
aaaa Engineer To Engineer Note EE-132
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781) 461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

Copyright 2001, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for any
infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog
Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding the technical accuracy of the
content provided in all Analog Devices’ Engineer-to-Engineer Notes.

Placing C Code and Data Modules
in SHARC memory using
VisualDSP++ ™

Introduction
When developing C code for a DSP application, you
often need to explicitly place code and data at
specific addresses in memory.

This EE Note presents two techniques to do this.
The first technique involves editing the LDF files to
explicitly locate entire object files in memory
segments. The second technique shows how to use
the SECTION keyword in your C source code to
explicitly place individual variables and functions in
specific memory segments.

In the pre-VisualDSP releases of the SHARC Tools
(Release 3.3) you could easily place C code in an
alternate memory segment defined in the
architecture file by using the -mpmcode compiler
switch. This switch allowed you to specify which
architecture file segment contained that specific
code or data object file. An example command line
using this switch is shown below:

g21k filename.c -mpmcode=alt_pmco -a alt.ach

In VisualDSP++ the -mpmcode switch is no longer
valid. Instead, users can use one of the methods
described below to achieve the same results.

The job of the C compiler is to translate the user's C
code into assembly code. In doing this, the
compiler needs to place code and data in memory
segments that are defined in the LDF file. The
compiler uses a predetermined set of memory
segments to place code and data modules. The
default LDF file that comes with the VisualDSP++

tools use these memory segments which are listed
and described below:

seg_pmco Default segment name for

code storage.
seg_dmda Default segment name for

data memory global variables
and static variables.

seg_pmda Default segment name for
program memory data
variables.

seg_rth Segment name for system
initialization code storage
and Runtime Header.

seg_init Segment name for Runtime
Initialization storage.

Because the compiler uses these segment names
during compilation, the LDF file must be edited
in order to place code or data in other memory
segments. These changes are made to the
MEMORY and SECTIONs portion of the LDF file.
The example below shows how to manipulate your
LDF file to change the placement of your code.

Code Example

Consider the following 2 code modules:

/* main.c */

extern int sum(int a,int b);
int ext_a=0xa,int ext_b=0xb;

void main(void)
{
 int i=5;

int j=3;
 int total;

EE-132 Page 2
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

i = sum(i,j);
 total=ext_a+ext_b;
 idle();
}

/* ext.c */

int sum(int a, int b)
{
return a+b;
}

Main.c is a code module that will call the function
sum from the file named ext.c. If we were to
compile this code with any of the default LDF files,
all of the code modules would be placed in
seg_pmco, and all of the data variables would be
placed in seg_dmda.

Our goal is to place the external function sum in a
code segment a called alt_pmco, and to place the
two variables, ext_a and ext_b in a code segment
called mem_dmda. There are two ways to do this:
Modify the LDF files, or use the SECTION
keyword in the C source code. We will show
examples of both methods.

Option #1 – Modifying the LDF File
We’ll use this method to change the linker’s
placement of the object file ext.doj.

First, we will add two new segments to the
MEMORY section of the LDF file. The two
memory segments are named alt_pmco (for code
storage) and mem_dmda (for 16-bit data storage –
this will be used later).

MEMORY
{
seg_rth { TYPE(PM RAM) START(0x00020000)
END(0x000200ff) WIDTH(48) }

seg_init { TYPE(PM RAM) START(0x00020100)
END(0x000217ff) WIDTH(48) }

seg_pmco { TYPE(PM RAM) START(0x00021800)
END(0x00025fff) WIDTH(48) }

alt_pmco { TYPE(PM RAM) START(0x00030000)
END(0x00033fff) WIDTH(48) }

seg_dmda { TYPE(DM RAM) START(0x00036000)
END(0x00037fff) WIDTH(32) }

seg_heap { TYPE(DM RAM) START(0x00038000)
END(0x00039fff) WIDTH(32) }

seg_stak { TYPE(DM RAM) START(0x0003a000)
END(0x0003dfff) WIDTH(32) }

mem_dmda { TYPE(DM RAM) START(0x0007c000)
END(0x0007ffff) WIDTH(16) }

Next, we make a small modification in the
SECTIONS portion of the LDF file. This change
will allow us to place the object file created by the
compiler from the file ext.c (called ext.doj) in the
alternate memory segment alt_pmco that we just
created. Keep in mind that we still want the main
code module to reside in seg_pmco. The boldfaced
text shows the changes to the LDF.

PROCESSOR p0
{
LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
OUTPUT($COMMAND_LINE_OUTPUT_FILE)
SECTIONS
 {
dxe_seg_rth
{
INPUT_SECTIONS($OBJECTS(seg_rth)
$LIBRARIES(seg_rth))
} > seg_rth

dxe_seg_init
{
INPUT_SECTIONS($OBJECTS(seg_init)
$LIBRARIES(seg_init))
} > seg_init

dxe_seg_pmco
{
INPUT_SECTIONS(main.doj(seg_pmco)
$LIBRARIES(seg_pmco))
} > seg_pmco

dxe_alt_pmco
{
INPUT_SECTIONS(ext.doj(seg_pmco))
} > alt_pmco

dxe_alt_dmda

EE-132 Page 3
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

{
INPUT_SECTIONS($OBJECTS(alt_dmda))
} > mem_dmda

dxe_seg_dmda
{
INPUT_SECTIONS($OBJECTS(seg_dmda)
$LIBRARIES(seg_dmda))
} > seg_dmda

Here we made two changes. Under dxe_alt_pmco
we changed $OBJECTS (a macro that refers to all
of the object files on the command line) to ext.doj.
In addition, under dxe_seg_pmco we changed
$OBJECTS to main.doj. If you build the code
example with the new LDF file, main.doj is placed
in seg_pmco, while ext.doj, is placed in alt_pmco.

Note that both changes had to be made – if you left
the macro $OBJECTS in front of seg_pmco, you
would find that ext.doj would not be placed in
alt_pmco. Both changes have to be made in order
for the linker to appropriately place all object files.

Examining the MAP file created by the linker will
confirm placement of your code module alt_pmco.

Option #2: Using the SECTION keyword
The second way to control placement of your code
or data is to use the SECTION keyword (formerly
referred to as the SEGMENT keyword in previous
releases of VisualDSP).

In this example, we want to place the two variables,
ext_a and ext_b in an alternate memory section
called mem_dmda. To do so, we change their
declaration from

int ext_a=0xa, ext_b=0xb;

to

static section (“alt_dmda”) int ext_a=0xa;
static section (“alt_dmda”) int ext_b=0xb;

The updated file, main.c, is shown below:

/* main.c */
extern int sum(int a,int b);

static section (“alt_dmda”) int ext_a=0xa;
static section (“alt_dmda”) int ext_b=0xb;

void main(void)
{
 int i=5;

int j=3;
 int total;
 i = sum(i,j);
 total=ext_a+ext_b;
 idle();
}

Using this syntax in our C code, the two variables
ext_a and ext_b will now be forced into the memory
segment mem_dmda. Note that for this to work,
we need to have the following line in the
SECTIONs portion of the LDF file:

dxe_alt_dmda
{
INPUT_SECTIONS($OBJECTS(alt_dmda))
} > mem_dmda

By using the SECTION command in our C source
code as shown above, we are forcing the compiler to
create an input section called alt_dmda. The line
above in the LDF file instructs the compiler to take
whatever it placed in alt_dmda and redirect to the
memory segment called mem_dmda. Alt_dmda is
the name used in your source code and mem_dmda
is the name of the memory segment in the
MEMORY portion of the LDF file. These two
names can be the same, however for clarification
purposes they are shown to be different in this
example.

Again, examination of the MAP file generated by
the linker will confirm placement of the data
variables in mem_dmda.

This keyword can also be used to explicitly place
functions in specific memory segments (See page 2-

EE-132 Page 4
Technical Notes on using Analog Devices’ DSP components and development tools

Phone: (800) ANALOG-D, FAX: (781)461-3010, EMAIL: dsp.support@analog.com, FTP: ftp.analog.com, WEB: www.analog.com/dsp

64 of the VisualDSP++ C Compiler and Library
manual for details).

See the associated zip file for the VisualDSP++
project that contains all of the code modules
described in this EE Note.

Conclusion
This EE Note described two methods of explicitly
placing C code and data in specific memory
segments. All of the code mentioned is included in
an associated zip file. Note that the attached code
example is based on the ADSP-21060 SHARC®
processor, however the principles discussed in this
EE note are applicable for all Analog Devices’ DSP
products (ADSP-21xx, 2106x, 2116x. etc).

For more information, consult the additional
references mentioned below.

Additional References
1. VisualDSP++ C Compiler Guide and Reference
2. VisualDSP++ Linker and Utilities Manual
3. EE-69: Understanding and Using Linker

Description Files.

