
Enginner To Engineer Note EE-82
Technical Notes on using Analog Devices’ DSP components and development tools from the DSP Division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com, FTP: ftp.analog.com

a

Using an ADSP-2181 DSP’s IO
Space to IDMA boot another
ADSP-2181.

Contributed by J. O.
Last Modified 10/28/97

This application note describes an
example hardware and software interface
between the Internal DAM (IDMA) port of the
ADSP-2181. Additionally, this application note
shows how a host DSP can boot a target DSP
using the IDMA port. As each specific system
design has it’s own requirements and
challenges, this application note does not
presume to provide the only possible solution.
Rather, it is meant to provide the system
designer a flexible framework of ideas that can
be tailored to meet individual system
requirement .

IDMA Operation
The host DSP can gain access of the

target ADSP-2181’s internal memory through the
target’s IDMA port. Any host processors
accessing the target ADSP-2181 through IDMA
can treat the target DSP as a memory mapped
slave peripheral, and can have access to all of the
target’s internal Data Memory (DM) and Program
memory (PM), excluding control registers. The
adsp-2181’s IDMA port consists of a 16 bit
multiplexed address/data bus (IAD15:0), a select
line (/IS), IDMA address latch (IAL), read (/IRD),
write (/IWR), and acknowledge (/IACK) signals.
The host DSP is responsible for initiating all data
transfers. The target DSP memory address is
loaded into the IDMA Address register (IDMAA).
This register contains the 14 bit internal memory
address, along with a bit to specify the type of
transfer: 24 bit Program Memory opcodes, or 16
bit Data memory data. The IDMAA register can be
initialized by either the target DSP or by the host
DSP. The host can initialized this register by
performing an address latch cycle. An address
latch cycle is defined by the host asserting the IAL
signal, and then transferring a 15 bit (14 address
bits plus 1 destination memory type bit) value on
the IAD pins. To streamline the transfer of large
segments of opcodes or data, an Address Latch
Cycle does not need to be performed for each
IDMA access. Instead, once latched, the address

is automatically incremented after every IDMA
word transfer. As the IDMA port has a 16 bit bus,
24 bit transfers require two host accesses. The
first access transfers the most significant 16 bits,
the second access transfers the least significant 8
bits, right justified, with a zero filled upper byte.
IDMA address increments occur after the entire 24
bit word has been transferred for a PM transfer, or
after the entire 16 bit data word has been
transferred for a DM transfer

Booting the DSP
The IDMA Port on the DSP can be

used to boot load the DSP on power up. This
eliminates the need for a separate EPROM for
the DSP. On the ADSP-2181, booting is
controlled through the use of the MMAP and
BMODE pins. Booting through the IDMA port
is enabled by holding the MMAP pin low, and
the BMODE pin high. With this signal
combination, on RESET, the DSP does not
activate its external address bus to access an
EPROM. Instead, the DSP expects a host to
begin IDMA transfers to fill its internal Data
and Program memories. This process consists of
the host performing standard IDMA instruction
and data transfers. Booting is terminated when
the DSP restart vector at DSP Address
PM(0x0000) is written. An efficient boot
loading sequence would consist of the host
filling the DSP’s internal Program Memory
starting at location PM(0x0001), and using the
automatic address increment feature on the
IDMA port to speed the transfer of code block in
ascending address order. The host can then
initialize data memory. When all initialization is
complete, the host should then initialize the
DSP’s restart vector and DSP program execution
will commence.

Enginner To Engineer Note EE-82
Technical Notes on using Analog Devices’ DSP components and development tools from the DSP Division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com, FTP: ftp.analog.com

a

Interface Hardware Design

The IDMA port of the target DSP is
mapped into two locations in the host ADSP-
2181’s IO space. On location is used by the host
to latch the address that an IDMA write would
target. The other location is used when
transferring data an instruction information. The
target DSP has been configured for IDMA boot,
the MMAP=0 and the BMODE=1.

Minimal logic is required to connect
the external bus of the host ADSP-2181 to the
target’s IDMA port. The only external logic
that is required is a singular or gate, which is
used to ensure that IAL and /IWR are never
asserted at the same time. This is achieved by
using the A) and /WR lines from the host as
inputs to an OR gate, whose output is then
connected to /IWR on the target DSP. A0, from
the host, is connected to the address latch signal,
IAL, on the target. This connection allows the
host to commence an address latch sequence by
writing to an address that contains bit 0 in the
host memory. The write strobe, /IOMS, is
connected to /IS, so that any write to the IO
space of the host will trigger the write strobe of
the target DSP’s IDMA port. The 16 data lines
form the host’s IO space (D8-D23) are directly
connected to the IAD data bus on the target
ADSP-2181. The host will use this bus to
transmit the DSP memory addresses, as well as
transfer data to the DSP.

Generating “Boot” Code

The ADSP-21xx family operates on 24-
bit instruction opcodes. The IDMA port can only
accept 16-bit values. To transfer instruction
opcodes through the IDMA port, the most
significant 16 bits transferred first, followed by
the least significant 8 bits, right justified.

DSP Executable files are produced by
the ADSP-21xx Family Linker. The Linker
takes object files generated by the Assembler
and C Compiler, places them within the memory
architecture defined by the system architecture
file, and generates a DSP executable (.EXE). A
detailed description is available in Appendix B

of the ADSP-2100 Family Assembler Tools &
Simulator Manual.

Since the executable file contains 24 bit
DSP opcodes, the file needs to be re-formatted to
adhere to the IDMA port’s 16 bit data
requirement. First, it is necessary to remove the
place holders and formatting headers from the
opcodes from the .exe file.

The ADSP-2100-Family .EXE format
separates Program Memory and Data Memory
segments on a module-by-module basis. The
executable format has the following elements:

@PA <---- Start of PM RAM
Module
0000 <---- Starting address
123456 <---- First Opcode
789abc <---- Second Opcode
def012 <---- Third Opcode
 : :
#12345678 <---- End-of-module specifier
@DA <---- Start of DM RAM
segment
0000 <---- Starting address
1234 <---- First data word
5679 <---- Second data word
 : :
 : :
#12345678 <---- End-of-module specifier

After the place holders have been
removed, the 24 bit opcodes need to be
reformatted into 2 16 bit words. The first the 16
MSBs and the second with the 8 LSBs with
leading zeroes. Note, the usage of the PX
register is greatly helpful for implementing this
procedure, as seen in the attached code.

Enginner To Engineer Note EE-82
Technical Notes on using Analog Devices’ DSP components and development tools from the DSP Division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

a

TOPICS FOR FURTHER DISCUSSION

Hardware Signaling

In many instances, it may be desirable for the host and DSP processors to have additional
avenues of communication. The host can use one of its programmable flags as an output attached to a
hardware interrupt on the DSP. With this method, the host can alert the DSP prior to a transfer, or inform
the DSP that a transfer has been completed. This can be especially useful because there is no interrupt
associated with IDMA operation on the ADSP-2181. The DSP can likewise use a programmable flag as
an output to signal the host if there is new data for the host to use, or if new code is required for
download.

Multiple DSP Processors

In this application note, we focused on connecting a single ADSP-2181 to a microprocessor. This
scheme can be expanded to multiple DSP processors without too much trouble. In a multiple DSP system,
all IDMA lines except IS and IACK can be bussed together. Multiple IS lines are needed to select each
individual DSP processor, and multiple IACK lines are needed to monitor the activity on each individual
DSP processor. Each DSP processor needs two micro controller memory space addresses assigned to it,
and that address assignment used to assert the appropriate IS signal. Each DSP processor can then be
accessed individually.

References
ADSP-2100 Family User’s Manual, Third Edition (9/95), Analog Devices, Inc.
ADSP-2100 Family Assembler Tools & Simulator Manual, Analog Devices, Inc.
ADSP-2100 Family EZ-Kit Lite Reference Manual, Analog Devices, Inc.

/**/
/*This program transfer data from a master ADSP-2181 to a slave ADSP-2181
*/
/*through the IDMA port
*/
/**/
.MODULE/abs=0x0000 idma_transfer;
.CONST length =68; {decimal length of vector}
.VAR/PM/RAM x_input[length];
.INIT x_input: <xin.dat>;

JUMP start; NOP; NOP; NOP; {Interupt vector table}
RTI; NOP; NOP; NOP; {No interrupts used}
RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;

Enginner To Engineer Note EE-82
Technical Notes on using Analog Devices’ DSP components and development tools from the DSP Division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

a

RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;
RTI; NOP; NOP; NOP;

start:
AX0=0x0000;
DM(0x3fff)=AX0; {Sys Control reg, PM wait states off}
DM(0x3fe6)=AX0; {PF control reg, all PF inputs}
DM(0X3FFE)=AX0; {# of wait states for address 0-1ff}
L6=0; {length of the data buffer}
I6=^x_input; {starting point of data to be transferred}
M6=1; {increment amount}
MODIFY(i6,m6); {pointer init to 2nd value of vector}

/***************address latch to 0x0001 **/

CALL check_ack; {check to see if target is ready to receive}
AX0=0x0001; {starting address to write at in the slave}
IO(0x0001)=AX0; {writing to this address will toggle both the}

{/IS and IAL lines on the slave, additionally,}
{this will send the address to be latched}

/***************write all data, starting at address
0x0001*************************************/

CNTR=length-1; {counter set to #words to be transmitted}
DO loop1 UNTIL CE;
CALL check_ack; {check to see if target is ready to receive}
CALL format; {format data for transfer}
IO(0x0100)=AY0; {/IWR and IS asserted, the first 16 msb of}

{data are put onto IAD 0-15}
CALL check_ack; {check to see if target is ready to receive}
IO(0x0100)=AY1; {/IWR and IS asserted, 8 lsb of data, right}

{justified with leading zeros are put}
{onto IAD 0-15}

loop1: NOP;

/***************latch to address 0x0000**/

CALL check_ack; {check to see if target is ready to receive}
AX0=0x0000; {starting address to write at in the slave}
IO(0x0001)=AX0; {writing to this address will toggle both the}

{/IS and IAL lines on the slave, additionally,}
{this will send the address to be latched}

/***************write to address 0x0000**/
I6=^x_input; {point to beginning of data buffer}
CALL check_ack; {check to see if target is ready to receive}

Enginner To Engineer Note EE-82
Technical Notes on using Analog Devices’ DSP components and development tools from the DSP Division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

a

CALL format; {format data for transfer}
IO(0x0100)=AY0; {/IWR and IS asserted, the first 16 msb of}

{data are put onto IAD 0-15}
CALL check_ack; {check to see if target is ready to receive}
IO(0x0100)=AY1; {/IWR and IS asserted, 8 lsb of data, right}

{justified with leading zeros are put}
{onto IAD 0-15}

idle;
/**/
/*The "format" subroutine pre-formats the 24 bit wide program memory data into 16 bit wide data. The
*/ /*16 most significant bits are stored in AY0 and the 8 least significant bits are stored in AY1, right
*/
/*justified with leading zeroes.
*/
/**/
format: AY0=PM(I6,M6); {the 16 MSBs are stored in data register AY0}

AY1=PX; {the 8 LSBs are stored in data register AY1}
RTS;

/**/
/*The "check_ack" subroutine checks to see if the /IACK line is low */
/**/
check_ack:

AX0=dm(0x3fe5); {Poll PF1, which is connected to /IACK}
AR=TSTBIT 1 of AX0; {corresponds to PF1}
IF NE JUMP check_ack; {if not ready, check /IACK again}
RTS;

.endmod;

Enginner To Engineer Note EE-82
Technical Notes on using Analog Devices’ DSP components and development tools from the DSP Division
Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com

a

ADSP-2181
Host

ADSP-2181
Target

/IOMS /IS

A0 IAL

OR
/WR

/IWR

D8-23 IAD0-15

 SYSTEM BLOCK DIAGRAM

