SHARC Internal Power Consumption Measurements

Last Modified: 6/6/96

There have been many customer inquiries concerning typical power consumption of the SHARC processors. As you all know we only supply a maximum Pint which is based on experimentation. Iddin is measured while executing a radix-2 FFT butterfly with instruction in cache, one data fetch from each block of memory and a DMA transfer from internal memory to internal memory. A similar method of experimentation to try to determine "typical power".

The first issue was to determine what "typical" instructions would be so "typical" power can be determined. A guess was taken. The following is a description of the test cases:

Test Case 1 executes an addition, a subtraction, a PM data access and a DM data access.

Test Case 2 executes a multiplication, an addition, a PM data access and a DM data access.

Test case 3 executes a multiplication, an addition, a subtraction, a PM data access and a DM data access.

Test Case 4 executes a multiplication, an addition and a subtraction.

Test Case 5 executes an addition and a subtraction.
Test Case 6 executes a PM data access and a DM data access.

Test cases were selected assuming "typical" instructions would be associated with number crunching. A jump statement was used to sustain these instructions.

The experiments where performed on an ADSP 21062 rev 2.0 using 3 separate clock rates, $25 \mathrm{MHz}, 33 \mathrm{MHz}$, and 40 MHz . (A rev 0.6 part with a 24 MHz clock was also tested. The results were almost identical to those of the rev 2.0). Vddin was fixed at 5.25 v . The following table describes the results:

The following is a copy of the program used.
\#include "def21060.h"
\#define N 22
.SEGMENT/DM seg_dmda; .VAR buffdm[4] =0x00000000, 0x55555555, 0xFFFFFFFF, 0xAAAAAAAA;
.ENDSEG;
.SEGMENT/PM seg_pmda;
.VAR buffpm[N] =0x4AA14B47, 0x8DF675D4, 0x43D49B8A, 0xD14BA018, 0x406E4387, 0xCDE5483D, 0x83C36DCA, 0x113A7239, 0x805D15C7, 0x363B3B7C, 0xC3B24032, 0x799065C0, 0x07076A2F, $0 \times 762 \mathrm{~A} 0 \mathrm{DBC}$, 0x03A1122C, 0x72C3B5B9, 0x28A1DB6F, 0xB618E025, 0x6BF705B2, 0xF96E0A21, 0x6890ADAF, 0x1E6ED365;
.ENDSEG;
.SEGMENT/PM seg_rth;
nop;
jump start;

.ENDSEG;

.SEGMENT/PM seg_pmco;
start:
$10=@$ buffdm;
b0= buffdm;
$\mathrm{m} 0=0 \times 1$;
18=@ buffpm;
b8= buffpm;
$\mathrm{m} 8=0 \times 1$;
$\mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
$\mathrm{r} 8=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 12=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
call addsub;
addsub:
r7 $=\mathrm{r} 0+\mathrm{r} 4, \mathrm{r} 15=\mathrm{r} 0-\mathrm{r} 4, \mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
jump addsub (db);
$\mathrm{r} 7=\mathrm{r} 0+\mathrm{r} 4, \mathrm{r} 15=\mathrm{r} 0-\mathrm{r} 4, \mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
r7 $=\mathrm{r} 0+\mathrm{r} 4, \mathrm{r} 15=\mathrm{r} 0-\mathrm{r} 4, \mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
mulacc:
$\mathrm{r} 7=\mathrm{r} 0 * \mathrm{r} 4$ (SSFR), $\mathrm{r} 15=\mathrm{r} 8+\mathrm{r} 12, \mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4$
$=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
jump mulacc (db);
$\mathrm{r} 7=\mathrm{r} 0 * \mathrm{r} 4(\mathrm{SSFR}), \mathrm{r} 15=\mathrm{r} 8+\mathrm{r} 12, \mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4$ $=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
$\mathrm{r} 7=\mathrm{r} 0 * \mathrm{r} 4(\mathrm{SSFR}), \mathrm{r} 15=\mathrm{r} 8+\mathrm{r} 12, \mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4$
$=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
mas: $\mathrm{r} 7=\mathrm{r} 0 * \mathrm{r} 4$ (SSFR), $\mathrm{r} 15=\mathrm{r} 8+\mathrm{r} 12, \mathrm{r} 14=\mathrm{r} 8-\mathrm{r} 12$,
$\mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
jump mas (db);
r7 $=$ r0 ${ }^{*} 4$ (SSFR), r15=r8+r12, r14=r8-r12,
$\mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;
r7 $=\mathrm{r} 0 * \mathrm{r} 4(\mathrm{SSFR}), \mathrm{r} 15=\mathrm{r} 8+\mathrm{r} 12, \mathrm{r} 14=\mathrm{r} 8-\mathrm{r} 12$,
$\mathrm{r} 0=\mathrm{dm}(\mathrm{i} 0, \mathrm{~m} 0), \mathrm{r} 4=\mathrm{pm}(\mathrm{i} 8, \mathrm{~m} 8)$;

.ENDSEG;

