
a AN-524
APPLICATION NOTE

ONE TECHNOLOGY WAY • P.O. BOX 9106 • NORWOOD, MASSACHUSETTS 02062-9106 • 781/329-4700

ADV601 Bin Width Calculation in ADSP-21xx DSP

by David Starr

INTRODUCTION

This application note is for hardware and software de-
signers integrating an Analog Devices ADSP-21xx fam-
ily Digital Signal Processor (DSP) into an ADV601
design. It describes software to control video compres-
sion in the ADV601 Video Codec chip via the auxiliary
serial port. Using this note and the information in the
ADV601 Video Codec data sheet you can do the following:

Design the DSP to ADV601 interface
Program the DSP

The design examples in this application note refer to the
ADV601-based Videolab demonstration board, but you
can apply the techniques used in these examples to any
ADV601-based design. The software source code and
hardware schematics mentioned in this note are avail-
able on the Analog Devices computer products FTP site,
whose Uniform Resource Locator (URL) is:

ftp://ftp.analog.com/pub/dsp/adv601/

WHAT IS A BIN WIDTH CALCULATOR?

The ADV601 Video Codec chip has two main parts, a
Wavelet Filter Bank and a run length/Huffman encoder.
On compression (encoding) the video is transformed
into the Wavelet domain and then run length/Huffman
encoded. The Wavelet transform is analogous to the
Fourier transform. The Fourier transform is reversible
and can be, but seldom is, realized as a bank of band-
pass filters. The output of each Fourier filter is often
called a “bin.” After Fourier transformation the signal is
said to be in the frequency domain. Like the Fourier
transform, the Wavelet transform is reversible. Unlike
Fourier, it is realized as a bank of band pass filters that
divides the input signal into “sub-bands.” The sub-band
width is logarithmic in frequency. The highest sub-band
contains the top half of the input signal frequency. The
next sub-band contains the middle quarter, and so on.

VIDEO FREQUENCY – MHz

0

6.
75

3.
37

LOW PASS SUB-BAND
LOWEST HIGH PASS BAND

SECOND HIGH PASS SUB-BAND
THIRD HIGH PASS SUB-BAND

FOURTH HIGH PASS SUB-BAND

FIFTH HIGH PASS SUB-BAND

0.
21

0.
42

0.
84

1.
68

Figure 1. ADV601 Luma Sub-Band Frequency Limits

Since Chroma is sampled at one-half the rate of Luma,
the frequency range of the chroma sub-bands is half that
of the corresponding Luma sub-bands.

VIDEO FREQUENCY – MHz

0
0.

1

3.
37

LOW PASS SUB-BAND
LOWEST HIGH PASS BAND

SECOND HIGH PASS SUB-BAND
THIRD HIGH PASS SUB-BAND

FOURTH HIGH PASS SUB-BAND

FIFTH HIGH PASS SUB-BAND

0.
21

0.
42

0.
84

1.
68

Figure 2. Chroma Sub-Band Frequency Limits

–2–

AN-524

To reverse the Wavelet transform and recover the origi-
nal signal, simply add all the sub-bands back together. If
all the bits in all the sub-bands are preserved, there is a
loss less transformation and the original signal is recov-
ered intact. This gives about 3:1 loss less compression,
which is not really enough for many applications. The
signal in the highest frequency sub-band will contain
small amplitude wiggles that are mostly high frequency
noise and a few high amplitude spikes that represent
sharp edges in the picture.

To obtain more compression we discard low order bits
in the high frequency sub-bands. This gives longer runs
of zeros that the run length encoder converts into a very
short code. Multiplying every data point in each sub-
band by a fraction, called the reciprocal bin width, dis-
cards the low order bits. This is the adaptive quantizer
located in between the Wavelet filter bank and the run
length/Huffman encoder. There are 42 different sub-
bands and each one has a reciprocal bin width register,
permitting independent quantization of each sub-band.
On decode, we restore the quantized signal to its proper
amplitude by multiplying each data point by a factor
called the bin width. Again there are 42 bin width regis-
ters. The duty of the “Bin Width Calculator” program is
to set all 42 bin width and 42 reciprocal bin width regis-
ter with the proper fraction to achieve the desired com-
pression ratio.

DESIRABLE FEATURES IN A BIN WIDTH CALCULATOR

Bit Rate Depends On Video Signal

Simple video (e.g., a shot of a cloudless blue sky) has
very little high frequency detail. Every pixel is the same
(blue). The high pass sub-bands will all be zero. The run

length encoder will efficiently convert the long runs of
zeros into a single short code group, and the image will
compress tremendously. Other video (e.g., an actor
wearing a plaid shirt) has significant high frequency de-
tail. When the TV broadcaster cuts from simple video to
complex video, or even from one scene to another, or to
a commercial, the bit rate will change substantially un-
less something is done. That "something" is handled by
the Bin Width Calculator, which must respond to the
video change by altering the bin-width register settings
to achieve the desired bit rate.

Constant Bit Rate

A constant bit rate Bin Width Calculator is needed when
video must go through a fixed bit rate communications
link. If the video bit rate from the ADV601 exceeds the
communication link bit rate, video will be lost. If the bit
rate from the ADV601 is less than the communications
link can handle, the viewer at the far end of the link is not
receiving the best possible picture. A better picture
would be obtained if more bits were sent. The constant
bit rate Bin Width Calculator adjusts the bin width regis-
ters on every frame to achieve the programmed target
bit rate as closely as possible.

Constant Quality

It is also possible to create a constant quality Bin Width
Calculator. If the objective is to maximize the amount of
video stored on a hard disk, the problem is a bit less de-
manding. Plain and simple video that compresses well
can be allowed to do so and only the busy and complex
video needs be trimmed down to size. The savings in
disk space are worthwhile, and might permit a longer
video capture before the hard drive is filled.

RAW VIDEO IN
WAVELET TRANSFORM

42 RECIPROCAL BIN
WIDTH REGISTERS

ADAPTIVE QUANTIZER

RUN LENGTH &
HUFFMAN ENCODER

COMPRESSED
VIDEO OUT

Figure 3. Block Diagram Encoding

RAW VIDEO
OUT

WAVELET TRANSFORM

42 BIN WIDTH
REGISTERS

ADAPTIVE QUANTIZER

RUN LENGTH &
HUFFMAN ENCODER

COMPRESSED
VIDEO IN

Figure 4. Block Diagram Decoding

–3–

AN-524

SUB-BAND NUMBER
41

0.9

0

R
E

C
IP

R
O

C
A

L
B

IN
 W

ID
T

H

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

35 29 23 17 11 5 –1

SERIES 1

SERIES 2

Figure 5. Sub-Band Quantization vs. Frequency

The Quantizing Curve

For reasonable compression, all the wavelet sub-bands
must be quantized to some degree. Given a fixed budget
of bits to encode a field, the Bin Width Calculator must
allocate the bits to produce a pleasing picture upon re-
construction. This Bin Width Calculator favors the low
frequency sub-bands. It always increases the quantiza-
tion (discards more low order bits) as the frequency in-
creases. The eye is most critical of the low frequency
information and does not really miss the higher frequen-
cies. Stored in the Bin Width Calculator is a set of bin
widths that preserves a maximum number of bits and
creates a high quality minimum compression image.
Also stored is a second set of bin widths that discards
most of the bits to achieve maximum compression. The
program varies the actual bit rate by interpolating an in-
termediate curve that lies somewhere between the two
extremes. The max and min curves used by the program
could be modified to make various trade-offs of picture
quality versus bit rate. For instance, the highest fre-
quency Luma sub-bands contain information in the
3.37 to 6.75 Megahertz band. If the video source is
known to roll off at say 3.58 Megahertz, then signal en-
ergy in the highest frequency bin is likely to be noise. In
such a case, better performance might be obtained by
multiplying the highest frequency sub-bands by zero to
discard ALL the bits in the bin. In this way, the limited bit
budget is directed toward encoding real picture rather
than video noise (snow or on color TV, confetti) Some
experimentation with the quantizing curves may yield
worthwhile performance improvements.

DSP-Based vs. Host-Based Bin Width Calculators

The bin width calculation problem remains the same
whether the calculator is interfaced to the ADV601
through the DSP serial port or through the Host parallel
port. From the host port, a processor can access all the

registers in the ADV601. From the DSP port a processor
can only read the statistics registers and write the bin
width registers. This is a subset of all the registers in the
ADV601. This program was tested on a system with a
Pentium®-based PC interfaced to the host port and a
ADSP-21xx DSP interfaced to the DSP port. The DSP per-
formed only the bin width calculation and the host did
everything else. In a stand-alone design or embedded
system, the DSP could be interfaced through the host
port and thus have access to all the other registers in the
ADV601. In a stand-alone design, the DSP must be able
to read and write to the ADV601 mode control register,
among others.

Advantages of DSP Bin Width Computation

Speed

This DSP program takes a time critical computation out
of the host. The DSP can compute new bin widths within
the 1.2 milliseconds vertical retrace time, so the bin
width settings are right up to date. This can be difficult
to achieve in the host because Windows® is not a real-
time operating system. It makes no guarantees of re-
sponse time to anything. Tasks can hog the CPU and
prevent a host-based Bin Width Calculator from running
in a timely fashion. Windows 95 interrupt handlers are
not permitted to use the hardware floating point unit.
A Windows 95 interrupt handler that relies upon Win-
dows calls to schedule a Bin Width Calculator run as
soon as possible may find that Windows occasionally
schedules something other than the Bin Width Calcula-
tor to run next. In this case, the Bin Width Calculator
cannot compute the new bin widths before the next
frame begins.

Easier Program Development

The important Bin Width Calculator is one small pro-
gram running in a dedicated CPU. If bit rate problems
are encountered, you know just where to look and the
code is small and self contained. Windows 95 device
driver and systems programming expertise is not re-
quired. Timing issues are easier to deal with because the
DSP does nothing but bin width calculation. Under Win-
dows, if some other program has control of the ma-
chine, the Bin Width Calculator may be locked out and
unable to run in time.

Advantages of Host-Based Computations

Cost (No DSP to Buy)

Easier Program Development

Programmers may be more familiar with the host archi-
tecture and programming tools. Operating system ex-
pertise may be abundant and DSP experience may be
slim.

All trademarks are the property of their respective holders.

–4–

AN-524

ADV601 TO DSP HARDWARE AND SOFTWARE INTERFACE

ONE FIELD TIME (16.66 MILLISECONDS)

DIRQ INTERRUPT

LAST CODE INTERRUPT
(CAN OCCUR ANYWHERE; DEPENDS ON HOW RAPIDLY HOST READS FIFO)

STATISTICS REGISTER DATA INTO DSP

BIN WIDTH REGISTER DATA OUT OF DSP

Figure 6. Field Timing Diagram

67
65
64
63
62
61
60
59
57

58
34
42
41
31

36
33

101
102
103
104
105
106
107
108
109
110
113
114
115
116
117
118

37
125
124

99
100

19
20

35
32

119
120
121
122
126
127
128

1
45
44
43

EBG/
EBR/
EINT/
ELIN
ELOUT
ECLK
EE
EMS/
ERESET/

RESET/
IRQ2/
IRQL1/
IRQL0/
IRQE/

PWDACK
PWD/

IAD15
IAD14
IAD13
IAD12
IAD11
IAD10
IAD9
IAD8
IAD7
IAD6
IAD5
IAD4
IAD3
IAD2
IAD1
IAD0

IACK/
IAL
IS/
IWR/
IRD/

XTAL
CLKIN

BMODE
MMAP

PF7
PF6
PF5
PF4
PF3
PF2
PF1
PF0
FL2
FL1
FL0

51
52
53
55
56

22

2
3
7
4
5
6
10

66
38
68

30
29
28
27
26
25
18
17
16
15
14
13
12
11

97
96
95
94
93
92
91
90
89
85
84
83
82
81
80
79
78
77
76
74
73
72
71
70

DT0
TFS0
RFS0

DR0
SCLK0

DT1/F0
TFS1/IRQ1
RFS1/IRQ0

DR1/F1
SCLK1

CLKOUT

WR/
RD/

CMS/
IOMS/
BMS/
DMS/
PMS/

BR/
BGH/

BG/

A13
A12
A11
A10

A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

D23
D22
D21
D20
D19
D18
D17
D16
D15
D14
D13
D12
D11
D10

D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D

8 21 23 40 54 75 86 88 98 11
2

12
3

EZKIT U3

ADSP-2181

14
13
12
11
15

QA
QB
QC
QD
RCO

A
B
C
D

ENP
ENT
CLK

LOAD
CLR

3
4
5
6

7
10
2
9
1

U?

74HC161

VCC

100
101

98

119
118
117
116
115
114
111
110
109
108

93
92
91
90
87
86
85
84
83
82

105
104
103

97
95

32
36
34
33
37
31

11
12

17
16
15
14
25

9
8

26
28
27
29

21
24
10

19

XTAL
VCLK
VCLKO

VDATA0
VDATA1
VDATA2
VDATA3
VDATA4
VDATA5
VDATA6
VDATA7
VDATA8
VDATA9
VDATA10
VDATA11
VDATA12
VDATA13
VDATA14
VDATA15
VDATA16
VDATA17
VDATA18
VDATA19

VSYNC
HSYNC
FIELD
ENC/DEC
CREF

TXD
RXD
TCLK
TF
RF
DIRQ/

ADR1
ADR0

BE0/
BE1/
BE2/
BE3/
LCODE
WR/
RD/

FIFO_ERR
FIFO_SRQ
FIFO_STP
STATS_RDY

ACK/
HIRQ/
CS/

REST/

DADR8
DADR7
DADR6
DADR5
DADR4
DADR3
DADR2
DADR1
DADR0

DDAT0
DDAT1
DDAT2
DDAT3
DDAT4
DDAT5
DDAT6
DDAT7
DDAT8
DDAT9

DDAT10
DDAT11
DDAT12
DDAT13
DDAT14
DDAT15

RAS/
CAS/
WE/

DATA0
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7
DATA8
DATA9

DATA10
DATA11
DATA12
DATA13
DATA14
DATA15
DATA16
DATA17
DATA18
DATA19
DATA20
DATA21
DATA22
DATA23
DATA24
DATA25
DATA26
DATA27
DATA28
DATA29
DATA30
DATA31

40
41
42
43
44
45
48
49
50

80
79
78
77
76
73
72
71
70
67
66
65
64
62
61
60

53
54
55

5
4
3
2
1
160
159
158
157
154
153
152
151
149
148
147
141
140
139
138
135
134
133
132
130
129
128
127
124
123
122
121

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

G
N

D
G

N
D

7 13 18 23 35 38 47 52 56 58 63 68 74 81 96 89 10
2

10
6

11
2

12
0

12
6

13
1

13
6

14
2

14
3

14
5

15
0

15
5

9 24 39 69 87 11
1

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

6 20 22 30 39 46 51 57 59 69 75 88 94 99 10
7

11
3

12
5

13
7

14
4

14
6

15
6

ADV601_PQFP

VIDEOLAB U9

JP9-49

JP9-3

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D
V

D
D

V
D

D

46
47
48
49
50

56

3
4
5
6

32
36
34
33
37
31

Figure 7. Electrical Schematic–ADSP-2181 to ADV601 Connections

–5–

AN-524

DSP Serial Port

DSP Interrupt Service Request (DIRQ) Interrupt

The ADV601 asserts the DIRQ interrupt when the Wave-
let transform has completed and the statistics of this
field are available. It starts transmitting the statistics
registers after the DIRQ interrupt, which serves as a
"heads-up" to the DSP. The DSP configures the serial
port to receive when it sees the DIRQ interrupt. In prin-
ciple, the DIRQ interrupt signal is not absolutely neces-
sary. The DSP could keep the serial port configured to
receive, and use the “data ready” interrupt from the se-
rial port itself to indicate start of statistics register trans-
mission. This example program uses the DIRQ interrupt
line to ensure DSP program activity in case a fault in the
DSP serial port programming kills the serial port’s “data
ready” interrupt.

Statistics Read

Following the DSP interrupt, the ADV601 will transmit
the Compression ratio register, the 42 sum of squares
registers, a Luma and two Chroma “sums” registers,
and finally the six Max and Min registers. The Compres-
sion ratio register lets the Host computer communicate
with the DSP. The communication is one-way (Host to
DSP) and contains whatever bits the host program cared
to write into compression ratio register via the host par-
allel port. This DSP program expects to find the desired
bits per pixel coded into the lower 8 bits of the compres-
sion ratio register. Possible values range from 16 bits
per pixel (coded as 0FF Hex) down to 1/16th bit per pixel
(coded as 1). This is purely a software convention, the
ADV601 just passes the bits from the host to the DSP. It
is mentioned here merely as an aid to understanding
operation of this particular program. Other coding
schemes could be readily devised.

Bin Width Register Write

The ADV601 has a simple state machine to operate the
DSP serial port. It transmits the statistics registers and
then receives the new bin width registers. The DSP must
wait until the last statistics register is read before it can
write the bin width and reciprocal bin width registers.
The ADV601 will become confused if this rule is not
obeyed. Bin width registers and reciprocal bin width
registers are interleaved with Register 0 being a recipro-
cal bin width register and Register 1 being its corre-
sponding bin width register. Register order is given in
ADV601 data sheet Figure 9.

Field Size Measurement

This example program uses one DSP serial port to count
the number of ADV601 FIFO reads to give the DSP pro-
gram the size of each compressed field. The FIFO/rd
strobe from the Videolab evaluation board is connected
to the clock line of the serial port. The serial port inter-
rupts the DSP each time it thinks it has a word ready in
the serial port received data register, which happens

every 16 FIFO reads. The DSP counts these interrupts to
determine field size. The DSP does not care about the
serial data, it does not even look at it, it just wants to
know how many FIFO read strobes occurred. There is a
limit on DSP serial port clocks of 13.824 MHz (see ADSP-
2100 Family User Manual Section 5.5). The PCI bus mas-
tering interface on the Videolab card reads the FIFO
much faster than that. The 74HC161 counter was added
to reduce the frequency seen by the serial port clock in-
put to less than the 13.824 MHz limit. In a real design a
PAL or an FPGA could easily be used.

Last Code Interrupt (LCODE)

The DSP uses the last code interrupt to start and stop the
FIFO read strobe count. Each time Last Code occurs, the
DSP resets its software FIFO read strobe counter, and
passes the finished count to the servo loop for process-
ing. Last code is asserted when the host reads the next-
to-last word from the FIFO and stays asserted until the
last word is read. This time can be quite short (10s of
nanoseconds) and the repetition rate is low (60 Hz) mak-
ing the LCODE signal difficult to observe on an oscillo-
scope. Since LCODE occurs when the host gets around
to reading the FIFO, it can occur anywhere during the
field time and, as the host begins to fall behind writing
the disc, it will move farther and farther down the field
until eventually the host begins to drop data. The timing
diagram shows LCODE coming early, but it can be any-
where and move around from field to field.

PROGRAM THEORY OF OPERATION

PIDBWC.DSP

This is the main routine. It contains the interrupt vector
table, including the power-on reset vector. The initializa-
tion code configures SPORT1 as a serial port that dis-
ables the alternate functions (IRQ0 IRQ1 FlagIN and
FlagOut) of the SPORT1 pins. SPORT1 will be used to
count FIFO read strobes. The internal timer is set up to
give interrupts at the video frame rate (30 Hz). Program-
mable I/O pins PF1 through PF7 are programmed as out-
put pins. Important routines toggle these pins so
program activity can be observed on an oscilloscope.
PF0 is set to input, and monitored to exit the program
and return control to the EZ-KIT® monitor. The EZ-KIT
monitor permits display of program variables at the end
of a run, if you return to it. If you do not return, but reset
the EZ-KIT instead, the monitor power-on self-test over-
writes all data memory with a test pattern.

The main loop does very little. It merely calls the
rite_reg routine to transmit the new bin width and re-
ciprocal bin widths to the ADV601 after the statistics
read is done. Variable recvflg from the statistics read
routine in forms the main loop when statistics read is
done. The main loop does NOT call the bwcalc routine
to update the servo loop and compute a new bin width
curve. Bwcalc is called on the last code interrupt to

EZ-KIT is a registered trademark of Analog Devices, Inc.

–6–

AN-524

insure that the servo loop is updated just once each
time a new compressed field size becomes available.
This leads to an interesting initialization problem. The
first DSP interrupt will occur BEFORE last code
(LCODE) occurs, since the Wavelet transform must
complete before the host can even start (let alone fin-
ish) reading the compressed field from the ADV601
FIFO. This program initializes the bin width/recip bin
width registers to a reasonable value. This initialization
is accomplished by the single call to bwcalc in the ini-
tialization code. All subsequent calls to bwcalc are
from the LCODE interrupt routine inside module
fldsiz.dsp .

The watch_dog routine gains control on timer tick with
initialization set for 30 Hz. Watch_dog is looking for
start and stop of incoming video. When the video
stops, watch_dog zeros out the servo loop error inte-
grator. This prevents a sizable error integral from one
video clip biasing the servo loop hard over at the begin-
ning of the next clip. This is largely for convenience in
studying servo loop startup transients. You can stop
the video tape player, rewind and start over again and
have the servo start up the same way each time. Other-
wise the startup on the second video clip depends upon
the previous video clip. Watch_dog detects video stop
by watching the field_cnt variable. When video
stops, the host stops reading the FIFO and the LCODE
interrupt stops occurring. This causes field_cnt to
stop changing. If field_cnt does not change after two
field times, watch_dog concludes that video has
stopped coming in.

fldsiz.dsp

The fldsiz module updates variable sportints ,
which is proportional to compressed field size, on each
Last Code (LCODE) interrupt. Despite some obsolete
comments in early versions of the code, sportints is
unscaled. It is just the raw interrupt count and must be
scaled into bytes by the user routine. The other vari-
ables in fldsiz are either local scratch variables or a
debug “history buffer” like fieldsz , and are not used
outside the fldsiz module. If compressed field size is
measured by other means, software changes will be
confined to this module.

Serial Port 1 (SPORT1) is used by the EZ-KIT monitor to
load code and dump memory to the host, whereas the
Bin Width Calculator uses SPORT1 to count FIFO read
strobes. The fldsiz_start entry saves the settings of
all the SPORT1 control registers and the fldsiz_stop

routine restores them so the monitor will function after
a bin width calculation run and dump ram variables for
debug and test. For debugging in the software simula-
tor, setting the ISCLK bit in the SPORT1 control register
causes simulated SPORT1 interrupts to occur. To func-
tion in real hardware the ISCLK bit (Internal Serial Port
Clock) must be clear, to allow the external FIFO read

strobes to clock the serial port. The fldsiz routine pro-
grams SPORT1 for 16-bit words, which means SPORT1
will generate the RX data ready interrupt after 16 SCLKS
(16 FIFO read strobes).

Routine cntpara services the SPORT1 RX data ready in-
terrupt. It merely bumps variable intaccum on each en-
trance. The other code toggles a debug bit that can be
observed with an oscilloscope to show that the interrupt
is unmasked and active, and that FIFO reads are actually
being seen by the program.

Routine newfield services the LCODE interrupt. On
each interrupt it copies intaccum into sportints and
resets intaccum . Then it calls bwcalc to update the
servo loop. Newfield currently uses Data Address Gen-
erator (DAG) registers I2 and M2 to write the debug
buffer fieldsz . It does not save the register contents in
memory when it returns from interrupt. Should some
other code alter I2 it could cause trouble. A released ver-
sion of sport0.dsp might want to disable the fieldsz

writes for safety’s sake.

Sportints needs proper scaling to yield field size in
pixels. Scaling must account for the 16:1 division done
in the serial port, the two pixels per 32-bit long word,
and the 4:1 hardware divider placed between the FIFO
read strobe and the serial port SCLK pin.

sport0.dsp

Sport0 handles reception of ADV601 statistics and trans-
mission of bin width and reciprocal bin width register
data. As the name implies, it uses Serial Port 0 (SPORT0)
for the task. Sport0 writes recvflg and xmitflg to let
the rest of the system know when statistics read (re-
ceive) and bin width write (transmit) is active. The flags
are nonzero while transmit or receive is going on, and
zero when inactive. Pidbwc.dsp (main) uses recvflg to
start up transmission after the last statistics register is
read. Statistics are placed into array stats601 and bin
widths are transmitted out of array bw_recip_bw .

Routine sport0_start is the one-time initialization
routine. It loads the SPORT0 control registers, initializes
variables and handles the first field problem. The sys-
tem does not know which compression ratio is required
until it can see the compression ratio register. The com-
pression ratio register will not be available until the first
statistics read occurs. Therefore, sport_start initial-
izes the compression ratio register to a reasonable num-
ber to avoid trouble that might occur should the system
try to process a random value of compression ratio.

Routine rite-reg is called by pidbwc.dsp (main) to
start up bin width register transmission. The advanced
“autobuffering” feature of ADSP-21xx family serial
ports is used to more input directly to data ram without
processor intervention. Rite_reg loads the Data
Address Generator (DAG) registers needed for auto-
buffering, turns on autobuffering, loads only the first

–7–

AN-524

word of the bw_recip_bw array into the transmit data
register and returns. The serial port hardware will push
the entire array out of the serial port with no more pro-
cessor intervention and issue the TX data done interrupt
when done. The interrupt will transfer control to the
rite_reg_done routine. This code just turns off
autobuffering and clears the transmit flag.

Routine read_reg is the inverse of rite_reg . It uses
the same DAG registers to autobuffer receive the statistics.
It is hooked to the DSP interrupt and thus automatically
starts on every field. After starting up the autobuffered
receive, read_reg returns control. When the stats601

buffer is full (last statistic is read) SPORT0 will create the
RX data ready interrupt which is hooked to routine
read_reg_done . This code, like rite_reg_done , shuts
down autobuffering and clears recvflg to let main
know it can start up. To improve servo loop response,
read-reg-done will zero the servo loop error integrator
should the compression ratio change. Otherwise, a large
error built up over many fields might take an unreason-
able length of time to respond to the new target com-
pression ratio.

servo.dsp

This module does a textbook Proportional-Integral-De-
rivative (PID) servo loop. The Compression ratio register
gives the routine the target bits per pixel. This register is
written by the host through the ADV601 parallel host
port, and passed to the DSP via the serial link. Module
Sport0 receives the compression ratio register contents
and makes it available to servo.dsp in the first word of
array stats601 . Variable sportints from fldsiz.dsp

tells servo.dsp how big the last compressed field really
was. Servo.dsp converts both the bits-per pixel com-
pression ratio register and interrupt count into pixels
per field, scaled down by 8 (3-bit right shift) to avoid
overflow in 16-bit arithmetic. Symbol TGT SCALE de-
fines size of this scaling shift.

After normalizing bit rate target and interrupt count into
a common scale, the bit rate error (variable err) is com-
puted by subtracting actual field size from target field
size. If err is positive, the compressed field was too
small, if err is negative, the compressed field was too
big. After calculation of err , the module computes the
derivative of err by subtracting the previous value of
err from the new value of err and storing the result in
variable err_dir . It also computes the integral of err

by adding err to variable err_int . Hardware satura-
tion in the ALU is required to prevent arithmetic over-
flow from wrapping around. If err , or especially
err_int , gets large, it is OK to peg out at full scale plus
or minus, but wrapping around from plus to minus is a
disaster that will cause sustained full-scale oscillation of
the bit rate.

The err , err_dir and err_int computation is a critical
section done with interrupts locked out. The error inte-
gral variable is a persistent long term history type state
variable. When the video changes, this history becomes
invalid, requiring an integrator reset to zero. This reset is
done from interrupt. Locking out interrupts prevents in-
terrupt service routines from zeroing the variable in the
middle of the read-modify-write sequence which would
nullify the reset. A second reason for locking out inter-
rupts is to prevent interrupt routines from unexpectedly
running with the ALU hardware saturation feature ON. I
believe that interrupt service routines will in fact func-
tion properly with ALU saturation ON or OFF, but it is
better to be safe than sorry.

Next output variable scrunch is computed from the fol-
lowing formula.

scrunch = loop_gain × err + int_gain × err_int + dir_gain ×
err_dir (1)

Scrunch goes to the bin width curve generator. Full
scale positive will select a maximum bit rate, minimum
compression set of bin widths. Full-scale negative se-
lects the opposite (min bit rate). Intermediate values of
scrunch cause the curve generator to interpolate inter-
mediate compromise curves somewhere in-between the
max and min compression curves.

The three gain terms are scaled 16.8 (8 bits of integer,
8 bits of fraction). Unity is 256 (100 Hex). This permits
each of the three terms to either amplify or attenuate
their contribution to the final answer. The MAC is used
to do the multiply and accumulate the sum 32 bits wide.
After doing the three multiply accumulates, the 32-bit
MR register hardware saturation instruction (if MV sat
MR) is executed, but probably not needed. The program
now rescales the 32-bit answer into a 16-bit variable. It
does this by picking the middle 16 bits out of the 32-bit
MR register. The program does an 8-bit left shift and
takes the high order word. Overflow is checked by shift-
ing the top nine bits of MR into the extension register
MR2. If they are not all the same (zero or one) then
scrunch has overflowed and must be saturated.

To aid debugging, servo saves (but never uses) a second
copy of the error integral called back_int . This can be
dumped after a video compression run to see the last
value of err_int . Fldsiz.dsp is constantly looking for
end of video to zero out err_int , meaning that
err_int will always read zero after a compression run.
The module also writes the values of err_int to circu-
lar buffer debug, to permit post compression of analysis
of servo loop transient response. Both features may be
deactivated to save space. The conditional SWEEP fea-
ture disables the entire feedback loop and sweeps
scrunch from minus full scale to plus full scale to check
the open loop response of the system.

–8–

AN-524

P
R

IN
T

E
D

 IN
 U

.S
.A

.
E

31
70

–.
5–

2/
98

curve.dsp

Module curve.dsp has a pair of 42 element bin width
register curves (arrays max and min) stored as con-
stants in program memory. For each of the 42 bin width
registers curve.dsp computes the value from Equation 2
in the DO interp loop.

bin width[i] = scrunch × min[i] + (1 - scrunch) × max(i) (2)

This creates an output bin width curve that is a linear
interpolation between the two extremes. Then the recip-
rocal bin width values are computed with Equation 3 in
the DO recip loop.

Recip_bw[i] = 1 / bin width[i] (3)

The results are placed in array bw_recip_bw for
sport0.dsp to transmit to the ADV601.

Testing and Tuning Plotting Performance

FIELD NUMBER

B
IT

S
 P

E
R

 P
IX

E
L

2

0
1 3991571 1141 1711 2281 2851 3421

1.8

0.8

0.6

0.4

0.2

1.4

1

1.6

1.2

Figure 8. Beauty Video at 1 Bit per Pixel

The Raw2avi program can be used to measure the per-
formance of the Bin Width Calculator. While doing its
primary job of converting raw ADV601 video into video-
for-windows.avi files, the program finds the size of ev-
ery field in the compressed video (.601) file. Raw2avi
records the field number, the field size, the compression
ratio and the number of bits per pixel of each field in a
side disk file named vid_siz.dat . The file is in ASCII,
and the following plot was generated from the side file
using a spread sheet. The target bit rate was 1 bit per
pixel. The input video was the Analog Devices
Beauty.601 file (distributed on the Videolab kit CD-
ROM). Variable loop_gain was 8 (800 Hex after scal-
ing). Int_gain and dir_gain were zero. Each scene

change causes an abrupt bit rate change. The narrow
spikes are only one field wide, corresponding to the one
field delay around the feedback loop.

Tune Proportional Gain First with No Integral and

Derivative Gain

PID servo loops are tuned by adjusting the loop gain for
best performance. Tune the gains one by one, propor-
tional first. Set the integral gain and derivative gain to
zero. Increase the proportional gain until the system os-
cillates and then back off a reasonable amount. Then re
check for loop stability at high and low bit rates, and on
a variety of video material. Measure the peak and aver-
age bit rate errors over a representative video sample.
Then, attempt to improve the performance with integral
gain. Integral feedback will improve long-term accuracy
at the expense of transient response. Finally try deriva-
tive feedback to improve transient response. The
changes in loop performance are hard to observe by
eye, you really need a numerical figure of merit to guide
your tuning efforts.

FURTHER IMPROVEMENTS

After servo loop tuning, a smarter program might take
advantage of the statistical data to eliminate those one
field wide spikes that occur on scene change. One
scheme might maintain a running average of all the 42
sum of squares figures. Upon each statistics update
compare the new statistics with the running average of
prior statistics. A radical difference indicates a scene
change. Upon scene change the servo module might
just ask for heavy compression for the next field to avoid
data over run. Or the “statistics difference” signal just
developed might be fed into the servo module in place
of the computed err_dir signal. The statistics see a
scene change one field earlier, and thus allow the servo
module to anticipate a change in bit rate before it hap-
pens. The present computed err_dir signal is always
one field behind the video.

The program might compute the 42 differences between
this sum-of-squares and the last sum-of-squares. It
should then square or absolute value the 42 differences
(to prevent plus and minus differences from canceling
each other) and sum them to obtain a single measure of
image “change.” If this number is then divided by the
sum of all 42 bin width registers is will be normalized in
a useful fashion.

The present program changes the bin widths on every
field. The video might look better if field one and field
two were always quantized with the same bin width
numbers.

