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Digital Fir Filters Without Tears
by Bill Windsor and Paul Toldalagi

Digital filters once required specialized design techniques, high-
performance costly hardware, and complicated software to imple-
ment; for these reasons, they found only restricted application.
Today, in sharp contrast, the availability of low-cost high-speed
digital signal-processing ICs, such as multipliers and multiplier/
accumulators, combined with easy-to-use standardized design
procedures, has dramatically simplified filter implementation.
Consequently, if your applications require filters with rolloffs in
excess of 24 dB/octave, you should include digital filters in your
design repertoire.

In these pages, we will compare digital and analog filters, discuss
the various digital filter architectures, and—as an example—show
you a step-by-step method of designing FIR (non-recursive) fileers.
A set of references will show you where to find information on top-
ics only touched on lightly here.

COMPARE DIGITAL AND ANALOG FILTERS

Digital filters increasingly find their way into modems, radars,
spectrum analyzers, and speech- and image-processing equipment,
and for good reasons: Compared to analog filters, digital designs
offer sharper rolloffs, require no calibration, and have greater sta-
bility with time, temperature, and power-supply variations. Sim-
ple software changes can alter a digital filter’s response in real
time, creating so-called “adaptive filters,” whereas analog filters
usually require hardware changes.

But digital filters do not satisfy every application. Analog tech-
niques are usually most cost-effective in designs calling for rolloffs
of up to about 24 dB/octave. As rolloff requirements exceed 24 to
36 dB/octave, however, digital filters increasingly make more
sense. In fact, in applications calling for such steep rolloffs, many
designers find digital filters significantly easier to develop. Pro-
totypes can be easily altered through software changes. Also, soft-
ware simulations of digital filter designs reflect the exact filter
performance, whereas computer simulations of analog filters can
only approximate true filter performance, since the parameters of
analog filters are sensitive to component vaiues that are initially
inexact and can vary substandally.

DIGITAL FILTERBASICS
Common digital filter designs fall into two basic categories—non-
recursive (finite impulse-response, FIR) and recursive (infinite im-
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pulse-response, IIR). Besides straightforward IIR designs, there is
a growing interest in types embodying what is known as a lactice
topology. But before examining these digital filter types, let us re-
view some digital filter basics.

Digital filters are not as difficult to understand as you might at first
think. A previous Analog Dialogue article introduced the subject
to our readers (Vol. 17, Number 1, 1983, page 3); the references
listed at the end of both that article and this one can provide great-
er detail.

Although filtering is often required for smoothing signals in the
time domain, most designers understand the operation of a filter
best in the frequency domain. The spectrum of the input signal
is multiplied by the frequency response of the filter to produce
an output signal with an altered spectrum. This multiplication in
the frequency domain is equivalent to convolution of the wave-
form and a response function in the time domain. What then is
convolution?

To understand the process, first consider a transfer function, H(f),
with an ideal magnitude graph in the frequency domain as shown
in Figure 1a. The function H(f) responds with unity gain to signals
having frequency components from 0 Hz to f, Hz, where each
frequency component is simply a cosine wave at a particular fre-
quency. For instance, the signal, cos(2w3t), represents a unity-
amplitude frequency componentatf = 3 Hz.

Figure 1b illustrates the spectrum of a signal, X(f), whose time
value is cos(2wf, t) + cos(2wf; t). X(f) therefore represents the sum
of two equal components at f; and f;. If you want to extract the
f, component, leaving behind the f; component, you could simply
pass the X(f) signal through a low pass fileer. In face, H(f) depicts
just such a filter, with a cutoff frequency of f,. Since H(f) equals
1 at f, and O at f5, multiplying H(f) by X(f) gives you 1 x cos(2nf,
t) + 0 % cos(2f, t), or simply cos(2xf, t).

So far, we have been discussing continuous functions of time.
However, in digital filters, we are dealing with sampled data,
where a function of time consists of a finite number, k, of discrete
values, x(n), per second, where k is the sampling rate and n/k is
the discrete variable corresponding to time. Thus, a cosine
waveform, in discrete time, is expressed as cos(2wfn/k).
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The continuous Fourier transform provides a means for mapping
continuous functions of time into the continuous complex fre-
quency domain, and the inverse Fourier transform maps functions
of frequency into the time domain. Similarly, the discrete Fourier
transformation maps discrete functions of time into the discrete
frequency domain, and its inverse transforms discrete functions of
frequency into the discrete time domain.

If the function of frequency is the product of two functions—for
example, the frequency content of a signal and the transfer func-
tion (i.e., the frequency response)—the corresponding time func-
tion is the same as the convolution of two functions in the time
domain—i.c., the signal’s time waveform and a time-response
function, determined by the transfer function.

Thus, Fourier’s theorem, which equates multiplication in the fre-
quency domain to convolution in the time domain, provides a
means of calculating the time response directly. As a consequence,
the discrete-time convolution:

y(n) = [h «x}(n) (1)

is equal to the sum of the products of the signal and the frequency
response, i.e.,

N
y(n) = D, hm)x(n - m) @

m=1

for all values of n.

Equation 2 represents a series of multiplications and additions,
which, if performed in a particular order, will automatically treat
the input signal x(n) as if it were put through a low-pass filer. The
equation assumes that h(n) is zero form < 1 and for m > N, which
happens to always be true for FIR filters, where N is the number
- of samplesin h(n).
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Figure 1. Only one frequency component rernains {(c) after
the filter function (a) multiplies the signal at (b).
To perform the calculation of equation 1, using the Fourier
theorem, all you need are the functions h(n) and x(n). These are
the inverse discrete Fourier transforms of H(f) and X(f) of Figure
1. The transform of X(f) is a simple cosine wave, x(n) = cos(2~f,
n/k) + cos(2f; n/k). As discussed in a later section, you can read-
ily calculate the values of x(n) if you know f5, £3, and the sample
rate, k — the rate at which your analog-to-digital converter is sam-
pling the incoming time-domain signal x(t). You may have a little
more difficulty computing the values of h(n), which are called the
filter coefficients. But several good computer programs are avail-
able to help out, including one from Analog Devices.

To illustrate a practical example of equation 2, consider a 27th
order filter, with N = 27. Then, the filter output value y(30),
which depends on the 27 preceding values of x, will be:

y{30) = h(1)-x(29) + h(2)-x(28) + h(3)-x(27) +
... + h(26)-x(4) + h(27)-x(3).

The physical meaning of this summation is that the filter’s step re-
sponse is synthesized by summing 27 successively delayed versions
of the input step, each multiplied by its own coefficient, in effect
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building an arbitrary step response. For example, if each h(m) is
a gain of Y47, the filter’s response to a step will be a 27-step stair-
case (approximating an analog ramp), followed by constant out-
put; with any input sequence, it performs a 27-interval running
average.

The following sections discuss means for calculating the coeffi-
cients.

DIGITALFILTERTYPES

Figure 2 illustrates FIR and two of the most-prominent IiR digital
filter topologies, the former straightforward and the latter in the
form of a lattice. FIR, or finite impulise response, filters (Figure 2a)
have no feedback terms. Their outputs are a function only of a fi-
nite number of previous input values (x(n)), and they are by defini-
tion nonrecursive. The filter in the example above is an FIR filter.
The IR filters of 2b and 2¢ will be seen to have recursive terms,
in which a value of the output is affected by previous values of the
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Figure 2. Three common digital filter topologies include FIR
{a), IR (b), and lattice type (C).

output (}(n)), as well as by input values. In comparison to the other
types, FIR filters offer:

Stability. FIR filters have no poles in their Z-plane transfer func-
tion. Thus, their output is always finite and stable. IIR filters in
contrast, require careful design to insure stability. Because FIR de-
signs are based on discrete time delays and have no poles, they can
be used to construct filters for which there are no continuous ana-
log equivalents.

Linear Phase Response. You can design FIR filters with linear
phase response — the phase delay of the output signal increases
linearly with the frequency of the input signal. Linear phasc re-
sponse becomes particularly important in applications such as
speech processing, sonar and radar. [IR filters, on the other hand,
have nonlinear phase response. Linear phase response is difficule
to achieve with continuous analog filters.

Ease of Design. Designers find the FIR filter the easiest of the
three forms to understand, design, and implement, especially for
indicial response in the time domain.



Low Sensitivity to Coefficient Errors. This permits FIR filters to
be implemented with small word sizes — 12-to-16 bits for instance.
Typical IR filters need 16-to-24 bits per coefficient.

Accomodates Adaptive Designs. Adaptive FIR filters are com-
pararively easy to implement, by changes to the filter coefficients
in real time, to adapt the filter’s characteristics to external condi-
tions. Adaptive equalization filters in modems, for instance, are
programmed to change their characteristics in response to changes
in the impedance of the transmission line.

[IR* (infinite impulse response) filter outputs (Figure 2b) combine
input values with previous output values, which have been fed
back into the circuit, IIR filters are therefore recursive. As in any
feedback circuit, to avoid instabilities, IR filter designs must avoid
positive feedback with gains equal to or greater than 1. TIR designs
linear phase shift, and they need large coefficient word sizes to
keep rounding errors small and insure stability. Nevertheless, IR
filters have major advantages, including:

Highest Efficiency. IIR designs require fewer filter coefficients,
thereby minimizing the number of multiplications and maximizing
the throughput.

Least Memory Storage. Because the IIR filter has the least
number of coefficients, it requires the least amount of read-only
memory (ROM). For example, a typical highpass design requires
only four coefficients in an [IR implementation, versus 19 for an
FIR equivalent.

Lattice-type digital filters promise greater stability than IIR forms,
with less hardware than FIR types. The newest form of digital fil-
ter, lattice filters presently have rapidly developing design theory.
Although earlier lattice designs were highly sensitive to coefficient
accuracy, recent designs have shown less sensitivity to filter
parameters than the corresponding IIR filter (by 2 to 3 bits!). A
big advantage of lattice filters is that the parameters used in each
of the steps can be used for efficient encoding methods, as in linear
predictive coding (speech).

DESIGNING FIR FILTERS
Specifications and Tradeoffs
Designers specify non-recursive (i.e., FIR) digital filters similarly
to analog filters — 2 maximum amount of ripple in the passband,
a maximum amount of attenuation in the stopband, etc. (See the
adjacent definitions of digital filter terminology.) You will need to
specify the following design parameters:

N, the number of taps in the filter, which equals the number of
filter coefficients

f,, the passband cutoff frequency

f,, the stopband cutoff frequency,

K = (5,/8;), the ratio of the ripple in the passband to the ripple

in the stopband.

Figure 3 illustrates these parameters for lowpass, highpass and
bandpass filters. Designers usually define the units of passband
ripple in dB as 20 logyo (1 + 8,), and the units of stopband ripple,
alsoin dB, as — 20 logyo (8,). Passband ripple typically ranges from
0.001 to 1 dB, and stopband ripple from —10 dB to — 90 dB. Fre-
quencies f; and f, are normalized frequencies, which equal the ratio
of the actual signal frequency to the sampling frequency. Consider,
for example, a filter designed for a sampling frequency of 100 kHz,

*See Johnson, Matt, “Implement Seable IIR Filters Using Minimal Hardware.”
EDN, April 14, 1983, pp. 153-166. : .
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Figure 3. Design parameters defined for lowpass (a), high-
pass (b), and bandpass (c) filters.

a passband cutoff frequency (f,) of 10 kHz, and a stopband cutoff
frequency (f,) of 20 kHz. Then,

f, (normalized) = 10 kHz/100kHz = 0.1

f, (normalized) = 20 kHz/100kHz = 0.2

Note that the normalized frequency axis extends from 0 to only
0.5, since a design in accordance with the Nyquist sampling
theorem requires that a signal be sampled at more than twice its
highest frequency in order to eliminate the possibility of aliasing.

As always, specifying these design parameters requires some
tradeoffs. With a fixed number of filter taps, steeper rolloffs result
in greater ripple. For both steep rolloffs and small ripple, you will
have to increase the number of filter taps, and therefore the filter’s
complexity.

Designing FIR Filters Through Windowing

To design a digital filter, you must first calculate the filter’s coeffi-
cients, h(m), in order to implement equation 2. The two most com-
mon design methods include “windowing” and the Remez Ex-
change algorithm. For almost 95% of design examples, Remez Ex-
change results in a significantly more efficient filter. The Remez
Exchange algorithm has also been coded in Fortran, and is avail-
able from Analog Devices, as noted below.

Windowing methods are useful, however, because of their simplic-
ity, and because they also aid in understanding filtering methods,
so they are well worth examining. Keep in mind, though, that FIR
designs developed through windowing do not perform as well as
those obtained through other methods (see Ref. 7, for instance).

Consider the case of an FIR lowpass filter with stopband attenu-
ation greater than 50 dB, normalized passband cutoff frequency
(fp) of 0.2, and normalized stopband cutoff frequency of 0.3. Fig-
ure 4 plots the filter’s ideal transfer function, H(f). You can obtain
the Fourier series coefficients by solving the inverse Fourier trans-
form by equations 3.
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h(n) = ] H(6*™) &> df
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Figure Sa shows the resulting set of h(n), which extend to % infin-
ity. You next multiply the Fourier coefficients by one of several
window or weighting functions, as illustrated by Figure 5b and Sc.
e
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Figure 4. Idealized low-pass filter transfer function
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Figure 5. In the window method, a filter's Fourier coeffi-
cients (a) multiply a weighting function (b) resulting in{c).
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The weighting function is equal to zero above and below some
value, v, which depends on the number of filter taps, N. Multiply-
ing the Fourier coefficients by the weighting function generates a
finite impulse response approximation to the desired transfer func-
tion, H(f). This guarantees that the Fourier series will converge.

Although several weighting functions will work, Figure 5b plots
the widely used Hamming window. Others include the Kaiser,
Blackman, and Hanning windows (see Ref. 1). After you choose
your window, you can determine the number of coefficients or fil-
ter taps, N, from the desired rolloff band, Af = f, — f,. For the
Hamming window, this rolloff bandwidth relates to filter taps, N,
by the conservative approximation:

Af~4/N (4)
For this design example,

Af=f, — f, = (0.3 - 0.2) = 0.1.
" Thus, N = 4/0.1 = 40, This approximation usually yields 2to §

more taps than needed, so specify N as 36. _
Next, you obtain the filter coefficients, h’(n), of Figure S¢ by multi-
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plying each h(n) by the corresponding weighting function w(n) of
Figure Sb. Since the coefficients are symmetrical about 0, you need
only compute their absolute values (i.c., half the coefficients). The
coefficients describe the windowed function, of the form (sin x)/x,
which is the Fourier transform of the low pass filter of Figure 4.

Remez Exchange Design

For most FIR applications, the Remez Exchange algorithm offers
a more-powerful design technique than the windowing method.*
The Remez Exchange algorithm designs an optimal FIR filter as
defined by the minimax error criterion (Ref. 7 ). The minimax
criterion specifies a filter that, for a given number of coefficients,
minimizes the maximum ripple in the passband.

In general, for a given set of filter specifications, the Remez
Exchange algorithm quickly generates an FIR design with the
smallest possible number of filter coefficients, particularly in com-
parison to the results of the windowing method. Also, passband
rippies all have equal amplitude, as do all stopband ripples. You
designate the ratio, K, of stopband to passband ripple, as noted
above.

The Fortran-coded Remez Exchange algorithm is easy to use. Con-
sider, for instance, the case of an FIR low-pass filter with the fol-
lowing specifications:

Samplierate = 50kHz

f, (actual) = 10 kHz, f, (normalized) = 0.2

f, (actual) = 14 kHz, f, (normalized) = 0.28

minimum stopband attenuation = 40dB

maximum passband ripple = 0.2dB

rippleratioK = 1 (equal ripple in pass- and stop-bands)

The Fortran program then prompts the user for inputs using five
consecutive lines:

Linel:

FILT = number of filter taps or coefficients. Set this equal
to zero if the filter order (number of taps) is not
known, as in this design example.

JTYPE = type of filter (set to 1 for low-pass, high-pass, or
band-pass filters).

NBANDS = number of pass-bands plus stop-bands in the
filter. For a low-pass filter or a high-pass filter as
in this example, NBANDS = 2. A band-pass fil-
ter has NBANDS = 3.

JPUNCH ~ = (normally settozero).

LGRID = number of frequency points used in the Remez
Exchange algorithm. For most applications, such
as in this example, LGRID = 16 suffices. For
high-performance filters with more than 50 taps,
set LGRID to 32.

Line2:

Line 2 contains the normalized frequencies of the pass-band and
stop-band edges. The number of values here equals twice the
number of bands. For the case of the low-pass filter specified
above, the pass-band ranges from 0.0 to 0.2 in normalized fre-
quency, and the stop-band edge spans 0.28 to 0.5 in normalized
frequency. Line 2 therefore carries these four numbers for this de-
sign example.

Line 3:



V,gu/Vins in €ach band. In this exampie, the low-pass filter has unity
gain in the pass-band, and zero gain in the stop-band, so Line 3
contains the numbers 1, 0.

Line 4:

Line 4 specifies the desired relative weights of the two bands. For
this example, specify stop-band ripple equal to pass-band ripple,
denotedbya 1,1 onLine4.

Line 5:

You need Line S only if the number of filter taps needed is un-
known — as in this example (NFILT = 0). This line specifies the
desired pass-band and stop-band ripple in dB. The program then
estimates the number of required filter taps NFILT. Assume in this
case that passband ripple does not exceed 0.2 dB, and that stop-
band attenuation is 40.0 dB. Line 5 therefore includes the numbers
0.2and 40.0.

With these inputs, the Fortran program estimates the filter order
(number of taps) by approximating design relationships between
the filter parameters (Refs. 5 and 6). The result usually falls within
four taps of the correct number needed.

Figure 6 illustrates a typical computer resule. The “filter length,”
determined by approximation as noted above, equals 24 taps. The
“impulse response” gives the filter coefficients, and the next few
lines of Figure 6 simply repeat the program input values for band
1, the pass-band, and band 2, the stop-band. The “desired value”
indicates the desired filter transfer functions in the pass- and stop-
bands. The “weighting” of the ripples is 1.00 in the passband and
1.00 in the stopband. The “deviation™ is the ripple in each band,
which equals 0.011 in the passband and 0.011 in the stopband.
The “deviation in dB” represents the decibel value of the “devia-
tion” numbers. “Extremal frequencies” denotes frequencies at
which maximum passband and stopband ripple occurs.

FINITE INPULSE RESPONSE (FIR)
LINEAR PMABE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALGORITHM
BANDPASS FILTER

FILTER LENGTH = 24

FILTER LENGTH DETERMINED 8Y APPROXIMATION

ssess IMPULSE RESPONSE seses

M( 1) = -0.10748328€-01 = H( 24&)
H( 2) = -0.18704087€-02 = H( 23)
M{ 3) = 0,15718122€-01 = w( 22)
H{ &) = 0.47213142E-02 = W( 21)
Wt ) = -0,25260039€-01 = H( 20)
“{ 8) = -0.13133024E-01 = H( 19}
H{ 7) = 0,81333210€-01 = H( 18)
H( 8) = 0.20084330€-01 = H( 17)
H( B) = ~0.88702514€~01 = H( 18)
W 10) ®» =0,71428084€-01 = H( 13)
Wi 11) 5 0,18081334E€+00 = H({ 14)
H( 12) = 0.83481989€+00 = H( 13)
SAND 1 BAND 2 BAND
LOWER BAND EDGE 0.C 0.2 1
UPPER BAND EDGE 0,200000003 0.,300000000
DESIRED VALUE 1.000000000 0,000000000
WEIGHTING 1.00¢ 1.
DEVIATION 0.011113827 0.011113827
DEVIATION IN DB 0.193075284 -39.082728240
EXTREMAL FREGUENCIES
0.,0000000 0.0418887 0.0807292 0.11979168 0.13582300
0,1873001 0.2000000 0.2800000 ©,2830208 0.32166683
0,38072089 0,3987912 0.4414377

Figure 6. Remez Exchange program output with NFILT in-
itially = 0.

This initial computer run, with N = 24, results in passband ripple
of 0.19 dB, and stopband atténuation-of 39.08 dB, which do not
meet the design specifications. Repeating the computer run, with
successively higher values for N, leads to the acceptable results of
Figure 7, for Nequal to 27.

Hardware Design
Once fully defined, your filter can be readily implemented in hard-

* ware. Figure 8 is a functional diagram of a system implementing

the 27-tap filter defined above, assuming 16-bit words. The
tradeoffs in selecting word size will be discussed later.

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMEZ EXCHANGE ALQGORITHM

BANDPASS FILTER
FILTER LENGTH = 27

sense INPULSE RESPONSE ssede

H( 1) = 0.37283088E-02 = H( 27)
H( 2) = -0.72388127€E-02 = H( 26)
W( 3) = -0.80835225E-02 = H( 23
H( &) = 0.776874030€-02 = H( 28)
H( S) = 0,15834338€~-01 = H( 23)
H( B8) = -0.118487792E-01 = W( 22)
H( 7) = -0.28403830€-01 = M( 21
M( @) = 0.14817096€-01 = W( 20)
K( 9) = 0.%0319808€-01 = Ht 19)
H( 10) = -0.17288791E-01 = H( 18)
W( 11) = =0,978084238-01 = H{ 17)
H({ 12) = 0.19059503E-01 = W( 18)
H( 13) « 0.31338203€+00 = H( 13)
H( 14) =  0.88032B77E+00 = H( 14)
8AND 1 BAND 2 BAND
LOMER SAND EDGE 0.000000000 0,280000001
UPPER BAND EDGE 0,200000003 0.3500000000
DESIRED VALUE 1.000000000 0,000000000
_WEIGHT ING 1.000000000 1.000000000
DEVIATION 0,008034021 0,000834021
DEVIATION IN D8 0.1353468403 -41.078831818
EXTREMAL FREGUENCIES
0.0000000 0.0448428 0.0048214 0.1230000 ).1807143
0.1873001 0.2000000 0.2800000 ©0.2911807 0,3179463
0.3514283 0.3871424 0.4830350 0.35000000

0.4230887

Figure 7. Remez Exchange program output, N = 27taps.

The anti-aliasing filter of Figure 8 minimizes high-frequency signal
and noise components reaching the a/d converter. In many cases,
anti-aliasing filters require rolloffs no greater than 6-24 dB/octave.
The a/d converter samples the incoming analog signal at a rate
equal to about three times the highest input frequency. Although
the Nyquist criterion specifies a sampling rate of at least two times
the highest frequency, conservative design practice dictates a fac-
tor of three. The RAM stores the a/d converter’s output. With a
27-tap filter, you will need 27 RAM locations, each 16-bits wide.

SIGNAL ANTLALIASING
- ALTER
AD
Xin}
CONVERTER RAM
S
CLOCK + !
COUNTER —
PROM — MULTIPUER
M)
] MAC
ACCUMU-
LATOR

ouTPuT
Yin)

Figure8. Digital FIR filter system functional block diagram.
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A PROM stores the filter coefficients determined carlier. You may

need RAM, instead of a PROM, particularly if you wish to imple-

ment an adaptive filter. The number of PROM locations equals the

number of different filter coefficients. Because of symmetry, an

FIR filter has N/2 different coefficients for N even (N is the number

of taps), and (1 + N)/2 coefficients for N odd. A 27-tap filter
_therefore requires a PROM with 14 16-bit locations.

The clock and counter step through the RAM and PROM, present-
ing coefficients and input values to the multiplier. The multiplier/
accumulator combination performs the multiplication and addi-
tion as specified by equation 2, and thus forms the heart of the dig-
ital filter.

Analog Devices offers a variety of multiplier/accumulator ICs
which considerably simplify such digital filter implementations.
The ADSP-1010*, for instance, multiplies two 16-bit numbers and
accumulates the products in a 35-bit accumulator, which includes
3 bits of extended precision to accomodate overflows resulting
from the addition of two or more 32-bit products.

Hardware Details

As a first step in implementing a detailed design, convert the filter
coefficients to 16-bit fixed-point or block-floating point numbers.
In fixed-point arithmetic, for instance, simply multiply the coeffi-
cientsby 2'3.

Next, round off the coefficients to the nearest least-significant bit.
Do not simply truncate the coefficients, since truncation destroys
the accuracy of the filter coefficients, whereas rounding achieves
performance close to the theoretical limits imposed by your word
length. Store the rounded 16-bit coefficientsin PROM.

You also must determine whether a standard uP can implement
the filter, or whether you will need a dedicated high-speed multi-
* plier IC. To determine the required computational speed, multiply
the sampling rate by the number of filter coefficients.

In the above example, a sampling rate of 50 kHz and a filter with
27 taps requires (SOkHz x 27) = 1.35 million 16-bit multiply-
and-accumulate operations per second, or 740 nanoseconds per
combined operation. Few microprocessors can handle such re-
quirements; for instance, the 12.5-MHz version of the Motorola
68000 performs a 16-bit multiplication in 5.6 ps. The Analog De-
vices ADSP-1010 multiplier/accumulator (MAC), however, read-
ily performs a multiply-and-accumulate operation in only 165
nanoseconds, at low cost and with low power gconsumption.

To ensure proper multiplications, the memory-control circuitry
(RAM, PROM, counter) must retrieve the correct combination of
words from memory. The stack and pointers of Figure 9 illustrate
one method. Pointer 2 directs the storage of each new data point
into RAM. For each new sample, the system computes the trans-
formation by incrementing down from pointer 1 and up from
pointer 3 as follows:

h(4)-x(n=3) + h(3):x(n ~2)+h2)x(n=-1) + h(1)-x(n)
+ h(6)-x(n=35) + h(5)-x(n—4).
After computing each sample, pointers 2 and 3 increment; the

pointers reset when they reach the stack boundary. Figure 9b de-
tails the operation.

Next, decide how to handle accumulator overflow. When a filter
performs its multiply-and-accumulate operations, the number of
bits in the accumulator will certainly exceed the 32-bit resolution
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of a single 16 x 16-bit multiplicanion. 1o handle overriow, hrst cai-
culate a reasonable upper bound for the amount of overflow vour
filter could experience. By summing the squares of the filter coetti-
cients, you can estimate a reasonable level of overflow. Compare
this number to the maximum the accumulator can handle.

You can handle accumulator overflow in one of several ways. The
ADSP-1010 MAC provides three additional bits of accumulator
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h2) x{n-2)
w3) xin-1)
a POINTER I POINTER2
Me) ot x(n) g
(MOVING) (MOVING}
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hié) x{n-4)
STARY

INITAUZE THE DATA RAM TO ZERO:
xin}=0, xin-1)=0, ..., nin-5)=0

{
P14+ 1-(P3-0)
(Pt + 2)-(P3-2)

1+ 51 P8

LOCATION
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wmmt«m.mmm
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ACKTO
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[ renromse sum or asove wuureuss Lo nesuLt )

' NOTE3: ¥ THESE POINTERS EXCERD THE STACK BOUNDARY.
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OF THE STACK.

INCREMENT P3
INCREMENT P2

Figure 9. Filter uses pointers (a) to compute convolution as
outlinedin (b).
precision in addition to the 32 bits needed to handle a single
16 x 16-bit multiplication. This suffices for most applications.

Alternatively, you can scale down the coefficients, from i to 5 bits,
at the sacrifice of some accuracy. To scale them down, divide them
by 2 and apply the overflow test described above. Continue the
process until the scaled coefficients pass the overflow test.

Finally, for some applications, you may not want to accomodate
the full dynamic range of the input signal. Therefore, just let the
accumulator saturate at its maximum value.

Occasionally, required multiply/accumulate speeds exceed the
capabilities of even the fastest MAC ICs. In that case, you can com-
bine two or more processors in parallel to increase the throughput.
The circuit of Figure 10 combines two ADSP-1010 MACs oper-
ating in parallel, thus cutting the multiply/accumulate time per
computed point to 75 nanoseconds, which is one-half the normal
150 nanoseconds for a single such component.

Avoid Rounding and Roundoff Esrors

Most digital filter hardware errors result from two sources —
rounding and roundoff. Rounding errors result from the rounding
of filter coefficients, such as those generated in Figures 6 and 7,



OUTPUT Yin)

Figure 10. Paralleling two multiplier/accumulators doubles
throughput.

by a high precision mainframe computer, to the 16-bits of typical
digital filter hardware implementations. As noted earlier, round-
ing produces less error than truncating, but error nonetheless.
Roundoff etrors result from consecutive finite precision mulciply-
and-accumulates. Roundoff errors are more significant than
rounding errors, particularly in high-order filters.

Estimating the required word size to avoid such errors can prove
tricky. Generally, if your design calls for more than 67 dB of stop-

band attenuation or less than 0.05 dB of passband ripple, 16-bit .

words may lead to excessive errors. Such cases may require 24, and
sometimes even 32-bit, word lengths. Software simulation, dis-
cussed in a following section, can help you determine word-length
requirements before you commit your design to hardware.

To illustrate the significance of these errors, Figure 11 compares
simulated performance of 16-bit fixed-point and 32-bit floating-
point 27-tap low pass filters. Although the errors appear slight in
this case, a similar comparison in Figure 12 for a 90-tap filter
shows dramatic differences. For more than 80 dB of stop-band at-
tenuation with 90 taps, more than 16 bits of precision are needed.

Software Simulations _

The flow chart of Figure 13 shows a typical software program for
simulating the performance of your digital filter with a high-reso-
lution computer. You can obtain from Analog Devices a Fortran-
coded version of this program for simulating 16-bit FIR designs,
employmg the ADSP-1010 16 x 16-bit multiplier/accumulator. It
is available from the DSP Marketing Group, under the name, “FIR
16-bit simulation program.”

The simulation repeats the steps in the hardware design process.
It begins by obtaining the filter coefficients h{n) from the Remez-
Exchange computer program, checks for overflow and scales the
coefficients, and obtains the 16-bit fixed-point or floating-point
coefficients, normally stored in PROM.

The program next simulates a digitized input signal array, x(n),

which corresponds to the output of the A/D converter, normally

stored in RAM. The number of values in the array equals the

number of filter taps. Normally, you should begin the simulation

with a cosine wave of frequency 0 Hz, and work you way up to

higher frequencies.

The arithmetic operations of the multiplier/accumulator combina-

tion are readily simulated. The simulation program restricts the

computer’s word size to correspond to the limited precision (16

bits) of your filter's hardware implementation. In Fortran, for ex-

ample, the INTEGER*2 or INTEGER*4 variable type declara-

tions handle this for you.

The simulation program also includes an accumulator overflow
check to verify the effectiveness of the initial coefficient scaling op-
eration. If the computer flags an accumulator overflow, you'll have
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Figure 11. Computer-simulated response of a 27-tap low
pass FIR filter using 32-bit arithmetic (a), and 16-bit arithme-
tic(b).
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Figure 12. Computer simulated response of a 90-tap low
pass FIR filter using 32-bit arithmetic (a), and 16-bit arithme-
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Figure 13. FIR filter simulation program flowchart.
to scale down the coefficients again and re-run the simulation.

The program next computes the filter output values, y(n), by set-
ting up a loop to calculate the transformation of equation 2. For
each cosine input, the program computes N values of y(n), where
N is the number of filter taps.

The program next finds the magnitude of the filter’s output (and
therefore the magnitude of the filter’s transfer function at that fre-
quency), by choosing the largest absolute value from the y(n)
array. This usually comes very close to the actual magnitude of
y(n). But if you need better accuracy, you can pass the N points
of the y(n) signal through a curve-fitting algorithm which gener-
ates a continuous-time signal, y(t).

Once the program computes the output for a cosine wave of 0 Hz,
it can calculate outputs for a range of frequencies. You usually
want it to sweep from 0 Hz to just below the Nyquist frequency
of 0.5 (normalized), in normalized-frequency increments of 0.001.
The resulting plot simulates your filter’s transfer function. If the
plot meets your expectations, you can proceed with the construc-
tion of the hardware. I3

Portions of this article are adapted from an article by the same authors,
which appeared in EDN, March 3, 1983, copyrighted by Cahners Pub-
lishing Company, Division of Reed Holdings, Inc, with permission of
the copyright owner.

FOR FURTHER READING

Analog Dialogue, Volume 17, Number 1 (1983) carried a review
article summarizing the uses of multiplier/accumulator ICsin a va-
riety of DSP applications. Analog Devices has also collected a re-
cently published series of § articles comprising cookbook designs
applying DSP to various common filtering, and control applica-
tions. If you would like reprints of this set of articles, use the reply
card; ask for “EDN series.”
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Ted Dintersmith, and Paul Toldalagi, “Apply Modern Control
Theory to Optimize Digital Systems,” EDN, April 28, 1983, pp.
165-179.

Matt Johnson, “Implement Stable IIR Filters Using Minimal
Hardware,” EDN, April 14,1983, pp. 153-166.

John Oxaal, “Temporal Averaging Techniques Reduce Image
Noise,” EDN, March 17,1983, pp. 211-215.

John Oxaal, “DSP Hardware Improves Multiband Filters,” EDN,
March 31, 1983, pp. 193-197.

Bill Windsor, and Paul Toldalagi, “Simplify FIR-Filter Design
With a Cookbook Approach,” EDN, March 3, 1983, pp. 119-
128.
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FILTER TERMINOLOGY

Attenuation — A decrease in output signal magnitude relative to
input signal magnitude.

Cutoff frequency - The frequency at which the filter’s response
drops below the specified pass-band ripple (1-3,).

Pass-band — The filter frequency range through which signals pass
without more than a specified amount of attenuation.

Stop-band — The filter frequency range through which signals ex-
perience a specified degree of attenuation.

Stop-band attenuation — The minimum amount of attenuation in
the stop-band.

Pass-band ripple — The maximum deviation from the desired out-
put magnitude in the pass-band.

Sampling rate - The rate at which the system samples the input
signal.

Filter coefficients — Numbers representing the inverse Fourier
transform of the filter's transfer function. Coefficients define the
filter's characteristics and form the basis of digital filter implemen-
tations. .

Taps — Taps equal the number of sampled input values processed
by the filter for each outpur point. Taps also equals the number
of filter coefficients, and can represent a measure of the filter delay.




