
Engineer To Engineer Note EE-100
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 1999, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products
or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders.
Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog
Devices regarding the technical accuracy of the content provided in all Analog Devices’ Engineer-to-Engineer Notes.

a

ADSP-218x External
Overlay Memory
By G. Y.

What do I do when I need more
memory than what is given on the
DSP chip?
The ADSP 2181 contains on-chip 16k x 24 program
memory and 16k x 16 data memory. What happens
when 16k of program memory is not enough for an
application? The simple solution is to add more
memory. This is where the flexibility of the ADSP
2181 comes in. The ADSP 2181 has to ability to
access up to 2 pages of external overlay memory of
both 8k for both program memory and data
memory. Now, the DSP still contains 16k of
program memory and data memory but the user
can access up to another 16k of program memory
and another 16k of data memory. Refer to PM/DM
Overlay & I/O Memory Expansion Board for
ADSP 2181 EZ-KIT Lite written by G. Yi.

How do I use external overlay
memory?
In order to use external overlay memory, one must
remember how the memory is organized. Memory
organization is controlled by the MMAP pin and the
overlay bit. When MMAP=0, the 16k of program
memory is divided into two 8k segments, producing
an overlay page 0 for internal memory and pages 1
and 2 for external access. The lower segment of
program memory, from address 0x0000 to 0x1FFF,
is always internal memory. The upper segment of
program memory, from address 0x2000 to 0x3FFF,
is where the overlay pages reside. The overlay bit
controls which overlay page is active. For program
memory, the PMOVLAY register controls which
program memory overlay the user is accessing. If
PMOVLAY=0, the user is accessing internal

memory. If PMOVLAY=1 or 2, the user is accessing
external memory. When PMOVLAY=1, the external
program memory address range from 0x0000 to
0x1FFF. When PMOVLAY=2, external address
range from 0x2000 to 0x3FFF. The same applies
toward data memory overlays. The same technique
applies to external data overlay memory. Using the
DMOVLAY bit, a user can control which overlay
page is being accessed. Just like internal memory,
external data memory is 16 bits wide and external
program memory is 24 bits wide. The difference
between data memory overlays and program
memory overlays is the memory organization.
Instead of accessing the upper portion memory,
address 0x2000 to 0x3FFF as the overlay pages, the
lower 8k segment of memory is used for data
memory overlays.

If All The Data Lines and Address
Lines are Multiplexed, How Come
Only Addresses 0x2000 to 0x3FFF are
used?
When using overlays, only 8k segments can be
accesses at one time. The DSP only uses the 13
least significant bits, meaning only address lines
A:12 to A:0. The 14th address lines determines
which overlay page is being used. If overlay page 1
is being used then address line 13 is set to 0. If
overlay page 2 is being used then address line 13 is
set to 1. This occurs for both program and data
memory overlays.

Can I use external memory to run
code?
Yes. Just like internal program memory, external
program memory is also 24 bits wide, having the
ability to fit code in it. External data memory are 16
bits wide having only enough room to fit data. Since
external memory share address and data lines, it is
the programmer’s responsibility to keep track of
which overlay page the DSP is accessing. It is
hazardous to change the overlay bit while running
code in an overlay page. If for any reason, the
overlay bit changes while code is running in an

EE-100 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com

overlay page, the program might continue executing
code, in a different overlay page, which might be in
the middle of a loop. This will cause errors. For
safety reasons, it is advised that only the routines
lying in internal memory should be the only ones
controlling the overlay bit. After the overlay page is
changed, the program can jump to whatever routine
is located on that overlay page. Then, after the
routine is finished, it should jump back into
internal memory.

How can symbols share the same
address?
Unlike, data or code, symbols do not actually sit
inside the actual memory cell. Symbols are used so
that code can reference addresses with names
instead of numbers. But now, external overlay
memory is involved. As mentioned, external
overlays share the same addresses and also, code
can be run from external overlay. Because of this,
different routines will need to share the same
addresses. Since, the linker does not recognize
physical overlay memory, it will output errors if
different code modules are being linked to the same
address. For example, if an application involves
three different routines, routine1,
routine2, and routine3, all starting at address
0x2000, errors will occur because the linker cannot
place three different symbols at the same address.
In order to resolve this problem, the newest linker,
version 2.3 allows different modules to belinked to
the same address. The readme file that comes with
the latest linker
explains the how the linker is used to have different
modules reside at the same address.

How can I load code into external
memory?
The new 6.x linker conains additional
enhancements that will BDMA transfer routines
from the EPROM to internal memory and then
transfer the data from internal to external memory.
Using the new linker, routines can be linked to the
same address and also an overlay table is created in
data memory. The table consists of where the
routines will lie in the EPROM. The splitter
initializes the table with the appropriate data so
that the kernel is able to know where to start the
BDMA transfer.

