^{4,8,9,10}$ | $@ \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ | | 8 | pF |

NOTES

${ }^{2}$ Output pins: $\overline{\mathrm{BG}}, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0-\mathrm{A} 13, \mathrm{CLKOUT}, \mathrm{DT} 1, \mathrm{DT} 0$ (not on ADSP-2105).
${ }^{3}$ Bidirectional pins: D0-D 23, SCLK 1, RFS1, TFS1, SCLK 0 (not on ADSP-2105), RFS0 (not on ADSP-2105), TFS0 (not on ADSP-2105).
${ }^{4}$ T ristatable pins: A0-A13, D 0-D 23, $\overline{\text { PMS }}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{DT} 1$, SCLK 1, RSF 1, TFS1, DT 0 (not on AD SP-2105), SCLK 0 (not on AD SP-2105),
RFS0 (not on ADSP-2105), TFS0 (not on ADSP-2105).
${ }^{5}$ Input-only pins: $\overline{\operatorname{RESET}}, \overline{\overline{I R Q} 2}, \overline{\mathrm{BR}}, \mathrm{M} \mathrm{M} \mathrm{AP}, \mathrm{DR1}, \mathrm{DR0} \mathrm{(not} \mathrm{on} \mathrm{ADSP-2105)}$.
${ }^{6} 0 \mathrm{~V}$ on $\overline{\mathrm{BR}}, \mathrm{CLK}$ IN Active (to force tristate condition).
${ }^{7}$ Although specified for TTL outputs, all AD SP-21xx outputs are CM OS-compatible and will drive to $V_{D D}$ and GND, assuming no dc loads.
${ }^{8} \mathrm{G}$ uaranteed but not tested.
${ }^{9}$ A pplies to PGA, PLCC, PQFP package types.
${ }^{10}$ Output pin capacitance is the capacitive load for any three-stated output pin.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage . -0.3 V to +7 V
Input Voltage -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output Voltage Swing -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating T emperature Range (Ambient) ... -55으 to $+125^{\circ} \mathrm{C}$
Storage Temperature R ange $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead T emperature (10 sec) PGA $+300^{\circ} \mathrm{C}$
Lead T emperature (5 sec) PLCC, PQFP, T QFP +280응
*Stresses greater than those listed above may cause permanent damage to the device. T hese are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADSP-21xx processors feature proprietary ESD protection circuitry to dissipate high energy electrostatic discharges (H uman Body M odel), permanent damage may occur to devices subjected to such discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. U nused devices must be stored in conductive foam or shunts, and the foam should be discharged to the destination socket before the devices are removed. Per method 3015 of M IL-ST D-883, the AD SP-21xx processors have been classified as C lass 1 devices.

SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163)
SUPPLY CURRENT \& POWER (ADSP-2101/2105/2115/2161/2163)

| Parameter | | Test Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{\text {D }}$ | Supply Current (Dynamic) ${ }^{1}$ | @ $V_{D D}=m a x, t_{C K}=40 n s^{2}$ | | 38 | mA |
| | | @ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{t}_{\mathrm{CK}}=50 \mathrm{~ns}^{2}$ | | 31 | mA |
| | | @ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{t}_{\mathrm{CK}}=72.3 \mathrm{~ns}^{2}$ | | 24 | mA |
| $I_{\text {DD }}$ | Supply Current (Idle) ${ }^{1,3}$ | @ $V_{D D}=\max , \mathrm{t}_{\mathrm{CK}}=40 \mathrm{~ns}^{4}$ | | 12 | mA |
| | | @ $V_{D D}=\max , \mathrm{t}_{C K}=50 \mathrm{~ns}$ | | 11 | mA |
| | | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{t}_{\mathrm{CK}}=72.3 \mathrm{~ns}$ | | 10 | mA |

NOTES
${ }^{1} \mathrm{C}$ urrent reflects device operating with no output loads.
${ }^{2} \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$ and 2.4 V .
${ }^{3}$ Id dle refers to AD SP-21xx state of operation during execution of IDLE instruction. Deasserted pins are driven to either $V_{\text {DD }}$ or GND.
${ }^{4}$ AD SP-2105 is not available in a 25 M Hz speed grade.
F or typical supply current (internal power dissipation) figures, see Figure 11.

VALID FOR ALL TEMPERATURE GRADES.
1 POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.
2 IDLE REFERS TO ADSP-21xx OPERATION DURING EXECUTION OF IDLE INSTRUCTION.
DEASSERTED PINS ARE DRIVEN TO EITHER $V_{D D}$ OR GND.
3 MAXIMUM POWER DISSIPATION AT $V_{D D}=5.5 \mathrm{~V}$ DURING EXECUTION OF IDLE n INSTRUCTION.
Figure 11. ADSP-2101 Power (Typical) vs. Frequency

SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163)

POWER DISSIPATION EXAMPLE

To determine total power dissipation in a specific application, the following equation should be applied for each output:

$$
C \times V_{D D}{ }^{2} \times f
$$

$C=$ load capacitance, $f=$ output switching frequency.

Example:

In an ADSP-2101 application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:
A ssumptions:

- External data memory is accessed every cycle with 50% of the address pins switching.
- External data memory writes occur every other cycle with 50% of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{t}_{\mathrm{CK}}=50 \mathrm{~ns}$.

$$
\text { Total Power Dissipation }=P_{I N T}+\left(C \times V_{D D}{ }^{2} \times f\right)
$$

$\mathrm{P}_{\mathrm{INT}}=$ internal power dissipation (from Figure 11).
($C \times V_{D D}{ }^{2} \times f$) is calculated for each output:

| Output | \# of
 Pins | $\times \mathbf{C}$ | $\times \mathbf{V}_{\mathbf{D D}} \mathbf{2}^{2}$ | $\times \mathbf{f}$ |
| :--- | :--- | :--- | :--- | :--- |
| Address, $\overline{\mathrm{DMS}}$ | 8 | $\times 10 \mathrm{pF}$ | $\times 5^{2} \mathrm{~V}$ | $\times 20 \mathrm{M} \mathrm{Hz}=40.0 \mathrm{~mW}$ |
| D ata, $\overline{\mathrm{WR}}$ | 9 | $\times 10 \mathrm{pF}$ | $\times 5^{2} \mathrm{~V}$ | $\times 10 \mathrm{M} \mathrm{Hz}=22.5 \mathrm{~mW}$ |
| $\overline{\mathrm{RD}}$ | 1 | $\times 10 \mathrm{pF}$ | $\times 5^{2} \mathrm{~V}$ | $\times 10 \mathrm{M} \mathrm{Hz}=2.5 \mathrm{~mW}$ |
| CLK OUT | 1 | $\times 10 \mathrm{pF}$ | $\times 5^{2} \mathrm{~V}$ | $\times 20 \mathrm{M} \mathrm{Hz}=5.0 \mathrm{~mW}$ |

T otal power dissipation for this example $=\mathrm{P}_{\text {INT }}+70.0 \mathrm{~mW}$.

ENVIRONMENTAL CONDITIONS

Ambient T emperature Rating:
$T_{A M B}=T_{C A S E}-\left(P D \times \theta_{C A}\right)$
$\mathrm{T}_{\text {Case }}=\mathrm{C}$ ase T emperature in ${ }^{\circ} \mathrm{C}$
PD = Power Dissipation in W
$\theta_{C A}=$ Thermal Resistance (Case-to-Ambient)
$\theta_{\mathrm{JA}}=$ Thermal Resistance (Junction-to-Ambient)
$\theta_{\mathrm{JC}}=$ Thermal Resistance (Junction-to-C ase)

| Package | $\theta_{\mathbf{J A}}$ | $\theta_{\mathbf{J C}}$ | $\theta_{\mathbf{C A}}$ |
| :--- | :--- | :--- | :--- |
| PGA | $18^{\circ} \mathrm{C} / \mathrm{W}$ | $9^{\circ} \mathrm{C} / \mathrm{W}$ | $9^{\circ} \mathrm{C} / \mathrm{W}$ |
| PLCC | $27^{\circ} \mathrm{C} / \mathrm{W}$ | $16^{\circ} \mathrm{C} / \mathrm{W}$ | $11^{\circ} \mathrm{C} / \mathrm{W}$ |
| PQFP | $60^{\circ} \mathrm{C} / \mathrm{W}$ | $18^{\circ} \mathrm{C} / \mathrm{W}$ | $42^{\circ} \mathrm{C} / \mathrm{W}$ |
| TQFP | $60^{\circ} \mathrm{C} / \mathrm{W}$ | $18^{\circ} \mathrm{C} / \mathrm{W}$ | $42^{\circ} \mathrm{C} / \mathrm{W}$ |

CAPACITIVE LOADING

Figures 12 and 13 show capacitive loading characteristics for the AD SP-2101, AD SP-2105, AD SP-2115, and ADSP-2161/2163.

Figure 12. Typical Output Rise Time vs. Load Capacitance, C_{L} (at Maximum Ambient Operating Temperature)

Figure 13. Typical Output Valid Delay or Hold vs. Load Capacitance, C_{L} (at Maximum Ambient Operating Temperature)

ADSP-2101

SPECIFICATIONS (ADSP-2101/2105/2115/2161/2163)

TEST CONDITIONS

Figure 14 shows voltage reference levels for ac measurements.

Figure 14. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time ($t_{\text {DIS }}$) is the difference of $\mathrm{t}_{\text {MEASURED }}$ and $t_{\text {Decay }}$, as shown in Figure 15. The time $t_{\text {measured }}$ is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, $t_{\text {DECAY }}$, is dependent on the capacitative load, C_{L}, and the current load, i_{L}, on the output pin. It can be approximated by the following equation:

$$
\mathrm{t}_{\mathrm{DECAY}}=\frac{\mathrm{C}_{\mathrm{L}} \times 0.5 \mathrm{~V}}{\mathrm{i}_{\mathrm{L}}}
$$

from which

$$
t_{\text {DIS }}=t_{\text {MEASURED }}-t_{\text {DECAY }}
$$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Output Enable Time

O utput pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time ($\mathrm{t}_{\mathrm{ENA}}$) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 15. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

HIGH-IMPEDANCE STATE. TEST CONDITIONS CAUSE THIS VOLTAGE LEVEL TO BE APPROXIMATELY 1.5V.

Figure 15. Output Enable/Disable

Figure 16. Equivalent Device Loading for AC M easurements (Except Output Enable/Disable)

RECOMMENDED OPERATING CONDITIONS

| | K Grade
 Parameter | | B Grade | | T Grade | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Min | Max | Min | Max | Min | Max | Unit | | |
| $V_{\text {DD }}$ | Supply Voltage | 4.50 | 5.50 | 4.50 | 5.50 | 4.50 | 5.50 | V |
| $\mathrm{~T}_{\text {AM B }} \quad$ Ambient O perating T emperature | 0 | +70 | -40 | +85 | -55 | +125 | ${ }^{\circ} \mathrm{C}$ | |

See "Environmental Conditions" for information on thermal specifications.

ELECTRICAL CHARACTERISTICS

| Parameter | | Test Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | Hi-L evel Input Voltage ${ }^{3,5}$ | @ $\mathrm{V}_{\text {DD }}=\max$ | 2.0 | | V |
| $\mathrm{V}_{\text {IH }}$ | Hi-Level CLKIN Voltage | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}$ | 2.2 | | V |
| $\mathrm{V}_{\text {IL }}$ | Lo-L evel Input Voltage ${ }^{1,3}$ | @ $V_{D D}=\min$ | | 0.8 | V |
| V_{OH} | Hi-Level Output Voltage ${ }^{2,3,7}$ | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{min}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
 @ $V_{D D}=\min , I_{O H}=-100 \mu A^{8}$ | 2.4 $V_{D D}$ | | V |
| $\mathrm{V}_{\text {OL }}$ | Lo-Level Output Voltage ${ }^{\text {2, 3,7 }}$ | $@ V_{D D}=\min , \mathrm{I}_{0 L}=2 \mathrm{~mA}$ | | 0.4 | V |
| $I_{\text {IH }}$ | Hi-L evel Input C urrent ${ }^{1}$ | @ $V_{\text {DD }}=m a x, V_{\text {IN }}=V_{\text {DD }}$ max | | 10 | $\mu \mathrm{A}$ |
| $1{ }_{\text {IL }}$ | Lo-L evel Input C urrent ${ }^{1}$ | @ $V_{\text {DD }}=m a x, V_{\text {IN }}=0 V$ | | 10 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {OzH }}$ | T ristate L eakage C urren ${ }^{4}$ | @ $V_{D D}=\max , V_{I N}=V_{D D} \mathrm{max}^{6}$ | | 10 | $\mu \mathrm{A}$ |
| Iozl | T ristate L eakage C urrent ${ }^{4}$ | @ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{V}_{I N}=0 \mathrm{~V}^{6}$ | | 10 | $\mu \mathrm{A}$ |
| C_{1} | Input Pin Capacitance ${ }^{1,8,9}$ | $@ V_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {IN }}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ | | 8 | pF |
| C_{0} | Output Pin Capacitance ${ }^{4,8,9,10}$ | $@ \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$ | | 8 | pF |

NOTES
${ }^{1}$ Input-only pins: CLKIN , $\overline{\operatorname{RESET}}, \underline{\overline{R Q} 2}, \overline{\mathrm{BR}}, \mathrm{M}$ MAP, DR1, DR0, $\overline{\text { HSEL }}, \mathrm{HSIZE}, \mathrm{BMODE}, \mathrm{HMD}, \mathrm{HMD1}, \overline{\mathrm{HRD}} / \mathrm{HRW}, \overline{\mathrm{HWR}} / \overline{\mathrm{HDS}}, \mathrm{HA} 2 / \mathrm{ALE}, \mathrm{HA} 1-0$.
${ }^{2}$ Output pins: $\overline{\mathrm{BG}}, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0-\mathrm{A} 13, \mathrm{CLK}$ OUT, DT 1, DT0, $\overline{H A C K}, ~ F L 2-0$.

${ }^{4}$ T ristatable pins: A0-A13, D0-D 23, $\overline{\text { PMS }}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{DT} 1$, SCLK1, RSF1, TFS1, DT0, SCLK 0, RFS0, TFS0, HD 0-HD 15/HAD 0-HAD 15.

${ }^{6} 0 \mathrm{~V}$ on $\overline{\mathrm{BR}}, \mathrm{CLKIN}$ Active (to force tristate condition).
${ }^{7}$ Although specified for TTL outputs, all ADSP-2111 outputs are CM OS-compatible and will drive to $V_{D D}$ and GND, assuming no dc loads.
${ }^{8}$ Guaranteed but not tested.
${ }^{9}$ Applies to ADSP-2111 PGA and PQFP packages.
${ }^{10}$ O utput pin capacitance is the capacitive load for any three-stated output pin.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

| Supply Voltage | |
| :---: | :---: |
| Input Voltage | -0.3V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| Output Voltage Swing | -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| O perating T emperature Range | mbient) ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage T emperature R ange | $-65{ }^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$ |
| Lead T emperature (10 sec) PGA | $+300^{\circ} \mathrm{C}$ |
| Lead T emperature (5 sec) PQFP | +280응 |

*Stresses greater than those listed above may cause permanent damage to the device. T hese are stress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS (ADSP-2111)

SUPPLY CURRENT \& POWER (ADSP-2111)

| Parameter | | Test Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{D D}$ | Supply Current (Dynamic) ${ }^{1}$ | @ $\mathrm{V}_{\mathrm{DD}}=\max , \mathrm{t}_{\mathrm{CK}}=50 \mathrm{~ns}^{2}$ | | 60 | mA |
| | | @ $V_{D D}=m a x, t_{C K}=60 \mathrm{~s}^{2}$ | | 52 | mA |
| | | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{t}_{\mathrm{CK}}=76.9 \mathrm{~ns}^{2}$ | | 46 | mA |
| $I_{\text {D }}$ | Supply C urrent (Idle) ${ }^{1,3}$ | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{t}_{\mathrm{CK}}=50 \mathrm{~ns}$ | | 18 | mA |
| | | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{t}_{\mathrm{CK}}=60 \mathrm{~ns}$ | | 16 | mA |
| | | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{t}_{\mathrm{CK}}=76.9 \mathrm{~ns}$ | | 14 | mA |

NOTES
${ }^{1} \mathrm{C}$ urrent reflects device operating with no output loads.
${ }^{2} V_{\text {IN }}=0.4 \mathrm{~V}$ and 2.4 V .
${ }^{3}$ Id dle refers to AD SP-21xx state of operation during execution of IDLE instruction. D easserted pins are driven to either $\mathrm{V}_{\text {DD }}$ or GND.
For typical supply current (internal power dissipation) figures, see Figure 17.

Figure 17. ADSP-2111 Power (Typical) vs. Frequency

SPECIFICATIONS (ADSP-2111)

POWER DISSIPATION EXAMPLE

To determine total power dissipation in a specific application, the following equation should be applied for each output:

$$
C \times V_{D D}{ }^{2} \times f
$$

$C=$ load capacitance, $f=$ output switching frequency.

Example:

In an AD SP-2111 application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:
A ssumptions:

- External data memory is accessed every cycle with 50% of the address pins switching.
- External data memory writes occur every other cycle with 50% of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- The application operates at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{t}_{\mathrm{CK}}=50 \mathrm{~ns}$.

$$
\text { Total Power Dissipation }=\mathrm{P}_{I N T}+\left(\mathrm{C} \times \mathrm{V}_{D D^{2}} \times \mathrm{f}\right)
$$

$\mathrm{P}_{\mathrm{INT}}=$ internal power dissipation (from Figure 17).
$\left(C \times V_{D D}{ }^{2} \times f\right)$ is calculated for each output:

| Output | \# of
 Pins | $\times \mathbf{C}$ | $\times \mathbf{V}_{\mathbf{D D}} \mathbf{2}^{\mathbf{2}}$ | $\times \mathbf{f}$ |
| :--- | :--- | :--- | :--- | :--- |
| Address, $\overline{\mathrm{DMS}}$ | 8 | $\times 10 \mathrm{pF}$ | $\times 5^{2} \mathrm{~V}$ | $\times 20 \mathrm{M} \mathrm{Hz}=40.0 \mathrm{~mW}$ |
| Data, $\overline{\mathrm{WR}}$ | 9 | $\times 10 \mathrm{pF}$ | $\times 5^{2} \mathrm{~V}$ | $\times 10 \mathrm{M} \mathrm{Hz}=22.5 \mathrm{~mW}$ |
| $\overline{\mathrm{RD}}$ | 1 | $\times 10 \mathrm{pF}$ | $\times 5^{2} \mathrm{~V}$ | $\times 10 \mathrm{M} \mathrm{Hz}=2.5 \mathrm{~mW}$ |
| CLK OUT | 1 | $\times 10 \mathrm{pF}$ | $\times 5^{2} \mathrm{~V}$ | $\times 20 \mathrm{M} \mathrm{Hz}=5.0 \mathrm{~mW}$ |

T otal power dissipation for this example $=P_{\text {INT }}+70.0 \mathrm{~mW}$.

ENVIRONMENTAL CONDITIONS

Ambient T emperature Rating:
$T_{A M B}=T_{C A S E}-\left(P D \times \theta_{C A}\right)$
$\mathrm{T}_{\text {Case }}=$ Case T emperature in ${ }^{\circ} \mathrm{C}$
PD = Power Dissipation in W
$\theta_{C A}=$ Thermal Resistance (Case-to-Ambient)
$\theta_{\mathrm{JA}}=$ Thermal Resistance (Junction-to-Ambient)
$\theta_{\mathrm{JC}}=$ Thermal Resistance (Junction-to-C ase)

| Package | $\theta_{\mathbf{J A}}$ | $\theta_{\mathbf{J C}}$ | $\theta_{\mathbf{C A}}$ |
| :--- | :--- | :--- | :--- |
| PGA | $35^{\circ} \mathrm{C} / \mathrm{W}$ | $18^{\circ} \mathrm{C} / \mathrm{W}$ | $17^{\circ} \mathrm{C} / \mathrm{W}$ |
| PQFP | $42^{\circ} \mathrm{C} / \mathrm{W}$ | $18^{\circ} \mathrm{C} / \mathrm{W}$ | $23^{\circ} \mathrm{C} / \mathrm{W}$ |

CAPACITIVE LOADING

Figures 18 and 19 show capacitive loading characteristics for the ADSP-2111.

Figure 18. Typical Output Rise Time vs. Load Capacitance, C_{L} (at Maximum Ambient Operating Temperature)

Figure 19. Typical Output Valid Delay or Hold vs. Load Capacitance, C_{L} (at Maximum Ambient Operating Temperature)

ADSP-2101

SPECIFICATIONS (ADSP-2111)

TEST CONDITIONS

Figure 20 shows voltage reference levels for ac measurements.

Figure 20. Voltage Reference Levels for AC M easurements (Except Output Enable/Disable)

Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time ($\mathrm{t}_{\mathrm{DIS}}$) is the difference of $\mathrm{t}_{\text {MEASURED }}$ and $t_{\text {DECAY }}$, as shown in Figure 21. The time $t_{\text {MEASURED }}$ is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, $t_{\text {DECAY }}$, is dependent on the capacitative load, C_{L}, and the current load, i_{L}, on the output pin. It can be approximated by the following equation:

$$
t_{\text {DECAY }}=\frac{C_{L} \times 0.5 \mathrm{~V}}{i_{L}}
$$

from which

$$
t_{\text {DIS }}=t_{\text {MEASURED }}-t_{\text {DECAY }}
$$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Output Enable Time

O utput pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time ($\mathrm{t}_{\mathrm{ENA}}$) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 21. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Figure 21. Output Enable/Disable

Figure 22. Equivalent Device Loading for AC Measurements (Except Output Enable/Disable)

RECOMMENDED OPERATING CONDITIONS

See "Environmental Conditions" for information on thermal specifications.

ELECTRICAL CHARACTERISTICS

| Parameter | | Test Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | Hi-L evel Input V oltage ${ }^{1,3}$ | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}$ | 2.0 | | V |
| $V_{\text {IL }}$ | Lo-L evel Input Voltage ${ }^{1,3}$ | @ $V_{D D}=\min$ | | 0.4 | V |
| $\mathrm{V}_{\text {OH }}$ | Hi-L evel Output Voltage ${ }^{2,3,6}$ | @ $V_{\text {DD }}=\min , \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}{ }^{6}$ | 2.4 | | V |
| $\mathrm{V}_{\text {OL }}$ | Lo-L evel O utput Voltage ${ }^{\text {2,3,6 }}$ | @ $V_{D D}=\min , \mathrm{I}_{\mathrm{LL}}=2 \mathrm{~mA}^{6}$ | | 0.4 | V |
| $I_{\text {IH }}$ | Hi -L evel Input Current ${ }^{1}$ | @ $\mathrm{V}_{\mathrm{DD}}=\mathrm{max}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}} \mathrm{max}$ | | 10 | $\mu \mathrm{A}$ |
| $I_{\text {IL }}$ | Lo-Level Input Current ${ }^{1}$ | @ $\mathrm{V}_{\text {DD }}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ | | 10 | $\mu \mathrm{A}$ |
| 1 OzH | T ristate L eakage Current ${ }^{4}$ | @ $V_{D D}=\max , \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }} \max ^{5}$ | | 10 | $\mu \mathrm{A}$ |
| Iozl | Tristate Leakage Current ${ }^{4}$ | @ $V_{\text {DD }}=\max , \mathrm{V}_{\text {IN }}=0 \mathrm{~V}^{5}$ | | 10 | $\mu \mathrm{A}$ |
| C_{1} | Input Pin Capacitance ${ }^{1,7,8}$ | $@ \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {IN }}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ | | 8 | pF |
| C_{0} | O utput Pin Capacitance ${ }^{4,7,8,9}$ | $@ \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=1.0 \mathrm{M} \mathrm{Hz}, \mathrm{T}_{\text {AMB }}=25^{\circ} \mathrm{C}$ | | 8 | pF |

NOTES

${ }^{1}$ Input-only pins: CLKIN, $\overline{\mathrm{RESET}}, \overline{\mathrm{IRQ}} 2, \overline{\mathrm{BR}}, \mathrm{MMAP}, \mathrm{DR} 1, \mathrm{DR} 0$.
${ }^{2}$ Output pins: $\overline{\mathrm{BG}}, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0-\mathrm{A} 13$, CLKOUT, DT1, DT0
${ }^{3}$ Bidirectional pins: D0-D23, SCLK1, RFS1, TFS1, SCLK0, RFS0, TFS0.
${ }^{4}$ Tristatable pins: A0-A13, D0-D23, $\overline{\text { PMS }}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{DT} 1$, SCLK1, RSF1, TFS1, DT0, SCLK $0, ~ R F S 0, ~ T F S 0 . ~$
${ }^{5} 0 \mathrm{~V}$ on $\overline{\mathrm{BR}}$, CLKIN Active (to force tristate condition).
${ }^{6}$ All ADSP-2103, ADSP-2162, and ADSP- 2164 outputs are CMOS and will drive to V_{DD} and GND with no dc loads.
${ }^{7}$ Guaranteed but not tested.
${ }^{8}$ Applies to PLCC and PQFP package types.
${ }^{9}$ Output pin capacitance is the capacitive load for any three-stated output pin.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

| Supply Voltage . - 0.3 l V to +4.5 V |
| :---: |
| Input Voltage -0.3 V to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$ |
| Output Voltage Swing -0.3 V to $\mathrm{V}_{\text {D }}+0.3 \mathrm{~V}$ |
| O perating T emperature Range (Ambient) $\ldots . .40^{\circ} \mathrm{C}$ to $+850^{\circ} \mathrm{C}$ |
| Storage Temperature Range $65{ }^{\circ} \mathrm{C}$ to $+1500^{\circ} \mathrm{C}$ |
| L ead T emperature (5 sec) PLCC , PQFP $+280{ }^{\circ} \mathrm{C}$ |
| *Stresses greater than those listed above may cause permanent damage to the device. These arestress ratings only, and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. |

SPECIFICATIONS (ADSP-2103/2162/2164)
SUPPLY CURRENT \& POWER (ADSP-2103/2162/2164)

| Parameter | Test Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| IDD Supply Current (Dynamic) ${ }^{1}$
 IDD Supply Current (Idle) ${ }^{1,3}$ | $\begin{aligned} & @ V_{D D}=\max , \mathrm{t}_{\mathrm{CK}}=72.3 \mathrm{~ns}^{2} \\ & @ \mathrm{~V}_{\mathrm{DD}}=\max , \mathrm{t}_{\mathrm{CK}}=72.3 \mathrm{~ns} \end{aligned}$ | | $\begin{aligned} & 14 \\ & 4 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |

NOTES

${ }^{1}$ Current reflects device operating with no output loads.
${ }^{2} \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$ and 2.4 V .
${ }^{3}$ Id de refers to ADSP-21xx state of operation during execution of IDLE instruction. Deasserted pins are driven to either $V_{D D}$ or GND.
For typical supply current (internal power dissipation) figures, see Figure 23.

IDLE DYNAMIC 1,2

IDD IDLE n MODES ${ }^{3}$

VALID FOR ALL TEMPERATURE GRADES.
1 POWER REFLECTS DEVICE OPERATING WITH NO OUTPUT LOADS.
2 IDLE REFERS TO ADSP-21xx OPERATION DURING EXECUTION OF IDLE INSTRUCTION.
DEASSERTED PINS ARE DRIVEN TO EITHER $V_{\text {DD }}$ OR GND.
3 MAXIMUM POWER DISSIPATION AT $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ DURING EXECUTION OF IDLE n INSTRUCTION.

Figure 23. ADSP-2103 Power (Typical) vs. Frequency

SPECIFICATIONS (ADSP-2103/2162/2164)

POWER DISSIPATION EXAMPLE

T o determine total power dissipation in a specific application, the following equation should be applied for each output:

$$
C \times V_{D D}{ }^{2} \times f
$$

$C=$ load capacitance, $f=$ output switching frequency.

Example:

In an AD SP-2103 application where external data memory is used and no other outputs are active, power dissipation is calculated as follows:
A ssumptions:

- External data memory is accessed every cycle with 50% of the address pins switching.
- External data memory writes occur every other cycle with 50% of the data pins switching.
- Each address and data pin has a 10 pF total load at the pin.
- T he application operates at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and $\mathrm{t}_{\mathrm{CK}}=100 \mathrm{~ns}$.

$$
\text { Total Power D issipation }=P_{I N T}+\left(C \times V_{D D}^{2} \times f\right)
$$

$P_{I N T T^{\prime}}=$ internal power dissipation (from Figure 23).
($C \times V_{D D}{ }^{2} \times f$) is calculated for each output:

| Output | \# of
 Pins | $\times \mathbf{C}$ | $\times \mathbf{V}_{\text {DD }}{ }^{\mathbf{2}}$ | $\times \mathbf{f}$ |
| :--- | :--- | :--- | :--- | :--- |
| Address, $\overline{\mathrm{DMS}}$ | 8 | $\times 10 \mathrm{pF}$ | $\times 3.3^{2} \mathrm{~V}$ | $\times 10 \mathrm{M} \mathrm{Hz}=8.71 \mathrm{~mW}$ |
| D ata, $\overline{\mathrm{WR}}$ | 9 | $\times 10 \mathrm{pF}$ | $\times 3.3^{2} \mathrm{~V}$ | $\times 5 \mathrm{M} \mathrm{Hz}=4.90 \mathrm{~mW}$ |
| $\overline{\mathrm{RD}}$ | 1 | $\times 10 \mathrm{pF}$ | $\times 3.3^{2} \mathrm{~V}$ | $\times 5 \mathrm{M} \mathrm{Hz}=0.55 \mathrm{~mW}$ |
| CLK OUT | 1 | $\times 10 \mathrm{pF}$ | $\times 3.3^{2} \mathrm{~V}$ | $\times 10 \mathrm{M} \mathrm{Hz}=1.09 \mathrm{~mW}$ |

T otal power dissipation for this example $=P_{\text {INT }}+15.25 \mathrm{~mW}$.

E NVIRONME NTAL CONDITIONS

Ambient T emperature Rating:

$$
\begin{aligned}
& \mathrm{T}_{A M B}=T_{C A S E}-\left(P D \times \theta_{C A}\right) \\
& T_{C A S E}=C \text { ase } T \text { emperature in }{ }^{\circ} \mathrm{C} \\
& P D=\text { Power D issipation in } W \\
& \theta_{C A}=T_{\text {hermal }} \text { Resistance (C ase-to-Ambient) } \\
& \theta_{J A}=\text { Thermal Resistance (Junction-to-Ambient) } \\
& \theta_{J C}=\text { Thermal Resistance (Junction-to-C ase) }
\end{aligned}
$$

| Package | $\theta_{\mathbf{J A}}$ | $\theta_{\mathbf{J C}}$ | $\theta_{\mathbf{C A}}$ |
| :--- | :--- | :--- | :--- |
| PGA | $27^{\circ} \mathrm{C} / \mathrm{W}$ | $16^{\circ} \mathrm{C} / \mathrm{W}$ | $11^{\circ} \mathrm{C} / \mathrm{W}$ |
| PQFP | $60^{\circ} \mathrm{C} / \mathrm{W}$ | $18^{\circ} \mathrm{C} / \mathrm{W}$ | $42^{\circ} \mathrm{C} / \mathrm{W}$ |

CAPACITIVE LOADING

Figures 24 and 25 show capacitive loading characteristics for the AD SP-2103, AD SP-2162, and ADSP-2164.

Figure 24. Typical Output Rise Time vs. Load Capacitance, C_{L} (at Maximum Ambient Operating Temperature)

Figure 25. Typical Output Valid Delay or Hold vs. Load Capacitance, C_{L} (at Maximum Ambient Operating Temperature)

ADSP-2101

SPECIFICATIONS (ADSP-2103/2162/2164)

TEST CONDITIONS

Figure 26 shows voltage reference levels for ac measurements.

Figure 26. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Disable Time

Output pins are considered to be disabled when they have stopped driving and started a transition from the measured output high or low voltage to a high impedance state. The output disable time ($\mathrm{t}_{\text {DIS }}$) is the difference of $\mathrm{t}_{\text {MEASURED }}$ and $t_{\text {DECAY }}$, as shown in Figure 27. The time $t_{\text {measured }}$ is the interval from when a reference signal reaches a high or low voltage level to when the output voltages have changed by 0.5 V from the measured output high or low voltage.

The decay time, $t_{\text {DECAY }}$, is dependent on the capacitative load, C_{L}, and the current load, i_{L}, on the output pin. It can be approximated by the following equation:

$$
t_{\text {DECAY }}=\frac{C_{L} \times 0.5 \mathrm{~V}}{i_{L}}
$$

from which

$$
\mathrm{t}_{\text {DIS }}=\mathrm{t}_{\text {MEASURED }}-\mathrm{t}_{\text {DECAY }}
$$

is calculated. If multiple pins (such as the data bus) are disabled, the measurement value is that of the last pin to stop driving.

Output Enable Time

O utput pins are considered to be enabled when they have made a transition from a high-impedance state to when they start driving. The output enable time ($\mathrm{t}_{\text {ENA }}$) is the interval from when a reference signal reaches a high or low voltage level to when the output has reached a specified high or low trip point, as shown in Figure 27. If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Figure 27. Output Enable/Disable

Figure 28. Equivalent Device Loading for AC Measurements (Except Output Enable/Disable)

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)

GENERAL NOTES

U se the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. C onsequently, you cannot meaningfully add parameters to derive longer times.

TIMING NOTES

Switching characteristics specify how the processor changes its signals. Y ou have no control over this timing-circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. Y ou can also use
switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.
Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

MEMORY REQUIREMENTS

The table below shows common memory device specifications and the corresponding ADSP-21xx timing parameters, for your convenience.

| Memory Device
 Specification | ADSP-21xx
 Timing
 Parameter | Timing Parameter Definition |
| :---: | :---: | :---: |
| Address Setup to Write Start Address Setup to Write End Address Hold Time Data Setup Time Data Hold Time $\overline{\mathrm{OE}}$ to Data Valid Address Access Time | $\mathrm{t}_{\text {ASW }}$
 $t_{\text {Aw }}$
 $t_{\text {wra }}$
 $t_{\text {DW }}$
 t_{DH}
 $\mathrm{t}_{\mathrm{RDD}}$
 t_{AA} | A0-A13, $\overline{\mathrm{DMS}}, \overline{\text { PMS }}$ Setup before $\overline{\mathrm{WR}}$ Low A0-A13, DMS, $\overline{\text { PMS }}$ Setup before WR Deasserted A0-A13, $\overline{\text { DMS }}, \overline{\text { PMS }}$ Hold after WR Deasserted Data Setup before WR High Data Hold after WR High $\overline{\mathrm{RD}}$ Low to Data Valid A0-A13, $\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}$ to Data Valid |

ADSP-2101

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)

CLOCK SIGNALS \& RESET

| Parameter | 13 MHz | | 13.824 MHz | | 16.6 MHz | | 20 MHz | | 25 MHz | | Frequency Dependency | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Min | Max | |
| Timing Requirement: | | | | | | | | | | | | | |
| $\mathrm{t}_{\mathrm{CK}} \quad$ CLKIN Period | 76.9 | 150 | 72.3 | 150 | 60 | 150 | 50 | 150 | | 150 | | | ns |
| $\mathrm{t}_{\text {CKL }} \quad$ CLKIN Width Low | 20 | | 20 | | 20 | | 20 | | 15 | | 20 | | ns |
| $\mathrm{t}_{\text {CKH }} \quad$ CLKIN Width High | 20 | | 20 | | 20 | | 20 | | 15 | | 20 | | ns |
| $t_{\text {RSP }}$ RESET Width Low | 384.5 | | 361.5 | | 300 | | 250 | | 200 | | $5 t_{C K}{ }^{1}$ | | ns |
| Switching C haracteristic: | | | | | | | | | | | | | |
| $\mathrm{t}_{\text {cPL }}$ CLKOUT Width Low | 28.5 | | 26.2 | | 20 | | 15 | | 10 | | $0.5 \mathrm{t}_{\mathrm{ck}}$ | | ns |
| $\mathrm{t}_{\text {CPH }} \quad$ CLKOUT Width High | 28.5 | | 26.2 | | 20 | | 15 | | 10 | | $0.5 \mathrm{t}_{\mathrm{CK}}$ | | ns |
| $\begin{array}{ll}\mathrm{t}_{\mathrm{CKOH}} & \text { CLKIN High to CLKOUT } \\ & \text { High }\end{array}$ | | 20 | | 20 | 0 | 20 | 0 | 20 | | | | | ns |

NOTES

${ }^{1}$ Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles, assuming stable CLKIN (not including crystal oscillator startup time).

Figure 29. Clock Signals

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)

INTERRUPTS \& FLAGS

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13 MHz | | |
| Parameter | | |

NOTES

${ }^{1} \overline{\mathrm{IRQx}}=\overline{\mathrm{IRQ}} 0, \overline{\mathrm{IRQ} 1}$, and $\overline{\mathrm{IRQ} 2}$.
${ }^{2}$ If $\overline{\text { IRQx }}$ and FI inputs meet $\mathrm{t}_{\mathrm{IFS}}$ and $\mathrm{t}_{\mathrm{IFH}}$ setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the following cycle. (Refer to the "Interrupt Controller" section in Chapter 3, Program Control, of the ADSP-2100 Family U ser's M anual for further information on interrupt servicing.)
${ }^{3}$ Edge-sensitive interrupts require pulse widths greater than 10 ns . Level-sensitive interrupts must be held low until serviced.
${ }^{4} \mathrm{t}_{\mathrm{IFS}}(\mathrm{min})=0.25 \mathrm{t}_{\mathrm{CK}}+20 \mathrm{~ns}$ for ADSP-2101TG-50, ADSP-2101TG/883B-50, ADSP-2111TG-52, and ADSP-2111TG/883B-52 (Extended Temperature Range devices).
${ }^{5} \mathrm{t}_{\mathrm{FOH}}(\mathrm{min})=-5 \mathrm{~ns}$ for ADSP-2111TG-52 and ADSP-2111TG/883B-52 (Extended Temperature Range devices).

Figure 30. Interrupts \& Flags

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)
BUS REQUEST/GRANT

| Parameter | $\begin{array}{\|l\|} \hline 13 \text { MHz } \\ \text { Min Max } \end{array}$ | $\begin{aligned} & \text { 13.824 MHz } \\ & \text { Min Max } \end{aligned}$ | $\begin{aligned} & \text { 16.6 MHz } \\ & \text { Min Max } \end{aligned}$ | $\begin{array}{\|l\|} \hline 20 \mathrm{MHz} \\ \text { Min Max } \end{array}$ | $\begin{array}{\|l\|} \hline 25 \mathrm{MHz} \\ \text { Min Max } \end{array}$ | Frequency
 Dependency
 Min
 Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Timing Requirement: | | | | | | | |
| $\mathrm{t}_{\mathrm{BH}} \quad \overline{\mathrm{BR}}$ Hold after CLKOUT High ${ }^{1}$ | 24.2 | 23.1 | 20 | 17.5 | 15 | $0.25 \mathrm{t}_{\mathrm{CK}}+5$ | ns |
| $\mathrm{t}_{\mathrm{BS}} \quad \overline{\mathrm{BR}}$ Setup before CLKOUT Low ${ }^{1}$ | 39.2 | 38.1 | 35 | 32.5 | 30 | $0.25 \mathrm{t}_{\mathrm{CK}}+20$ | ns |
| Switching C haracteristic: | | | | | | | |
| t_{SD} CLKOUT High to $\overline{\mathrm{DMS}}$, | 39.2 | 38.1 | 35 | 32.5 | 30 | $0.25 \mathrm{t}_{\mathrm{CK}}+20$ | ns |
| $\overline{\text { PMS }}$, $\overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Disable | | | | | | | |
| $\mathrm{t}_{\text {SDB }} \overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ | 0 | 0 | 0 | 0 | 0 | | ns |
| Disable to $\overline{\mathrm{BG}}$ Low | | | | | | | |
| $\mathrm{t}_{\mathrm{SE}} \overline{\mathrm{BG}}$ High to $\overline{\mathrm{DMS}}, \overline{\text { PMS }}$, | 0 | 0 | 0 | 0 | 0 | | ns |
| $\overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Enable | | | | | | | |
| $\mathrm{t}_{\text {SEC }} \overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ | 9.2 | 8.1 | 5 | 2.5 | 1.5^{2} | $0.25 \mathrm{t}_{\mathrm{CK}}-10^{2}$ | ns |
| Enable to CLKOUT High | | | | | | | |

NOTES

${ }^{1}$ If $\overline{\mathrm{BR}}$ meets the t_{BS} and t_{BH} setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle. $\overline{\mathrm{BR}}$ requires a pulse width greater than 10 ns .
${ }^{2}$ For 25 MHz only the minimum frequency dependency formula for $\mathrm{t}_{\mathrm{SEC}}=\left(0.25 \mathrm{t}_{\mathrm{CK}}-8.5\right)$.
Section 10.2.4, "Bus Request/Grant," on page 212 of the ADSP-2100 Family U ser's M anual (1st Edition, 1993) states that "When $\overline{\mathrm{BR}}$ is recognized, the processor responds immediately by asserting $\overline{\mathrm{BG}}$ during the same cycle." This is incorrect for the current versions of all ADSP-21xx processors: $\overline{\mathrm{BG}}$ is asserted in the cycle after $\overline{\mathrm{BR}}$ is recognized. No external synchronization circuit is needed when $\overline{\mathrm{BR}}$ is generated as an asynchronous signal.

Figure 31. Bus Request/Grant

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)

MEMORY READ

| Parameter | 13 MHz | | 13.824 MHz | | 16.67 MHz | | 20 MHz | | 25 MHz | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Min | Max | |
| Timing R equirement: | | | | | | | | | | | |
| $t_{\text {RDD }} \overline{\mathrm{RD}}$ Low to Data Valid | | 23.5 | | 23.2 | | 17 | | 12 | | 7 | ns |
| $\mathrm{t}_{\mathrm{AA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}$ to Data Valid | | 37.7 | | 36.2 | | 27 | | 19.5 | | 12 | ns |
| $\mathrm{t}_{\mathrm{RDH}}$ Data Hold from $\overline{\mathrm{RD}}$ High | 0 | | 0 | | 0 | | 0 | | 0 | | ns |
| Switching C haracteristic: | | | | | | | | | | | |
| $\mathrm{t}_{\mathrm{RP}} \quad \overline{\mathrm{RD}}$ Pulse Width | 33.5 | | 28.2 | | 22 | | 17 | | 12 | | ns |
| $\mathrm{t}_{\mathrm{CRD}}$ CLKOUT High to $\overline{\mathrm{RD}}$ Low | 14.2 | 29.2 | 13.1 | 28.1 | 10 | 25 | 7.5 | 22.5 | | 20 | ns |
| $\mathrm{t}_{\mathrm{ASR}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}$ Setup before $\overline{\mathrm{RD}}$ Low | 9.2 | | 8.1 | | 5 | | 2.5 | | $1.5{ }^{1}$ | | ns |
| $t_{\mathrm{RDA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}$ Hold after $\overline{\mathrm{RD}}$ Deasserted | 10.2 | | 9.1 | | | | 3.5 | | 1 | | ns |
| $\mathrm{t}_{\text {RWR }} \overline{\mathrm{RD}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low | 33.5 | | 31.2 | | 25 | | 20 | | 15 | | ns |

| Parameter | Frequency D (CLKIN ≤ 25 Min | Max | Unit |
| :---: | :---: | :---: | :---: |
| T iming R equirement: | | | |
| $\mathrm{t}_{\mathrm{RDD}} \overline{\mathrm{RD}}$ Low to Data Valid | | $0.5 \mathrm{t}_{\mathrm{CK}}-13+\mathrm{w}$ | ns |
| $\mathrm{t}_{\mathrm{AA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}$ to Data Valid | | $0.75 \mathrm{t}_{\mathrm{CK}}-18+\mathrm{w}$ | ns |
| $\mathrm{t}_{\text {RDH }}$ Data Hold from RD High | | | |
| Switching C haracteristic: | | | |
| $\mathrm{t}_{\mathrm{RP}} \quad \overline{\mathrm{RD}}$ Pulse Width | $0.5 \mathrm{t}_{\mathrm{CK}}-8+\mathrm{w}$ | | ns |
| $\mathrm{t}_{\text {CRD }}$ CLKOUT High to $\overline{\mathrm{RD}}$ Low | $0.25 \mathrm{t}_{\mathrm{CK}}-5$ | $0.25 \mathrm{t}_{\mathrm{CK}}+10$ | ns |
| $\mathrm{t}_{\text {ASR }} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}$ Setup b | | | |
| $\overline{\mathrm{RD}}$ Low | $0.25 \mathrm{t}_{\mathrm{CK}}-10^{1}$ | | ns |
| $\mathrm{t}_{\mathrm{RDA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}$ Hold after $\overline{\mathrm{RD}}$ | | | |
| Deasserted | $0.25 \mathrm{t}_{\mathrm{CK}}-9$ | | ns |
| $\mathrm{t}_{\text {RWR }}$ RD High to RD or WR Low | $0.5 \mathrm{t}_{\mathrm{CK}}-5$ | | ns |

NOTES
${ }^{1} \mathrm{~F}$ or 25 M Hz only minimum frequency dependency formula for $\mathrm{t}_{\mathrm{ASR}}=\left(0.25 \mathrm{t}_{\mathrm{CK}}-8.5\right)$.
$w=$ wait states $\times \mathrm{t}_{\mathrm{c}}$.

Figure 32. Memory Read

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)
MEMORY WRITE

| Parameter | 13 MHz | | 13.824 MHz | | 16.7 MHz | | 20 MHz | | 25 MHz | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Switching C haracteristic: | | | | | | | | | | | |
| $\mathrm{t}_{\text {DW }} \quad$ Data Setup before $\overline{\mathrm{WR}}$ High | 25.5 | | 23.2 | | 17 | | 12 | | 7 | | ns |
| $t_{\text {DH }} \quad$ Data Hold after WR High | 9.2 | | 8.1 | | 5 | | 2.5 | | 0 | | ns |
| t_{WP} - WR Pulse Width | 30.5 | | 28.2 | | 22 | | 17 | | 12 | | ns |
| $\mathrm{t}_{\text {WDe }}$ WR Low to Data Enabled | 0 | | 0 | | 0 | | 0 | | 0 | | ns |
| $\mathrm{t}_{\text {ASw }} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}$ Setup before WR Low | 9.2 | | 8.1 | | 5 | | 2.5 | | 1.5^{1} | | ns |
| $\mathrm{t}_{\mathrm{DDR}} \quad$ Data Disable before $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ Low | 9.2 | | 8.1 | | 5 | | 2.5 | | 1.5^{1} | | ns |
| $\mathrm{t}_{\text {CWR }}$ CLKOUT High to WR Low | 14.2 | 29.2 | 13.1 | 28.1 | 10 | 25 | 7.5 | 22.5 | | 20 | ns |
| $\mathrm{t}_{\mathrm{AW}} \quad \begin{aligned} & \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{DMS}} \\ & \text { Deasserted }\end{aligned}, \overline{\mathrm{PMS}}$, Setup before $\overline{\mathrm{WR}}$ | 35.7 | | 32.2 | | 23 | | 15.5 | | | | ns |
| twra \quad A0-A13, $\overline{\text { DMS }}, \overline{\text { PMS }}$ Hold after $\overline{\mathrm{WR}}$ Deasserted | 10.2 | | 9.1 | | 6 | | | | | | ns |
| $\mathrm{t}_{\text {WWFR }} \overline{\mathrm{WR}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low | 33.5 | | 31.2 | | | | 20 | | 15 | | ns |

| Parameter | Frequency Dep (CLKIN ≤ 25 MH Min | $\begin{aligned} & \text { ncy } \\ & \text { Max } \end{aligned}$ | Unit |
| :---: | :---: | :---: | :---: |
| Switching Characteristic: | | | |
| $\mathrm{t}_{\mathrm{DW}} \quad$ Data Setup before $\overline{\mathrm{WR}}$ High | $0.5 \mathrm{t}_{\mathrm{CK}}-13+\mathrm{w}$ | | ns |
| $\mathrm{t}_{\mathrm{DH}} \quad$ Data Hold after $\overline{\mathrm{WR}}$ High | $0.25 \mathrm{t}_{\mathrm{CK}}-10$ | | ns |
| $\mathrm{t}_{\mathrm{WP}} \quad \overline{\mathrm{WR}}$ Pulse Width | $0.5 \mathrm{t}_{\mathrm{CK}}-8+\mathrm{w}$ | | ns |
| $t_{\text {wide }}$ WR Low to Data Enabled | | | |
| $\mathrm{t}_{\text {ASw }}$ A0-A13, $\overline{\mathrm{DMS}}$, $\overline{\text { PMS }}$ Setup before $\overline{\mathrm{WR}}$ Low | $0.25 \mathrm{t}_{\mathrm{CK}}-10^{1}$ | | ns |
| $\mathrm{t}_{\mathrm{DDR}} \quad$ Data Disable before $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ Low | $0.25 \mathrm{t}_{\mathrm{CK}}-10^{1}$ | | ns |
| $\mathrm{t}_{\text {cwr }}$ CLKOUT High to $\overline{\mathrm{WR}}$ Low | $0.25 \mathrm{t}_{\mathrm{CK}}-5$ | $0.25 \mathrm{t}_{\mathrm{CK}}+10$ | ns |
| $\begin{array}{ll}\mathrm{t}_{\mathrm{AW}} & \text { A0-A13, } \overline{\mathrm{DMS}}, \overline{\mathrm{PMS}} \text {, Setup before } \overline{\mathrm{WR}} \\ \\ \text { Deasserted }\end{array}$ | $0.75 \mathrm{t}_{\mathrm{CK}}-22+\mathrm{w}$ | | ns |
| $\mathrm{t}_{\mathrm{WRRA}} \mathrm{A} 0-\mathrm{Al3}, \overline{\mathrm{DMS}}, \overline{\text { PMS }}$ Hold after $\overline{\mathrm{WR}}$ | | | |
| Deasserted | $0.25 \mathrm{t}_{\mathrm{CK}}-9$ | | ns |
| $\mathrm{t}_{\text {wwr }} \overline{\mathrm{WR}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low | $0.5 \mathrm{t}_{\mathrm{CK}}-5$ | | ns |

NOTES

${ }^{1}$ For 25 M Hz only the minimum frequency dependency formula for $t_{A S W}$ and $t_{D D R}=\left(0.25 t_{C K}-8.5\right)$.
$w=$ wait states $\times t_{C K}$.

Figure 33. Memory Write

TIMING PARAMETERS (ADSP-2101/2105/2111/2115/2161/2163)

SERIAL PORTS

| Parameter | $\begin{aligned} & \text { 12.5 MHz } \\ & \text { Min Max } \end{aligned}$ | $\begin{aligned} & \text { 13.0 MHz } \\ & \text { Min Max } \end{aligned}$ | 13.824 MHz*
 Min Max | Frequency Dependency
 Min Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Timing R equirement: | | | | | |
| $\mathrm{t}_{\text {sck }}$ SCLK Period | 80 | 76.9 | 72.3 | | ns |
| $\mathrm{t}_{\text {scs }}$ DR/TFS/RFS Setup before SCLK Low | 8 | 8 | 8 | | ns |
| $\mathrm{t}_{\text {SCH }} \quad \mathrm{DR} / \mathrm{T} F$ S/RFS H old after SCLK Low | 10 | 10 | 10 | | ns |
| $\mathrm{t}_{\text {SCP }} \quad$ SCLK ${ }_{\text {IN }}$ Width | 30 | 28 | 28 | | ns |
| Switching Characteristic: | | | | | |
| $\mathrm{t}_{\text {Cc }} \quad$ CLKOUT High to SCLK ${ }_{\text {out }}$ | $20 \quad 35$ | 19.234 .2 | 18.133 .1 | $0.25 \mathrm{t}_{\mathrm{CK}} \quad 0.25 \mathrm{t}_{\mathrm{CK}}+15 \mathrm{~ns}$ | |
| $\mathrm{t}_{\text {SCDE }}$ SCLK High to DT Enable | 0 | 0 | 0 | | ns |
| $\mathrm{t}_{\text {SCDV }}$ SCLK High to DT Valid | 20 | 20 | 20 | | ns |
| $t_{\text {RH }} \quad$ TFS/RFS ${ }_{\text {OUT }}$ H old after SCLK High | 0 | 0 | 0 | | ns |
| $t_{\text {RD }} \quad$ TFS/RFS ${ }_{\text {Out }}$ D elay from SCLK High | 20 | 20 | 20 | | ns |
| $\mathrm{t}_{\text {SCDH }}$ DT H old after SCLK High | 0 | 0 | 0 | | ns |
| $\mathrm{t}_{\text {TDE }}$ TFS (AIt) to DT Enable | 0 | 0 | | | ns |
| $\mathrm{t}_{\text {TDV }}$ TFS (AIt) to DT Valid | 18 | 18 | 18 | | ns |
| $\mathrm{t}_{\text {SCDD }}$ SCLK High to DT Disable | 25 | 25 | 25 | | ns |
| $\mathrm{t}_{\mathrm{RDV}}$ RFS (M ultichannel, F rame D elay Zero) to DT Valid | 20 | | 20 | | ns |

*M aximum serial port operating frequency is 13.824 M Hz for all processor speed grades except the $12.5 \mathrm{M} \mathrm{Hz} \mathrm{ADSP-2101} \mathrm{and} \mathrm{13.0} \mathrm{M} \mathrm{Hz} \mathrm{AD} \mathrm{SP-2111}$.

Figure 34. Serial Ports

ADSP-2101
TIMING PARAMETERS (ADSP-2111)
HOST INTERFACE PORT
Separate Data \& Address (HMD1 = 0)
Read Strobe \& Write Strobe (HMDO = 0)

| Parameter | 13.0 MHz | | 16.67 MHz | | $20 \mathrm{MHz}$ | N o F requency D ependency | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Timing R equirement: | | | | | | | |
| $\mathrm{t}_{\text {HSU }}$ HA2-0 Setup before Start of Write or Read ${ }^{1,2}$ | 8 | | 8 | | 8 | | ns |
| $\mathrm{t}_{\text {HDSU }}$ Data Setup before End of Write ${ }^{3}$ | 8 | | 8 | | 8 | | ns |
| $\mathrm{t}_{\text {HWD }}$ Data Hold after End of Write ${ }^{3}$ | 3 | | 3 | | 3 | | ns |
| t_{HH} HA2-0 Hold after End of Write or Read ${ }^{3,4}$ | 3 | | 3 | | 3 | | ns |
| $\mathrm{t}_{\text {HRWP }}$ Read or Write Pulse Width ${ }^{5}$ | 30 | | 30 | | 30 | | ns |
| Switching Characteristic: | | | | | | | |
| $\mathrm{t}_{\text {HSHK }}$ HACK Low after Start of Write or Read ${ }^{1,2}$ | 0 | 20 | 0 | 20 | $0 \quad 20$ | | ns |
| $\mathrm{t}_{\text {HKH }}$ HACK Hold after End of Write or Read ${ }^{3,4}$ | 0 | 20 | 0 | 20 | 020 | | ns |
| $\mathrm{t}_{\text {HDE }}$ Data Enabled after Start of Read ${ }^{2}$ | 0 | | 0 | | 0 | | ns |
| $\mathrm{t}_{\text {HDD }}$ Data Valid after Start of Read ${ }^{2}$ | | 23 | | | 23 | | ns |
| $\mathrm{t}_{\text {HRDH }}$ Data Hold after End of Read ${ }^{4}$ | 0 | | | | | | ns |
| $\mathrm{t}_{\text {HRDD }}$ Data Disabled after End of Read ${ }^{4}$ | | 10 | | 10 | 10 | | ns |

NOTES

${ }^{1}$ Start of Write $=\overline{\text { HWR }}$ Low and $\overline{\text { HSEL }}$ Low.
${ }^{2}$ Start of Read $=\overline{\text { HRD }}$ Low and $\overline{\text { HSEL }}$ Low.
${ }^{3}$ End of Write $=\overline{\text { HWR }}$ High or HSEL High.
${ }^{4}$ End of Read = HRD High or HSEL High.
${ }^{5}$ Read Pulse Width $=\overline{\text { HRD }}$ Low and $\overline{\text { HSEL }}$ Low, Write Pulse Width $=\overline{\text { HWR }}$ Low and $\overline{\overline{H S E L}}$ Low.

Figure 35. Host Interface Port (HMD1 $=0, H M D O=0$)

TIMING PARAMETERS (ADSP-2111)
HOST INTERFACE PORT
Separate Data \& Address (HMD1 = 0)
Read/Write Strobe \& Data Strobe (HMD0 = 1)

| Parameter | 13.0 MHz | | 16.67 MHz | | $20 \mathrm{MHz}$ | No F requency D ependency | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Timing R equirement: | | | | | | | |
| $\mathrm{t}_{\text {HSU }}$ HA2-0, HRW Setup before Start of Write or Read ${ }^{1}$ | 8 | | 8 | | 8 | | ns |
| $\mathrm{t}_{\text {HDSU }}$ Data Setup before End of Write ${ }^{2}$ | 8 | | 8 | | 8 | | ns |
| $\mathrm{t}_{\text {HWD }}$ Data Hold after End of Write ${ }^{2}$ | 3 | | 3 | | 3 | | ns |
| $\mathrm{t}_{\text {HH }}$ HA2-0, HRW Hold after End of Write or Read ${ }^{2}$ | 3 | | 3 | | 3 | | ns |
| $\mathrm{t}_{\text {HRWP }}$ Read or Write Pulse Width ${ }^{3}$ | 30 | | 30 | | | | ns |
| Switching C haracteristic: | | | | | | | |
| $\mathrm{t}_{\text {HSHK }}$ HACK Low after Start of Write or Read ${ }^{1}$ | 0 | 20 | 0 | 20 | $0 \quad 20$ | | ns |
| $\mathrm{t}_{\mathrm{HKH}}$ HACK Hold after End of Write or Read ${ }^{2}$ | | 20 | | 20 | | | ns |
| $\mathrm{t}_{\text {HDE }}$ Data Enabled after Start of Read ${ }^{1}$ | 0 | | 0 | | 0 | | ns |
| $\mathrm{t}_{\text {HDD }} \quad$ Data Valid after Start of Read ${ }^{1}$ | | 23 | | | 23 | | ns |
| $\mathrm{t}_{\text {HRDH }}$ Data Hold after End of Read ${ }^{2}$ | 0 | | | | , | | ns |
| $\mathrm{t}_{\text {HRDD }}$ Data Disabled after End of Read ${ }^{2}$ | | 10 | | 10 | 10 | | ns |

NOTES

${ }^{1}$ Start of Write or Read $=\overline{\text { HDS }}$ Low and $\overline{\text { HSEL }}$ Low.
${ }^{2}$ End of Write or Read $=\overline{\text { HDS }}$ High or $\overline{\text { HSEL }}$ High.
${ }^{3}$ Read or Write Pulse Width $=\overline{\text { HDS }}$ Low and $\overline{\text { HSEL }}$ Low.

Figure 36. Host Interface Port (HMD1 =0, HMDO =1)

TIMING PARAMETERS (ADSP-2111)
HOST INTERFACE PORT
Multiplexed Data \& Address (HMD1 = 1)
Read Strobe \& Write Strobe (HMD0 = 0)

| Parameter | 13.0 MHz | | 16.67 MHz | | 20 MHz | | No F requency D ependency | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Timing R equirement: | | | | | | | | |
| $\mathrm{t}_{\text {HaLP }}$ ALE Pulse Width | 15 | | 15 | | 15 | | | ns |
| $\mathrm{t}_{\text {HASU }}$ HAD15-0 Address Setup before ALE Low | 5 | | 5 | | 5 | | | ns |
| $\mathrm{t}_{\text {HAH }}$ HAD15-0 Address Hold after ALE Low | 2 | | 2 | | | | | ns |
| $\mathrm{t}_{\text {HALS }}$ Start of Write or Read after ALE Low ${ }^{1,2}$ | 15 | | 15 | | 15 | | | ns |
| $\mathrm{t}_{\text {HDSU }}$ HAD15-0 Data Setup before End of Write ${ }^{3}$ | 8 | | 8 | | 8 | | | ns |
| $\mathrm{t}_{\text {HWDH }}$ HAD15-0 Data Hold after End of Write ${ }^{3}$ | 3 | | 3 | | | | | ns |
| $\mathrm{t}_{\text {HRWP }}$ Read or Write Pulse Width ${ }^{5}$ | 30 | | 30 | | | | | ns |
| Switching C haracteristic: | | | | | | | | |
| $\mathrm{t}_{\text {HSHK }}$ HACK Low after Start of Write or Read ${ }^{1,2}$ | 0 | 20 | | | | | | ns |
| $\mathrm{t}_{\text {HKн }}$ HACK Hold after End of Write or Read ${ }^{3,4}$ | 0 | 20 | 0 | | | 20 | | ns |
| $\mathrm{t}_{\text {HDE }}$ HAD15-0 Data Enabled after Start of Read ${ }^{2}$ | 0 | | | | | | | ns |
| $\mathrm{t}_{\mathrm{HDD}}$ HAD15-0 Data Valid after Start of Read ${ }^{2}$ | | 23 | | | | | | ns |
| $\mathrm{t}_{\text {HRDH }}$ HAD15-0 Data Hold after End of Read ${ }^{4}$ | 0 | | | | 0 | | | ns |
| $\mathrm{t}_{\text {HRDD }}$ HAD15-0 Data Disabled after End of Read ${ }^{4}$ | | 10 | | 10 | | 10 | | ns |

NOTES

${ }^{1}$ Start of Write $=\overline{\text { HWR }}$ Low and MSEL Low.
${ }^{2}$ Start of Read $=\overline{\text { HRD }}$ Low and $\overline{\text { HSEL }}$ Low.
${ }^{3}$ End of Write $=\overline{\text { HWR }}$ High or HSEL High.
${ }^{4}$ End of Read $=\overline{\text { HRD }}$ High or HSEL High.
${ }^{5}$ Read Pulse Width $=\overline{\text { HRD }}$ Low and $\overline{\text { HSEL }}$ Low, Write Pulse Width $=\overline{\text { HWR }}$ Low and $\overline{\text { HSEL }}$ Low.

Figure 37. Host Interface Port (HMD1 =1, HMDO =0)

TIMING PARAMETERS (ADSP-2111)
HOST INTERFACE PORT
Multiplexed Data \& Address (HMD $1=1$)
Read/Write Strobe \& Data Strobe (HMD0 = 1)

| Parameter | $\begin{aligned} & 13.01 \\ & \text { Min } \end{aligned}$ | MHz
 Max | $\begin{aligned} & \text { 16.67 MHz } \\ & \text { Min Max } \end{aligned}$ | 20 MHz
 Min Max | N o F requency D ependency | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Timing R equirement: | | | | | | |
| $\mathrm{t}_{\text {HALP }}$ ALE Pulse Width | 15 | | 15 | 15 | | ns |
| $\mathrm{t}_{\text {HASU }}$ HAD15-0 Address Setup before ALE Low | 5 | | 5 | 5 | | ns |
| $\mathrm{t}_{\text {HAH }}$ HAD15-0 Address Hold after ALE Low | 2 | | 2 | 2 | | ns |
| $\mathrm{t}_{\text {HALS }}$ Start of Write or Read after ALE Low ${ }^{1}$ | 15 | | 15 | 15 | | ns |
| $\mathrm{t}_{\text {HSU }}$ HRW Setup before Start of Write or Read ${ }^{1}$ | 8 | | 8 | 8 | | ns |
| $\mathrm{t}_{\text {HDSU }}$ HAD15-0 Data Setup before End of Write ${ }^{2}$ | 5 | | 5 | 5 | | ns |
| $\mathrm{t}_{\text {HWDH }}$ HAD15-0 Data Hold after End of Write ${ }^{2}$ | 3 | | 3 | 3 | | ns |
| $\mathrm{t}_{\mathrm{HH}} \quad$ HRW Hold after End of Write or Read ${ }^{2}$ | 3 | | 3 | 3 | | ns |
| $\mathrm{t}_{\text {HRWP }}$ Read or Write Pulse Width ${ }^{3}$ | 30 | | 30 | 30 | | ns |
| Switching Characteristic: | | | | | | |
| $\mathrm{t}_{\text {HSHK }}$ HACK Low after Start of Write or Read ${ }^{1}$ | | 20 | | $0 \quad 20$ | | ns |
| $\mathrm{t}_{\text {HKH }}$ HACK Hold after End of Write or Read ${ }^{2}$ | | 20 | | $0 \quad 20$ | | ns |
| $\mathrm{t}_{\text {HDE }}$ HAD15-0 Data Enabled after Start of Read ${ }^{1}$ | 0 | | | 0 | | ns |
| $\mathrm{t}_{\text {HDD }}$ HAD15-0 Data Valid after Start of Read ${ }^{1}$ | | 23 | | 23 | | ns |
| $\mathrm{t}_{\text {HRDH }}$ HAD15-0 Data Hold after End of Read ${ }^{2}$ | 0 | | | 0 | | ns |
| $\mathrm{t}_{\text {HRDD }}$ HAD15-0 Data Disabled after End of Read ${ }^{2}$ | | 10 | 10 | 10 | | ns |

NOTES

${ }^{1}$ Start of Write or Read $=\overline{\text { HDS }}$ Low and $\overline{\text { HSEL }}$ Low.
${ }^{2}$ End of Write or Read $=\overline{\text { HDS }}$ High or HSEL High.
${ }^{3}$ Read or Write Pulse Width $=\overline{\text { HDS }}$ Low and $\overline{\text { HSEL }}$ Low.

Figure 38. Host Interface Port (HMD1 =1, HMD0 = 1)

ADSP-2101

TIMING PARAMETERS (ADSP-2103/2162/2164)

GENERAL NOTES

U se the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, you cannot meaningfully add parameters to derive longer times.

TIMING NOTES

Switching characteristics specify how the processor changes its signals. Y ou have no control over this timing-circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics tell you what the processor will do in a given circumstance. You can also use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. T iming requirements guarantee that the processor operates correctly with other devices.

MEMORY REQUIREMENTS

The table below shows common memory device specifications and the corresponding AD SP-21xx timing parameters, for your convenience.

| Memory Specification | ADSP-21xx Timing Parameter Definition
 Timing Parameter |
| :---: | :---: |
| Address Setup to Write Start Address Setup to Write End Address Hold Time Data Setup Time Data Hold Time $\overline{\mathrm{OE}}$ to Data Valid Address Access Time | t_{ASW} A0-A13, $\overline{\mathrm{DMS}}, \overline{\text { PMS }}$ Setup before $\overline{\mathrm{WR}}$ Low
 t_{AW} A0-A13, $\overline{\mathrm{DMS}}, \overline{\text { PMS Setup before } \overline{\mathrm{WR}} \text { Deasserted }}$
 $\mathrm{t}_{\mathrm{WRA}}$ A0-A13, $\overline{\mathrm{DMS}}, \overline{\text { PMS Hold after } \overline{\mathrm{WR}} \text { Deasserted }}$
 t_{DW} Data Setup before $\overline{\mathrm{WR}}$ High
 t_{DH} Data Hold after $\overline{\mathrm{WR}}$ High
 t_{RDD} $\overline{\mathrm{RD}}$ Low to Data Valid
 t_{AA} A0-A13, $\overline{\mathrm{DMS}}, \overline{\text { PMS }}, \overline{\mathrm{BMS}}$ to Data Valid |

TIMING PARAMETERS (ADSP-2103/2162/2164)

CLOCK SIGNALS \& RESET

| Parameter | 10.24 MHz | | Frequency Dependency Min
 Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| T iming R equirement: | | | | |
| $\mathrm{t}_{\mathrm{CK}} \quad$ CLKIN Period | 97.6 | 150 | | ns |
| $\mathrm{t}_{\text {CKL }}$ CLKIN Width Low | 20 | | | ns |
| $\mathrm{t}_{\text {CKH }}$ CLKIN Width High | 20 | | | ns |
| $\mathrm{t}_{\text {RSP }}$ RESET Width Low | 488 | | $5 \mathrm{t}_{\mathrm{CK}}{ }^{1}$ | ns |
| Switching C haracteristic: | | | | |
| $\mathrm{t}_{\text {CPL }} \quad$ CLKOUT Width Low | 38.8 | | $0.5 \mathrm{t}_{\mathrm{CK}}-10$ | ns |
| $\mathrm{t}_{\text {CPH }} \quad$ CLKOUT Width High | 38.8 | | $0.5 \mathrm{t}_{\mathrm{CK}}-10$ | ns |
| $\mathrm{t}_{\text {CKOH }}$ CLKIN High to CLKOUT High | | 20 | | ns |

NOTES

${ }^{1}$ Applies after powerup sequence is complete. Internal phase lock loop requires no more than 2000 CLKIN cycles assuming stable CLKIN (not including crystal oscillator startup time).

Figure 39. Clock Signals

TIMING PARAMETERS (ADSP-2103/2162/2164)

INTERRUPTS \& FLAGS

| Parameter | $\begin{aligned} & \text { 10.24 MHz } \\ & \text { Min Max } \end{aligned}$ | | Frequency Dependency Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Timing R equirement: | | | | | |
| $\mathrm{t}_{\text {IFS }} \quad \overline{\mathrm{IRQx}}^{1}$ or FI Setup before CLKOUT Low ${ }^{2,3}$ | 44.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}+20$ | | ns |
| $\mathrm{t}_{\mathrm{IFH}} \quad \overline{\mathrm{IRQx}}^{1}$ or FI Hold after CLKOUT High ${ }^{2,3}$ | 24.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}$ | | ns |
| Switching C haracteristic: | | | | | |
| $\mathrm{t}_{\mathrm{FOH}} \quad$ FO Hold after CLKOUT High | 015 | | | | ns |
| $\mathrm{t}_{\text {FOD }}$ FO Delay from CLKOUT High | | | | | ns |

NOTES
${ }^{1} \overline{\mathrm{IRQx}}=\overline{\mathrm{IRQ}} 0, \overline{\mathrm{IRQ1}}$, and $\overline{\mathrm{IRQ} 2}$.
${ }^{2}$ If $\overline{\text { IRQx }}$ and FI inputs meet $\mathrm{t}_{\mathrm{IFS}}$ and $\mathrm{t}_{\mathrm{IFH}}$ setup/hold requirements, they will be recognized during the current clock cycle; otherwise they will be recognized during the following cycle. (Refer to the "Interrupt Controller" section in Chapter 3, Program Control, of the ADSP-2100 Family User's M anual for further information on interrupt servicing.)
${ }^{3}$ Edge-sensitive interrupts require pulse widths greater than 10 ns . Level-sensitive interrupts must be held low until serviced.

Figure 40. Interrupts \& Flags

TIMING PARAMETERS (ADSP-2103/2162/2164)

BUS REQUEST/GRANT

| Parameter | $\begin{aligned} & \text { 10.24 MHz } \\ & \text { Min } \quad \text { Max } \end{aligned}$ | | Frequency Dependency Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Timing R equirement: | | | | | |
| $\mathrm{t}_{\mathrm{BH}} \quad \overline{\mathrm{BR}}$ Hold after CLKOUT High ${ }^{1}$ | 29.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}+5$ | | ns |
| $\mathrm{t}_{\mathrm{BS}} \quad \overline{\mathrm{BR}}$ Setup before CLKOUT Low ${ }^{1}$ | 44.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}+20$ | | ns |
| Switching C haracteristic: | | | | | |
| $\mathrm{t}_{\mathrm{SD}} \quad$ CLKOUT High to $\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Disable | | 44.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}+20$ | ns |
| $\mathrm{t}_{\text {SDB }} \quad \overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Disable to $\overline{\mathrm{BG}}$ Low | 0 | | | | ns |
| $\mathrm{t}_{\text {SE }} \quad \overline{\mathrm{BG}}$ High to $\overline{\mathrm{DMS}}, \overline{\mathrm{PMS}}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Enable | 0 | | | | ns |
| $\mathrm{t}_{\text {SEC }} \overline{\mathrm{DMS}}, \overline{\text { PMS }}, \overline{\mathrm{BMS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ Enable to CLKOUT High | 14.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}-10$ | | ns |

NOTES

${ }^{1}$ If $\overline{B R}$ meets the $t_{B S}$ and $t_{B H}$ setup/hold requirements, it will be recognized in the current processor cycle; otherwise it is recognized in the following cycle. $\overline{\mathrm{BR}}$ requires a pulse width greater than 10 ns .

Section 10.2.4, "Bus Request/Grant," of the ADSP-2100 Family U ser's M anual (1st Edition, © 1993) states that "When $\overline{B R}$ is recognized, the processor responds immediately by asserting $\overline{\mathrm{BG}}$ during the same cycle." This is incorrect for the current versions of all ADSP-21xx processors: $\overline{\mathrm{BG}}$ is asserted in the cycle after $\overline{\mathrm{BR}}$ is recognized. No external synchronization circuit is needed when $\overline{\mathrm{BR}}$ is generated as an asynchronous signal.

Figure 41. Bus Request/Grant

ADSP-2101
TIMING PARAMETERS (ADSP-2103/2162/2164)

MEMORY READ

| Parameter | 10.24 MHz | | Frequency Dependency Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Timing R equirement: | | | | | |
| $\mathrm{t}_{\mathrm{RDD}} \quad \overline{\mathrm{RD}}$ Low to Data Valid | | 33.8 | | $0.5 \mathrm{t}_{\mathrm{C}}$ | ns |
| $\mathrm{t}_{\mathrm{AA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}$ to Data Valid | | 49.2 | | 0.75 t | ns |
| $t_{\text {RDH }}$ Data Hold from $\overline{\mathrm{RD}}$ High | 0 | | | | ns |
| Switching Characteristic: | | | | | |
| $\mathrm{t}_{\mathrm{RP}} \quad \overline{\mathrm{RD}}$ Pulse Width | 43.8 | | $0.5 \mathrm{t}_{\mathrm{CK}}-5+\mathrm{w}$ | | ns |
| $\mathrm{t}_{\text {CRD }} \quad$ CLKOUT High to $\overline{\mathrm{RD}}$ Low | 19.4 | 34.4 | $0.25 \mathrm{t}_{\mathrm{CK}}-5$ | 0.25 t | ns |
| $\mathrm{t}_{\text {ASR }} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\text { PMS }}, \overline{\mathrm{DMS}}, \overline{\text { BMS }}$ Setup before $\overline{\mathrm{RD}}$ Low | 12.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}-12$ | | ns |
| $\mathrm{t}_{\mathrm{RDA}} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{PMS}}, \overline{\mathrm{DMS}}, \overline{\mathrm{BMS}}$ Hold after $\overline{\mathrm{RD}}$ Deasserted | 14.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}-10$ | | ns |
| $\mathrm{t}_{\text {RWR }} \quad \overline{\mathrm{RD}}$ High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low | 38.8 | | $0.5 \mathrm{t}_{\mathrm{CK}}-10$ | | ns |

$w=$ wait states $\times t_{c k}$.

Figure 42. Memory Read

TIMING PARAMETERS (ADSP-2103/2162/2164)

MEMORY WRITE

| Parameter | 10.24 MHz | | Frequency Dependency Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Switching C haracteristic: | | | | | |
| $\mathrm{t}_{\mathrm{DW}} \quad$ Data Setup before $\overline{\mathrm{WR}}$ High | 38.8 | | $0.5 \mathrm{t}_{\mathrm{CK}}-10+\mathrm{w}$ | | ns |
| $\mathrm{t}_{\mathrm{DH}} \quad$ Data Hold after WR High | 14.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}-10$ | | ns |
| $\mathrm{t}_{\mathrm{WP}} \quad \overline{\text { WR }}$ Pulse Width | 43.8 | | $0.5 \mathrm{t}_{\mathrm{CK}}-5+\mathrm{w}$ | | ns |
| $\mathrm{t}_{\text {WDE }} \quad \overline{\mathrm{WR}}$ Low to Data Enabled | 0 | | | | |
| $\mathrm{t}_{\text {ASW }}$ A0-A13, $\overline{\mathrm{DMS}}$, $\overline{\text { PMS Setup before }} \overline{\mathrm{WR}}$ Low | 12.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}-12$ | | ns |
| $\mathrm{t}_{\mathrm{DDR}} \quad$ Data Disable before $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ Low | 14.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}-10$ | | ns |
| $\mathrm{t}_{\text {CWR }} \quad$ CLKOUT High to $\overline{\mathrm{WR}}$ Low | 19.4 | 34.4 | $0.25 \mathrm{t}_{\mathrm{CK}}-5$ | $0.25 \mathrm{t}_{\mathrm{CK}}+10$ | ns |
| $\mathrm{t}_{\text {AW }} \quad \mathrm{A} 0-\mathrm{A} 13, \overline{\mathrm{DMS}}, \overline{\text { PMS }}$, Setup before $\overline{\mathrm{WR}}$ Deasserted | 58.2 | | $0.75 \mathrm{t}_{\mathrm{CK}}-15+$ | | ns |
| $\mathrm{t}_{\text {WRA }} \quad$ A0-A13, $\overline{\mathrm{DMS}}, \overline{\text { PMS }}$ Hold After $\overline{\mathrm{WR}}$ Deasserted | 14.4 | | $0.25 \mathrm{t}_{\mathrm{CK}}-10$ | | ns |
| $\mathrm{t}_{\text {WWWR }}$ WR High to $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ Low | 38.8 | | $0.5 \mathrm{t}_{\mathrm{CK}}-10$ | | ns |

$w=$ wait states $\times t_{c k}$.

Figure 43. Memory Write

TIMING PARAMETERS (ADSP-2103/2162/2164)

SERIAL PORTS

| | | $\mathbf{1 0 . 2 4 ~ M H z}$
 Min | Frequency
 Dependency
 Min | Max |
| :--- | :--- | :--- | :--- | :--- |

Figure 44. Serial Ports

PIN CONFIGURATIONS

68-Pin PGA

| PGA
 Number | Pin
 Name |
| :---: | :---: |
| K11 | $\overline{\mathrm{WR}}$ |
| K10 | $\overline{\mathrm{RD}}$ |
| J11 | DT0 |
| J10 | TFS0 |
| H 11 | RFS0 |
| H 10 | GND |
| G 11 | DR0 |
| G 10 | SCLK 0 |
| F11 | FO (DT1) |
| F10 | $\overline{\overline{\mathrm{IRQ1}}}$ (TFS1) |
| E11 | $\overline{\mathrm{IRQ0}}$ (RFS1) |
| E10 | FI (DR1) |
| D 11 | SCLK1 |
| D 10 | $\mathrm{V}_{\text {D }}$ |
| C11 | D 0 |
| C10 | D 1 |
| B11 | D 2 |

| PGA | Pin |
| :--- | :--- |
| Number | Name |
| A10 | D3 |
| B10 | D4 |
| A9 | D5 |
| B9 | D6 |
| A8 | D7 |
| B8 | D8 |
| A7 | D9 |
| B7 | D10 |
| A6 | D11 |
| B6 | GND |
| A5 | D12 |
| B5 | D13 |
| A4 | D14 |
| B4 | D15 |
| A3 | D16 |
| B3 | D17 |
| A2 | D18 |

| PGA
 Number | Pin
 Name |
| :--- | :--- |
| B1 | GND |
| B2 | D 19 |
| C1 | D20 |
| C2 | D21 |
| D1 | D22 |
| D2 | D23 |
| E1 | V DD |
| E2 | M MAP |
| F1 | $\overline{\text { BR }}$ |
| F2 | $\overline{\text { IRQ2 }}$ |
| G1 | $\overline{\text { RESET }}$ |
| G2 | A0 |
| H1 | A1 |
| H2 | A2 |
| J1 | A3 |
| J2 | A4 |
| K1 | V $_{\text {DD }}$ |

| PGA
 Number | Pin
 Name |
| :--- | :--- |
| L2 | A5 |
| K2 | A6 |
| L3 | GND |
| K3 | A7 |
| L4 | A8 |
| K 4 | A9 |
| L5 | A10 |
| K5 | A11 |
| L6 | A12 |
| K 6 | A13 |
| L7 | PMS |
| K7 | DMS |
| L8 | BMS |
| K8 | $\overline{\text { BG }}$ |
| L9 | XTAL |
| K 9 | CLKIN |
| L10 | CLKOUT |
| C3 | Index (NC $)$ |

PIN CONFIGURATIONS

68-Lead PLCC

| PLCC Number | Pin Name | PLCC
 Number | Pin Name | PLCC
 Number | Pin Name | PLCC
 Number | Pin Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | D11 | 18 | $\overline{\mathrm{BR}}$ | 35 | A12 | 52 | FO (DT1) |
| 2 | GND | 19 | $\overline{\text { IRQ2 }}$ | 36 | A13 | 53 | $\overline{\text { IRQ1 }}$ (TFS1) |
| 3 | D12 | 20 | $\overline{\text { RESET }}$ | 37 | PMS | 54 | $\overline{\overline{I R Q 0}}$ (RFS1) |
| 4 | D13 | 21 | A0 | 38 | DMS | 55 | FI (DR1) |
| 5 | D14 | 22 | A1 | 39 | BMS | 56 | SCLK 1 |
| 6 | D15 | 23 | A2 | 40 | $\overline{\mathrm{BG}}$ | 57 | $V_{\text {D }}$ |
| 7 | D16 | 24 | A3 | 41 | XTAL | 58 | D 0 |
| 8 | D17 | 25 | A4 | 42 | CLKIN | 59 | D 1 |
| 9 | D18 | 26 | $\mathrm{V}_{\text {D }}$ | 43 | CLKOUT | 60 | D 2 |
| 10 | GND | 27 | A5 | 44 | WR | 61 | D 3 |
| 11 | D 19 | 28 | A6 | 45 | $\overline{\mathrm{RD}}$ | 62 | D 4 |
| 12 | D 20 | 29 | GND | 46 | DT0 (NC on ADSP-2105) | 63 | D 5 |
| 13 | D 21 | 30 | A 7 | 47 | TFSO (NC on ADSP-2105) | 64 | D6 |
| 14 | D 22 | 31 | A8 | 48 | RFSO (NC on ADSP-2105) | 65 | D 7 |
| 15 | D 23 | 32 | A9 | 49 | GND | 66 | D 8 |
| 16 | $V_{\text {D }}$ | 33 | A10 | 50 | DR0 (NC on ADSP-2105) | 67 | D9 |
| 17 | M M AP | 34 | A11 | 51 | SCLK 0 (NC on ADSP-2105) | 68 | D 10 |

PIN CONFIGURATIONS

80-Lead PQFP
80-Lead TQFP

| PQFP/
 TQFP
 Number | Pin |
| :--- | :--- |
| Name | |
| 1 | A5 |
| 2 | A6 |
| 3 | GND |
| 4 | GND |
| 5 | A7 |
| 6 | A8 |
| 7 | A9 |
| 8 | A10 |
| 9 | A11 |
| 10 | A12 |
| 11 | A13 |
| 12 | $\overline{\text { PMS }}$ |
| 13 | $\overline{\text { DMS }}$ |
| 14 | $\overline{\text { BMS }}$ |
| 15 | $\overline{\text { BG }}$ |
| 16 | XTAL |
| 17 | CLKIN |
| 18 | NC |
| 19 | NC |
| 20 | NC |

| PQFP/ TQFP Number | Pin Name |
| :---: | :---: |
| 21 | CLKOUT |
| 22 | WR |
| 23 | $\overline{\mathrm{RD}}$ |
| 24 | DT 0 |
| 25 | TFS0 |
| 26 | RFS0 |
| 27 | GND |
| 28 | GND |
| 29 | DR0 |
| 30 | SCLK 0 |
| 31 | FO (DT1) |
| 32 | $\overline{\mathrm{IRQ1}}$ (TFS1) |
| 33 | $\overline{\mathrm{IRQ}}$ (RFS1) |
| 34 | FI (DR1) |
| 35 | SCLK 1 |
| 36 | $V_{\text {D }}$ |
| 37 | D0 |
| 38 | D1 |
| 39 | D2 |
| 40 | D3 |

| PQFP/
 TQFP
 Number | Pin
 Name |
| :--- | :--- |
| 41 | NC |
| 42 | NC |
| 43 | NC |
| 44 | D 4 |
| 45 | D5 |
| 46 | D6 |
| 47 | D7 |
| 48 | D8 |
| 49 | D9 |
| 50 | D10 |
| 51 | D11 |
| 52 | GND |
| 53 | GN D |
| 54 | D12 |
| 55 | D13 |
| 56 | D14 |
| 57 | D15 |
| 58 | D16 |
| 59 | D17 |
| 60 | D18 |

| PQFP/
 TQFP
 Number | Pin |
| :--- | :--- |
| Name | |
| 61 | GND |
| 62 | GND |
| 63 | D 19 |
| 64 | D 20 |
| 65 | D 21 |
| 66 | D 22 |
| 67 | D 23 |
| 68 | $\mathrm{~V}_{\text {DD }}$ |
| 69 | $\mathrm{~V}_{\text {DD }}$ |
| 70 | M M AP |
| 71 | $\overline{\mathrm{BR}}$ |
| 72 | IRQ 2 |
| 73 | RESET |
| 74 | A 0 |
| 75 | A 1 |
| 76 | A 2 |
| 77 | A 3 |
| 78 | A 4 |
| 79 | $\mathrm{~V}_{\text {DD }}$ |
| 80 | $\mathrm{~V}_{\text {DD }}$ |

PIN CONFIGURATIONS

100-Pin PGA

| PGA Number | Pin Name | PGA
 Number | Pin Name | PGA
 Number | Pin Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N 13 | D 23 | B13 | A10 | C3 | Index (NC) |
| N 12 | D 21 | A13 | $V_{\text {D }}$ | A2 | HA2/ALE |
| M 13 | MMAP | A12 | A13 | A1 | HAO |
| M 12 | GND | B12 | A12 | B1 | $\overline{\text { HWR }} / \overline{\mathrm{HDS}}$ |
| L13 | $\overline{\mathrm{BR}}$ | Al1 | HD14 | B2 | HSEL |
| L12 | RESET | B11 | HD15 | C1 | HSIZE |
| K13 | $\overline{\text { PMS }}$ | A10 | HD 12 | C2 | HRD/HRW |
| K12 | V_{DD} | B10 | HD13 | D1 | HMD0 |
| J13 | BMS | A9 | HD10 | D2 | HMD1 |
| J12 | DMS | B9 | HD 11 | E1 | $\overline{\mathrm{IRQ}}{ }^{2}$ |
| H13 | $\overline{\mathrm{BG}}$ | A8 | GND | E2 | BMODE |
| H12 | WR | B8 | HD8 | F1 | DT0 |
| H11 | $\overline{\mathrm{RD}}$ | C8 | HD9 | F2 | CLKOUT |
| G 13 | A2 | A 7 | HD6 | F3 | HACK |
| G 12 | A0 | B7 | $V_{\text {D }}$ | G 1 | DR0 |
| G 11 | A1 | C 7 | HD 7 | G2 | TFS0 |
| F13 | A3 | A6 | HD5 | G3 | RFS0 |
| F12 | A4 | B6 | HD4 | H 1 | SCLK 0 |
| F11 | A5 | C6 | XTAL | H2 | GND |
| E13 | GND | A5 | CLKIN | H3 | FO (DT1) |
| E12 | A6 | B5 | HD3 | J1 | $\overline{\text { IRQ1 }}$ (TFS 1) |
| D 13 | A7 | A4 | HD2 | J2 | $\overline{\mathrm{IRQ} 0}$ (RFS1) |
| D 12 | A8 | B4 | HD1 | K1 | FI (DR1) |
| C13 | A9 | A3 | HDO | K2 | SCLK 1 |
| C12 | A11 | B3 | HA1 | L1 | FLO |

| PGA Number | Pin Name |
| :---: | :---: |
| L2 | FL2 |
| M 1 | FL1 |
| N 1 | $V_{\text {D }}$ |
| N 2 | D 1 |
| M 2 | D 0 |
| N 3 | D 3 |
| M 3 | D2 |
| N 4 | D 5 |
| M 4 | D 4 |
| N 5 | D 7 |
| M 5 | D 6 |
| N 6 | D 10 |
| M 6 | D 9 |
| L6 | D 8 |
| N 7 | D 12 |
| M 7 | D 11 |
| L7 | GND |
| N 8 | D 13 |
| M 8 | D 14 |
| L8 | D 15 |
| N 9 | D 16 |
| M 9 | D 17 |
| N 10 | D 18 |
| M 10 | D 19 |
| N 11 | D 20 |
| M 11 | D 22 |

PIN CONFIGURATIONS

100-Lead Bumpered PQFP

NOTE: PIN 1 IS LOCATED AT THE CENTER OF THE BEVELED-EDGE SIDE OF THE PACKAGE.

| PQFP
 Number | Pin
 Name |
| :--- | :--- |
| 1 | G ND |
| 2 | D 12 |
| 3 | D 13 |
| 4 | D 14 |
| 5 | D 15 |
| 6 | D 16 |
| 7 | D 17 |
| 8 | D 18 |
| 9 | D 19 |
| 10 | D 20 |
| 11 | D 21 |
| 12 | D 22 |
| 13 | D 23 |
| 14 | GND |
| 15 | M M AP |
| 16 | $\overline{\text { RESET }}$ |
| 17 | $\overline{\mathrm{BR}}$ |
| 18 | V DD |
| 19 | $\overline{\mathrm{PMS}}$ |
| 20 | $\overline{\mathrm{DMS}}$ |
| 21 | $\overline{\mathrm{BMS}}$ |
| 22 | $\overline{\text { RD }}$ |
| 23 | $\overline{\mathrm{WR}}$ |
| 24 | $\overline{\mathrm{BG}}$ |
| 25 | A0 |

| PQFP
 Number | Pin
 Name |
| :--- | :--- |
| 51 | HD 7 |
| 52 | HD6 |
| 53 | HD5 |
| 54 | HD 4 |
| 55 | XTAL |
| 56 | CLKIN |
| 57 | HD3 |
| 58 | HD2 |
| 59 | HD1 |
| 60 | HD0 |
| 61 | HA2/ALE |
| 62 | HA1 |
| 63 | HA0 |
| 64 | HSEL |
| 65 | HWR $\overline{\text { HDS }}$ |
| 66 | HRD/HRW |
| 67 | HSIZE |
| 68 | HMD1 |
| 69 | HMD0 |
| 70 | BMODE |
| 71 | $\overline{\text { IRQ2 }}$ |
| 72 | HACK |
| 73 | CLK OUT |
| 74 | DT0 |
| 75 | TFS0 |

| PQFP
 Number | Pin
 Name |
| :---: | :---: |
| 76 | RFS0 |
| 77 | DR0 |
| 78 | SCLK 0 |
| 79 | GND |
| 80 | FO (DT1) |
| 81 | $\overline{\text { IRQ1 }}$ (TFS1) |
| 82 | $\overline{\mathrm{IRQ}}$ (RFS1) |
| 83 | FI (DR1) |
| 84 | SCLK 1 |
| 85 | FLO |
| 86 | FL1 |
| 87 | FL2 |
| 88 | $\mathrm{V}_{\text {D }}$ |
| 89 | D 0 |
| 90 | D 1 |
| 91 | D2 |
| 92 | D 3 |
| 93 | D 4 |
| 94 | D 5 |
| 95 | D6 |
| 96 | D 7 |
| 97 | D 8 |
| 98 | D9 |
| 99 | D 10 |
| 100 | D 11 |

OUTLINE DIMENSIONS
ADSP-2101
68-Pin Grid Array (PGA)

| | INCHES | | | MILLIMETERS | | |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| | SYMBOL | MIN | TYP | MAX | MIN | TYP |
| MAX | | | | | | |
| A | 0.123 | | 0.164 | 3.12 | | 4.17 |
| $\mathrm{~A}_{1}$ | | 0.50 | | | 1.27 | |
| $\phi \mathrm{~b}$ | 0.016 | 0.018 | 0.020 | | 0.46 | |
| $\phi \mathbf{b}_{1}$ | | 0.050 | | | 1.27 | |
| D | 1.086 | | 1.110 | 27.58 | | 28.19 |
| e_{1} | 0.988 | | 1.012 | 25.10 | | 25.70 |
| $\mathrm{e}_{\mathbf{2}}$ | 0.788 | | 0.812 | 20.02 | | 20.62 |
| e | | 0.100 | | | 2.54 | |
| $\mathrm{~L}_{\mathbf{3}}$ | | 0.180 | | | 4.57 | |

OUTLINE DIMENSIONS
ADSP-21xx
68-Lead Plastic Leaded Chip C arrier (PLCC)

| | INCHES | | | MILLIMETERS | | |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| | SYMBOL | MIN | TYP | MAX | MIN | TYP |
| MAX | | | | | | |
| A | 0.169 | 0.172 | 0.175 | 4.29 | 4.37 | 4.45 |
| A $_{1}$ | | 0.104 | | | 2.64 | |
| b | 0.017 | 0.018 | 0.019 | 0.43 | 0.46 | 0.48 |
| b $_{1}$ | 0.027 | 0.028 | 0.029 | 0.69 | 0.71 | 0.74 |
| D | 0.985 | 0.990 | 0.995 | 25.02 | 25.15 | 25.27 |
| D_{1} | 0.950 | 0.952 | 0.954 | 24.13 | 24.18 | 24.23 |
| $\mathrm{D}_{\mathbf{2}}$ | 0.895 | 0.910 | 0.925 | 22.73 | 23.11 | 23.50 |
| e | | 0.050 | | | 1.27 | |
| a | | | 0.004 | | | 0.10 |

OUTLINE DIMENSIONS

ADSP-21xx
80-Lead Metric Plastic Quad Flatpack (PQFP)
80-Lead Metric Thin Quad Flatpack (TQFP)

PQFP

| | MILLIMETERS | | | INCHES | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| SYMBOL | MIN | TYP | MAX | MIN | TYP | MAX |
| A | | | 2.45 | | | 0.096 |
| A $_{1}$ | 0.25 | | | 0.010 | | |
| A $_{2}$ | 1.90 | 2.00 | 2.10 | 0.075 | 0.079 | 0.083 |
| D, E | 16.95 | 17.20 | 17.45 | 0.667 | 0.678 | 0.690 |
| $\mathrm{D}_{1}, \mathrm{E}_{1}$ | 13.90 | 14.00 | 14.10 | 0.547 | 0.551 | 0.555 |
| $\mathrm{D}_{3}, \mathrm{E}_{3}$ | | 12.35 | 12.43 | | 0.486 | 0.490 |
| L | 0.65 | 0.80 | 0.95 | 0.026 | 0.031 | 0.037 |
| e | 0.57 | 0.65 | 0.73 | 0.023 | 0.026 | 0.029 |
| B | 0.22 | 0.30 | 0.38 | 0.009 | 0.012 | 0.015 |
| D | | | 0.10 | | | 0.004 |

| MILLIMETERS | | | INCHES | | |
| ---: | ---: | ---: | :--- | :--- | :--- |
| MIN | TYP | MAX | MIN | TYP | MAX |
| | | 1.60 | | | 0.063 |
| 0.05 | | 0.15 | 0.002 | | 0.006 |
| 1.35 | 1.40 | 1.45 | 0.053 | 0.055 | 0.057 |
| 15.75 | 16.00 | 16.25 | 0.620 | 0.630 | 0.640 |
| 13.95 | 14.00 | 14.05 | 0.549 | 0.551 | 0.553 |
| | 12.35 | 12.43 | | 0.486 | 0.490 |
| 0.50 | 0.60 | 0.75 | 0.020 | 0.024 | 0.030 |
| 0.57 | 0.65 | 0.73 | 0.022 | 0.026 | 0.029 |
| 0.25 | 0.30 | 0.35 | 0.010 | 0.012 | 0.014 |
| | | 0.10 | | | 0.004 |

OUTLINE DIMENSIONS
 ADSP-2111
 100-Pin Grid Array (PGA)

| | INCHES | | | MILLIMETERS | | |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| SYMBOL | MIN | TYP | MAX | MIN | TYP | MAX |
| A | 0.123 | | 0.169 | 3.12 | | 4.29 |
| $\mathrm{~A}_{1}$ | | 0.050 | | | 1.27 | |
| $\phi \mathbf{b}$ | 0.016 | 0.018 | 0.020 | 0.41 | 0.46 | 0.51 |
| $\phi \mathbf{b}_{1}$ | | 0.050 | | | 1.27 | |
| D | 1.308 | 1.32 | 1.342 | 33.22 | 33.53 | 34.09 |
| e_{1} | 1.188 | 1.20 | 1.212 | 30.18 | 30.48 | 30.78 |
| e_{2} | 0.988 | 1.00 | 1.012 | 25.10 | 25.4 | 25.70 |
| e | | 0.100 | | | 2.54 | |
| $\mathrm{~L}_{3}$ | | 0.180 | | | 4.57 | |

OUTLINE DIMENSIONS

ADSP-2111
100-Lead Bumpered Plastic Quad Flatpack (PQFP)

| | INCHES | | | MILLIMETERS | | |
| :--- | :--- | ---: | :--- | ---: | ---: | ---: |
| | SYMBOL | MIN | TYP | MAX | MIN | TYP |
| MAX | | | | | | |
| A | | | 0.180 | | | 4.572 |
| $\mathrm{~A}_{1}$ | 0.020 | 0.030 | 0.040 | 0.508 | 0.762 | 1.016 |
| $\mathrm{~A}_{\mathbf{2}}$ | 0.130 | 0.140 | 0.150 | 3.302 | 3.556 | 3.810 |
| D, E | 0.875 | 0.880 | 0.885 | 22.225 | 22.352 | 22.479 |
| $\mathrm{D}_{1}, \mathrm{E}_{1}$ | 0.747 | 0.750 | 0.753 | 18.974 | 19.050 | 19.126 |
| $\mathrm{D}_{2}, \mathrm{E}_{2}$ | 0.897 | 0.900 | 0.903 | 22.784 | 22.860 | 22.936 |
| $\mathrm{D}_{3}, \mathrm{E}_{3}$ | | 0.600 | 0.603 | | 15.240 | 15.316 |
| L | 0.036 | | 0.046 | 0.914 | | 1.168 |
| e | 0.022 | 0.025 | 0.028 | 0.559 | 0.635 | 0.711 |
| B | 0.008 | | 0.012 | 0.203 | | 0.305 |
| D | | | 0.004 | | | 0.102 |

ORDERING GUIDE

[^1]| Part Number ${ }^{1}$ | Ambient Temperature Range | Instruction
 Rate (MHz) | Package Description | Package Option |
| :---: | :---: | :---: | :---: | :---: |
| ADSP-2111K G-52 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 13.0 M Hz | 100-Pin PGA | G-100A |
| ADSP-2111BG-52 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 13.0 M Hz | 100-Pin PGA | G-100A |
| ADSP-2111K S-52 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 13.0 M H z | 100-L ead PQFP | S-100A |
| ADSP-2111BS-52 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 13.0 M Hz | 100-L ead PQFP | S-100A |
| AD SP-2111K G-66 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16.67 M Hz | 100-Pin PGA | G-100A |
| ADSP-2111BG-66 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16.67 M Hz | 100-Pin PGA | G-100A |
| ADSP-2111K S-66 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16.67 M Hz | 100-L ead PQFP | S-100A |
| AD SP-2111BS-66 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16.67 M Hz | 100-L ead PQFP | S-100A |
| ADSP-2111K G-80 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 20.0 M Hz | 100-Pin PGA | G-100A |
| ADSP-2111BG-80 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20.0 M Hz | 100-Pin PGA | G-100A |
| ADSP-2111K S-80 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 20.0 M Hz | 100-L ead PQFP | S-100A |
| ADSP-2111BS-80 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 20.0 M Hz | 100-L ead PQFP | S-100A |
| ADSP-2111TG-52 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 13.0 M Hz | 100-Pin PGA | G-100A |
| AD SP-2161K P-66 ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16.67 M Hz | 68-L ead PLCC | P-68A |
| ADSP-2161BP-66 ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16.67 M Hz | 68-L ead PLCC | P-68A |
| ADSP-2161KS-66 ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16.67 MHz | 80-L ead PQFP | S-80 |
| AD SP-2161BS-66 ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16.67 M Hz | 80-L ead PQFP | S-80 |
| AD SP-2162K P-40 (3.3 V) ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 10.24 M Hz | 68-L ead PLCC | P-68A |
| ADSP-2162BP-40 (3.3 V) ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 10.24 M Hz | 68-L ead PLCC | P-68A |
| AD SP-2162K S-40 (3.3 V) ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 10.24 M Hz | 80-L ead PQFP | S-80 |
| AD SP-2162BS-40 (3.3 V $)^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 10.24 M Hz | 80-L ead PQFP | S-80 |
| AD SP-2163K P-66 ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16.67 M Hz | 68-L ead PLCC | P-68A |
| ADSP-2163BP-66 ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16.67 M Hz | 68-L ead PLCC | P-68A |
| AD SP-2163K S-66 ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 16.67 M Hz | 80-L ead PQFP | S-80 |
| ADSP-2163BS-66 ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 16.67 M Hz | 80-L ead PQF P | S-80 |
| ADSP-2163K P-100 ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 25 MHz | 68-L ead PLCC | P-68A |
| AD SP-2163BP-100 ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 25 MHz | 68-L ead PLCC | P-68A |
| ADSP-2163K S-100 ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 25 MHz | 80-L ead PQFP | S-80 |
| ADSP-2163BS-100 ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 25 MHz | 80-L ead PQFP | S-80 |
| AD SP-2164K P-40 (3.3 V) ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 10.24 M Hz | 68-L ead PLCC | P-68A |
| AD SP-2164BP-40 (3.3 V) ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 10.24 M Hz | 68-L ead PLCC | P-68A |
| AD SP-2164K S-40 (3.3 V) ${ }^{2}$ | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | 10.24 M Hz | 80-L ead PQFP | S-80 |
| AD SP-2164BS-40 (3.3V) ${ }^{2}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 10.24 M Hz | 80-L ead PQFP | S-80 |

NOTES

${ }^{1} \mathrm{~K}=$ Commercial T emperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$.
$\mathrm{B}=$ Industrial T emperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.
$\mathrm{T}=$ Extended T emperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.
$G=$ Ceramic PGA (Pin Grid Array).
$P=P L C C$ (Plastic Leaded Chip C arrier).
$S=P Q F P$ (Plastic Quad Flatpack).
${ }^{2} \mathrm{M}$ inimum order quantities required. Contact factory for further information.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1} \mathrm{~K}=$ Commercial T emperature R ange $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$.
 $\mathrm{B}=$ Industrial T emperature Range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.
 $\mathrm{T}=$ Extended Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.
 G $=$ C eramic PGA (Pin Grid Array).
 $\mathrm{P}=$ PLCC (Plastic Leaded Chip C arrier).
 $S=$ PQFP (Plastic Quad Flatpack).
 ST = TQFP (Thin Quad Flatpack)

